251
|
Chambers C, Shuai B. Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC PLANT BIOLOGY 2009; 9:87. [PMID: 19591667 PMCID: PMC2715406 DOI: 10.1186/1471-2229-9-87] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 07/10/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are approximately 22-nt small non-coding RNAs that regulate the expression of specific target genes in many eukaryotes. In higher plants, miRNAs are involved in developmental processes and stress responses. Sexual reproduction in flowering plants relies on pollen, the male gametophyte, to deliver sperm cells to fertilize the egg cell hidden in the embryo sac. Studies indicated that post-transcriptional processes are important for regulating gene expression during pollen function. However, we still have very limited knowledge on the involved gene regulatory mechanisms. Especially, the function of miRNAs in pollen remains unknown. RESULTS Using miRCURY LNA array technology, we have profiled the expression of 70 known miRNAs (representing 121 miRBase IDs) in Arabidopsis mature pollen, and compared the expression of these miRNAs in pollen and young inflorescence. Thirty-seven probes on the array were identified using RNAs isolated from mature pollen, 26 of which showed significant differences in expression between mature pollen and inflorescence. Real-time PCR based on TaqMan miRNA assays confirmed the expression of 22 miRNAs in mature pollen, and identified 8 additional miRNAs that were expressed at low level in mature pollen. However, the expression of 11 miRNA that were identified on the array could not be confirmed by the Taqman miRNA assays. Analyses of transcriptome data for some miRNA target genes indicated that miRNAs are functional in pollen. CONCLUSION In summary, our results showed that some known miRNAs were expressed in Arabidopsis mature pollen, with most of them being low abundant. The results can be utilized in future research to study post-transcriptional gene regulation in pollen function.
Collapse
Affiliation(s)
- Carrie Chambers
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Bin Shuai
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| |
Collapse
|
252
|
Ishikawa R, Kinoshita T. Epigenetic programming: the challenge to species hybridization. MOLECULAR PLANT 2009; 2:589-599. [PMID: 19825641 DOI: 10.1093/mp/ssp028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In many organisms, the genomes of individual species are isolated by a range of reproductive barriers that act before or after fertilization. Successful mating between species results in the presence of different genomes within a cell (hybridization), which can lead to incompatibility in cellular events due to adverse genetic interactions. In addition to such genetic interactions, recent studies have shown that the epigenetic control of the genome, silencing of transposons, control of non-additive gene expression and genomic imprinting might also contribute to reproductive barriers in plant and animal species. These genetic and epigenetic mechanisms play a significant role in the prevention of gene flow between species. In this review, we focus on aspects of epigenetic control related to hybrid incompatibility during species hybridization, and also consider key mechanism(s) in the interaction between different genomes.
Collapse
Affiliation(s)
- Ryo Ishikawa
- Plant Reproductive Genetics, GCOE Research Group, Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Tetsu Kinoshita
- Plant Reproductive Genetics, GCOE Research Group, Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
253
|
Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:303-15. [PMID: 19392701 DOI: 10.1111/j.1365-313x.2009.03870.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Meiosis is essential for eukaryotic sexual reproduction and important for genetic diversity among individuals. Although a number of genes regulating homologous chromosome pairing and synapsis have been identified in the plant kingdom, their molecular basis remains poorly understood. In this study, we identified a novel gene, PAIR3 (HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS 3), required for homologous chromosome pairing and synapsis in rice. Two independent alleles, designated pair3-1 and pair3-2, were identified in our T-DNA insertional mutant library which could not form bivalents due to failure of homologous chromosome pairing and synapsis at diakinesis, resulting in sterility in both male and female gametes. Suppression of PAIR3 by RNAi produced similar results to the T-DNA insertion lines. PAIR3 encodes a protein that contains putative coiled-coil motifs, but does not have any close homologs in other organisms. PAIR3 is preferentially expressed in reproductive organs, especially in pollen mother cells and the ovule tissues during meiosis. Our results suggest that PAIR3 plays a crucial role in homologous chromosome pairing and synapsis in meiosis.
