251
|
Hammadeh M, Hamad M, Montenarh M, Fischer-Hammadeh C. Protamine contents and P1/P2 ratio in human spermatozoa from smokers and non-smokers. Hum Reprod 2010; 25:2708-20. [DOI: 10.1093/humrep/deq226] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
252
|
Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod 2010; 25:2415-26. [PMID: 20716559 DOI: 10.1093/humrep/deq214] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND DNA damage in human spermatozoa is known to be associated with a variety of adverse clinical outcomes affecting both reproductive efficiency and the health and wellbeing of the offspring. However, the origin of this damage, its biochemical nature and strategies for its amelioration, still await resolution. METHODS Using novel methods to simultaneously assess DNA fragmentation (modified TUNEL assay), DNA-base adduct formation (8-hydroxy-2'-deoxyguanosine [8OHdG]) and cell vitality, spermatozoa from a cohort of 50 assisted conception patients were examined and compared with a group of donors. Receiver operating characteristic (ROC) curve analysis was then used to examine the frequency distribution of the data and to determine optimized thresholds for identifying patients exhibiting abnormally high levels of DNA damage. RESULTS 8OHdG formation and DNA fragmentation were highly correlated with each other and frequently associated with cell death. Percoll centrifugation improved sperm quality but, unexpectedly, increased 8OHdG formation in live cells, as did sperm fractionation using Puresperm gradients. ROC analysis indicated that the frequency distribution of 8OHdG and DNA fragmentation data were significantly different between patients and donors (P < 0.001), permitting the development of thresholds that would allow the accurate diagnosis of DNA damage in the male germ line. CONCLUSION The aetiology of DNA damage in spermatozoa involves a cascade of changes that progress from the induction of oxidative stress and oxidized DNA base adduct formation to DNA fragmentation and cell death. Preparation of spermatozoa on discontinuous density gradients aggravates the problem by stimulating the formation of 8OHdG in live cells. However, the development of novel methods and optimized thresholds for diagnosing oxidative DNA damage in human spermatozoa should assist in the clinical management of this pathology.
Collapse
Affiliation(s)
- R John Aitken
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | |
Collapse
|
253
|
García-Peiró A, Martínez-Heredia J, Oliver-Bonet M, Abad C, Amengual MJ, Navarro J, Jones C, Coward K, Gosálvez J, Benet J. Protamine 1 to protamine 2 ratio correlates with dynamic aspects of DNA fragmentation in human sperm. Fertil Steril 2010; 95:105-9. [PMID: 20667534 DOI: 10.1016/j.fertnstert.2010.06.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/08/2010] [Accepted: 06/16/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the relationship between the protamine 1 to protamine 2 (P1/P2) ratio and the rate of sperm DNA fragmentation in sperm samples from human males with proven fertility and three different cohorts of male patients. DESIGN P1/P2 ratio was analyzed using acid-urea polyacrylamide acid-urea gels electrophoresis (PAGE). Sperm DNA fragmentation using sperm chromatin dispersion methodology was analyzed after 0, 4, 8, and 24 hours of incubation at 37°C. SETTING University medical school and hospital. PATIENT(S) A total of 32 human males: six with proven fertility, seven carriers of chromosome reorganizations, nine clinical varicocele patients, and ten subclinical varicocele patients. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) P1/P2 ratio, sperm DNA fragmentation (SDF) and the rate of sperm DNA fragmentation (rSDF). RESULT(S) P1/P2 ratio correlated with SDF and rSDF. Statistical differences were detected between fertile controls and patients for the three pathologies studied. rSDF yielded information that differed from baseline SDF. No differences were detected for P1/P2 ratio among patient groups, in reference to the three pathologies studied. CONCLUSION(S) SDF and rSDF correlates with P1/P2 ratio in human sperm, and statistical differences were detected when fertile controls were compared with three different cohorts of patients.
Collapse
Affiliation(s)
- Agustín García-Peiró
- Departament de Biologia Cellular, Fisiologia i Immunologia, Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Yao Y, Brodie AMH, Davidson NE, Kensler TW, Zhou Q. Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Res Treat 2010; 124:585-91. [PMID: 20623181 DOI: 10.1007/s10549-010-1023-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/26/2010] [Indexed: 12/21/2022]
Abstract
Exposure to higher levels of estrogen produces genotoxic metabolites that can stimulate mammary tumorigenesis. Induction of NF-E2-related factor 2 (NRF2)-dependent detoxifying enzymes (e.g., NAD(P)H-quinone oxidoreductase 1 (NQO1)) is considered an important mechanism of protection against estrogen-associated carcinogenesis because they would facilitate removal of toxic estrogens. Here, we studied the impact of estrogen-receptor (ER) signaling on NRF2-dependent gene transcription. In luciferase assay experiments using the 5-flanking region of the human NQO1 gene promoter, we observe that ERα ligand-binding domain (LBD) is required for estrogen inhibition of NQO1 promoter activity in estrogen-dependent breast cancer cells. Chromatin immunoprecipitation (ChIP) assay shows that estrogen recruits ERα and a class III histone deacetylase SIRT1 at the NQO1 promoter, leading to inhibition of NQO1 transcription. Inhibition of ERα expression by the antiestrogen shikonin reverses the inhibitory effect of estrogen on NQO1 expression. As a consequence, a chemoprevention study was undertaken to monitor the impact of shikonin on DNA lesions and tumor growth. Treatment of MCF-7 breast cancer cells with shikonin inhibits estrogen-induced 8-hydroxy-2-deoxyguanosine (8-OHdG), a marker of DNA damage. NQO1 deficiency promotes estrogen-dependent tumor formation, and shikonin inhibits estrogen-dependent tumor growth in an NQO1-dependent manner in MCF-7 xenografts. These results suggest that estrogen-receptor signaling pathway has an inhibitory effect on NRF2-dependent enzymes. Moreover, shikonin reverses the inhibitory effects of estrogen on this pathway and may contribute to breast cancer prevention.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
255
|
Zini A, Phillips S, Lefebvre J, Baazeem A, Bissonnette F, Kadoch IJ, Gabriel MS. Anti-sperm antibodies are not associated with sperm DNA damage: a prospective study of infertile men. J Reprod Immunol 2010; 85:205-8. [DOI: 10.1016/j.jri.2010.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/03/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
|
256
|
Fenech MF. Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future. Am J Clin Nutr 2010; 91:1438S-1454S. [PMID: 20219957 DOI: 10.3945/ajcn.2010.28674d] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Damage to the genome is recognized as a fundamental cause of developmental and degenerative diseases. Several micronutrients play an important role in protecting against DNA damage events generated through endogenous and exogenous factors by acting as cofactors or substrates for enzymes that detoxify genotoxins as well as enzymes involved in DNA repair, methylation, and synthesis. In addition, it is evident that either micronutrient deficiency or micronutrient excess can modify genome stability and that these effects may also depend on nutrient-nutrient and nutrient-gene interaction, which is affected by genotype. These observations have led to the emerging science of genome health nutrigenomics, which is based on the principle that DNA damage is a fundamental cause of disease that can be diagnosed and nutritionally prevented on an individual, genetic subgroup, or population basis. In this article, the following topics are discussed: 1) biomarkers used to study genome damage in humans and their validation, 2) evidence for the association of genome damage with developmental and degenerative disease, 3) current knowledge of micronutrients required for the maintenance of genome stability in humans, 4) the effect of nutrient-nutrient and nutrient-genotype interaction on DNA damage, and 5) strategies to determine dietary reference values of single micronutrients and micronutrient combinations (nutriomes) on the basis of DNA damage prevention. This article also identifies important knowledge gaps and future research directions required to shed light on these issues. The ultimate goal is to match the nutriome to the genome to optimize genome maintenance and to prevent pathologic amounts of DNA damage.
Collapse
Affiliation(s)
- Michael F Fenech
- Commonwealth Scientific and Industrial Research Organisation Food and Nutritional Sciences, Adelaide BC SA 5000, Australia.
| |
Collapse
|
257
|
Tomasetti M, Santarelli L. Biomarkers for early detection of malignant mesothelioma: diagnostic and therapeutic application. Cancers (Basel) 2010; 2:523-48. [PMID: 24281081 PMCID: PMC3835090 DOI: 10.3390/cancers2020523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 12/30/2022] Open
Abstract
Malignant mesothelioma (MM) is a rare and aggressive tumour of the serosal cavities linked to asbestos exposure. Improved detection methods for diagnosing this type of neoplastic disease are essential for an early and reliable diagnosis and treatment. Thus, focus has been placed on finding tumour markers for the non-invasive detection of MM. Recently, some blood biomarkers have been described as potential indicators of early and advanced MM cancers. The identification of tumour biomarkers alone or in combination could greatly facilitate the surveillance procedure for cohorts of subjects exposed to asbestos, a common phenomenon in several areas of western countries.
Collapse
Affiliation(s)
- Marco Tomasetti
- Department of Molecular Pathology and Innovative Therapies, Occupational Medicine, Polytechnic University of Marche, via Tronto 10/A Torrette 60020, Ancona, Italy.
| | | |
Collapse
|
258
|
Chabory E, Damon C, Lenoir A, Henry-Berger J, Vernet P, Cadet R, Saez F, Drevet JR. Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity 1. J Anim Sci 2010; 88:1321-31. [DOI: 10.2527/jas.2009-2583] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
259
|
Malonaldehyde formation and DNA fragmentation: two independent sperm decays linked to reactive oxygen species. ZYGOTE 2010; 18:265-8. [PMID: 20331908 DOI: 10.1017/s0967199409990311] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malondialdehyde (MDA), a product involved in membrane lipid peroxidation, was dosed in the sperm of 163 patients who had consulted the clinic regarding hypofertility. We attempted to determine if there was correlation between MDA content, sperm World Health Organization parameters and DNA fragmentation that results mainly from reactive oxygen species assaults. We found that no correlation could be established; however MDA and sperm decondensation were shown to be significantly linked. The impact of membrane polyunsaturated fatty acids and the role of phospholipid hydroperoxide glutathione peroxidase are discussed.
Collapse
|
260
|
McLachlan RI, O'Bryan MK. Clinical Review#: State of the art for genetic testing of infertile men. J Clin Endocrinol Metab 2010; 95:1013-24. [PMID: 20089613 DOI: 10.1210/jc.2009-1925] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) now provides fertility in many cases of severe idiopathic spermatogenic failure and obstructive azoospermia. Genetic causes must be sought by systematic evaluation of infertile men and affected couples informed about the implications of such diagnoses for assisted reproductive technology outcome and their potential offspring. This review discusses established and emerging genetic disorders related to fertility practice. Chromosomal anomalies are found in about 7% men with idiopathic spermatogenic failure, predominantly numerical/structural in azoospermic men and translocations/inversions in oligospermic men. Routine karyotyping of men with sperm densities less than 10 million/ml, even in the absence of other clinical presentations, is recommended because infertility is associated with higher rates of aneuploidy in ejaculated or testicular sperm and increased chromosomal defects in ICSI offspring. The long arm of the Y chromosome microdeletions are the most common recognized genetic cause of infertility and are found in about 4% men with sperm densities less than 5 million/ml. Routine testing using strict quality assurance procedures is recommended. Azoospermia factor (AZF)-c deletions, the most common form of the long arm of the Y chromosome microdeletions, are usually associated with low levels of sperm in the ejaculate or in testis biopsies, whereas men with AZFa or AZFb+c deletions usually produce no testicular sperm. When AZF-deleted sperm are available and used for ICSI, fertility defects in male offspring seem inevitable. Bilateral congenital absence of the vas is associated with heterozygosity for cystic fibrosis transmembrane receptor mutations making routine gene screening and genetic counseling of the couple essential. Testing for less common genetic associations/defects linked with different reproductive dysfunction may be applicable to specific patients but have not entered routine practice.
Collapse
Affiliation(s)
- Robert I McLachlan
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton 3168, Australia.
| | | |
Collapse
|
261
|
Pujianto DA, Curry BJ, Aitken RJ. Prolactin exerts a prosurvival effect on human spermatozoa via mechanisms that involve the stimulation of Akt phosphorylation and suppression of caspase activation and capacitation. Endocrinology 2010; 151:1269-79. [PMID: 20032052 DOI: 10.1210/en.2009-0964] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to examine the impact of prolactin (PRL) on human sperm function, in light of a recent proteomic analysis indicating that these cells express the PRL receptor (PRLR). Immunocytochemical analyses confirmed the presence of PRLR in human spermatozoa and localized this receptor to the postacrosomal region of the sperm head as well as the neck, midpiece, and principal piece of the sperm tail. Nested PCR analysis indicated that these cells possess four splice variants of the PRLR: the long form and three short isoforms, one of which is reported for the first time. A combination of Western blot analyses and immunocytochemistry demonstrated that PRL inhibited sperm capacitation in a dose-dependent manner, suppressing SRC kinase activation and phosphotyrosine expression, two hallmarks of this process. The suppression of sperm capacitation was accompanied by a powerful prosurvival effect, supporting the prolonged motility of these cells and preventing the formation of spontaneous DNA strand breaks via mechanisms that involved the concomitant suppression of caspase activation. Western blot analyses indicated that the prosurvival effect of PRL on human spermatozoa involved the stimulation of Akt phosphorylation, whereas inhibitors of phosphatidylinositol-3-OH kinase and Akt negated this effect, as did the direct induction of sperm capacitation with cAMP analogues. We conclude that PRL is a prosurvival factor for human spermatozoa that prevents these cells from defaulting to an intrinsic apoptotic pathway associated with cell senescence. These findings have implications for preservation of sperm integrity in vivo and in vitro.
Collapse
Affiliation(s)
- Dwi Ari Pujianto
- School of Environmental and Life Sciences, University of Newcastle, University Drive Callaghan, New South Wales 2308, Australia
| | | | | |
Collapse
|
262
|
Barratt CLR, Aitken RJ, Björndahl L, Carrell DT, de Boer P, Kvist U, Lewis SEM, Perreault SD, Perry MJ, Ramos L, Robaire B, Ward S, Zini A. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications--a position report. Hum Reprod 2010; 25:824-38. [PMID: 20139429 DOI: 10.1093/humrep/dep465] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This article reports the results of the most recent in a series of EHSRE workshops designed to synthesize the current state of the field in Andrology and provide recommendations for future work (for details see Appendix). Its focus is on methods for detecting sperm DNA damage and potential application of new knowledge about sperm chromatin organization, vulnerability and repair to improve the diagnosis and treatment of clinical infertility associated with that damage. Equally important is the use and reliability of these tests to identify the extent to which environmental contaminants or pharmaceutical agents may contribute to the incidence of sperm DNA damage and male fertility problems. A working group (for workshop details, see Appendix) under the auspices of ESHRE met in May 2009 to assess the current knowledgebase and suggest future basic and clinical research directions. This document presents a synthesis of the working group's understanding of the recent literature and collective discussions on the current state of knowledge of sperm chromatin structure and function during fertilization. It highlights the biological, assay and clinical uncertainties that require further research and ends with a series of 5 key recommendations.
Collapse
Affiliation(s)
- Christopher L R Barratt
- Reproductive and Developmental Biology, Maternal and Child Health Science Laboratories, Centre for Oncology and Molecular Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Koppers AJ, Garg ML, Aitken RJ. Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radic Biol Med 2010; 48:112-9. [PMID: 19837155 DOI: 10.1016/j.freeradbiomed.2009.10.033] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/25/2009] [Accepted: 10/12/2009] [Indexed: 02/02/2023]
Abstract
Male infertility is a relatively common condition affecting 1 in 20 men of reproductive age. The etiology of this condition is thought to involve the excessive generation of reactive oxygen species by human spermatozoa; however, the cause of this aberrant activity is unknown. In this study we demonstrate that defective human sperm populations are characterized by high cellular contents of both esterified and unesterified fatty acids and a decrease in the proportion of the total fatty acid pool made up by docosahexaenoic acid. The free unsaturated fatty acid content of these cells was positively correlated with the induction of mitochondrial superoxide generation (P<0.001). This relationship was causal and mediated by the range of unesterified, unsaturated fatty acids that are present in human spermatozoa. Thus direct exposure of these cells to free unsaturated fatty acids stimulated mitochondrial superoxide generation and precipitated a loss of motility and an increase in oxidative DNA damage, two key attributes of male infertility. We conclude that defective human spermatozoa are characterized by an abnormally high content of fatty acids that, in their unesterified, unsaturated form, promote ROS generation by sperm mitochondria, creating a state of oxidative stress and a concomitant loss of functional competence.
Collapse
Affiliation(s)
- Adam J Koppers
- Discipline of Biological Sciences and ARC Centre of Excellence in Biotechnology and Development, Faculty of Science and IT, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
264
|
de Boer P, Ramos L, de Vries M, Gochhait S. Memoirs of an insult: sperm as a possible source of transgenerational epimutations and genetic instability. Mol Hum Reprod 2009; 16:48-56. [PMID: 19897543 DOI: 10.1093/molehr/gap098] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Male transgenerational epigenetic effects have been discovered in the discipline of mouse radiation genetics, using genetic and non-genetic readouts. The mechanism to explain the origin of the transmission of epigenetic and genetic instability is still unknown. In a search for a hypothesis that could satisfy the data, we propose that regulation of chromosome structure in the germline, by the occupancy of matrix/scaffold associated regions, contains molecular memory function. The male germline is strikingly dynamic as to chromatin organization. This could explain why experience of irradiation stress leaves a persistent mark in the male germline only. To be installed, such memory requires both S-phase and chromatin reorganization during spermatogenesis and in the zygote, that likely also involves reorganization of loop domains. By this reorganization, another layer of information is added, needed to accommodate early embryonic development. Observations point at the involvement of DNA repair as inducer of transgenerational epigenetic modulation. Nuclear structure, chromatin composition and loop domain organization are aspects of human sperm variability that in many cases of assisted reproduction is increased due to inclusion of more incompletely differentiated/maturated sperm nuclei. Adjustment of loop domains in early embryo development can be anticipated and zygotic and cleavage stage S-phase repair activity will have to deal with potential paternal DNA lesions. Therefore, by changing male nucleus structure due to reproduction from impaired spermatogenesis, the transgenerational information content could be changed as well. We discuss aspects of male reproductive performance in the context of this hypothesis.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|