Collapse
Affiliation(s)
- Wenya Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
254
|
Wang K, Tang D, Wang M, Lu J, Yu H, Liu J, Qian B, Gong Z, Wang X, Chen J, Gu M, Cheng Z. MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J Cell Sci 2009; 122:2055-63. [DOI: 10.1242/jcs.049080] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MER3, a ZMM protein, is required for the formation of crossovers in Saccharomyces cerevisiae and Arabidopsis. Here, MER3, the first identified ZMM gene in a monocot, is characterized by map-based cloning in rice (Oryza sativa). The null mutation of MER3 results in complete sterility without any vegetative defects. Cytological analyses show that chiasma frequency is reduced dramatically in mer3 mutants and the remaining chiasmata distribute randomly among different pollen mother cells, implying possible coexistence of two kinds of crossover in rice. Immunocytological analyses reveal that MER3 only exists as foci in prophase I meiocytes. In addition, MER3 does not colocalize with PAIR2 at the beginning of prophase I, but locates on one end of PAIR2 fragments at later stages, whereas MER3 foci merely locate on one end of REC8 fragments when signals start to be seen in early prophase I. The normal loading of PAIR2 and REC8 in mer3 implies that their loading is independent of MER3. On the contrary, the absence of MER3 signal in pair2 mutants indicates that PAIR2 is essential for the loading and further function of MER3.
Collapse
Affiliation(s)
- Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jufei Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hengxiu Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jiafan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Baoxiang Qian
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiyun Gong
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xin Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jianmin Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
255
|
Alvarado V, Scholthof HB. Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol 2009; 20:1032-40. [PMID: 19524057 DOI: 10.1016/j.semcdb.2009.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 05/29/2009] [Accepted: 06/04/2009] [Indexed: 11/29/2022]
Abstract
RNA silencing is a common strategy shared by eukaryotic organisms to regulate gene expression, and also operates as a defense mechanism against invasive nucleic acids such as viral transcripts. The silencing pathway is quite sophisticated in higher eukaryotes but the distinct steps and nature of effector complexes vary between and even within species. To counteract this defense mechanism viruses have evolved the ability to encode proteins that suppress silencing to protect their genomes from degradation. This review focuses on our current understanding of how individual components of the plant RNA silencing mechanism are directed against viruses, and how in turn virus-encoded suppressors target one or more key events in the silencing cascade.
Collapse
Affiliation(s)
- Veria Alvarado
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, United States
| | | |
Collapse
|
256
|
Tucker MR, Koltunow AMG. Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:490-504. [PMID: 32688664 DOI: 10.1071/fp09078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/21/2009] [Indexed: 05/10/2023]
Abstract
Reproduction in the flowering plants (angiosperms) is a dynamic process that relies upon the formation of inflorescences, flowers and eventually seed. Most angiosperms reproduce sexually by generating gametes via meiosis that fuse during fertilisation to initiate embryo and seed development, thereby perpetuating the processes of adaptation and evolution. Despite this, sex is not a ubiquitous reproductive strategy. Some angiosperms have evolved an alternate form of reproduction termed apomixis, which avoids meiosis during gamete formation and leads to the production of embryos without paternal contribution. Therefore, apomixis results in the production of clonal progeny through seed. The molecular nature and evolutionary origin of apomixis remain unclear, but recent studies suggest that apomixis evolved from the same molecular framework supporting sex. In this review, we consider physical and molecular relationships between the two pathways, with a particular focus on the initial stages of female reproduction where apomixis deviates from the sexual pathway. We also consider theories that explain the origin of apomictic processes from sexual progenitors. Detailed characterisation of the relationship between sex and apomixis in an evolutionary and developmental sense is an important step towards understanding how apomixis might be successfully integrated into agriculturally important, but currently sexual crops.
Collapse
Affiliation(s)
- Matthew R Tucker
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| | | |
Collapse
|
257
|
Grant-Downton R, Hafidh S, Twell D, Dickinson HG. Small RNA pathways are present and functional in the angiosperm male gametophyte. MOLECULAR PLANT 2009; 2:500-12. [PMID: 19825633 DOI: 10.1093/mp/ssp003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Small non-coding RNAs are essential for development of the sporophyte, the somatic diploid phase of flowering plants. They are integral to key cellular processes such as defense, generation of chromatin structure, and regulation of native gene expression. Surprisingly, very little is known of their presence and function in the male haploid phase of plant development (male gametophyte/pollen grain), where dramatic cell fate changes leading to gametogenesis occur over just two mitotic divisions. We show that critical components of small RNA pathways are expressed throughout pollen development, but in a pattern that differs from the sporophyte. We also demonstrate that mature pollen accumulates a range of mature microRNAs, the class of small RNA most frequently involved in post-transcriptional regulation of endogenous gene expression. Significantly, these miRNAs cleave their target transcripts in developing pollen-a process that seemingly contributes to the purging of key regulatory transcripts from the mature pollen grain. Small RNAs are thus likely to make a hitherto unappreciated contribution to male gametophyte gene expression patterns, pollen development, and gametogenesis.
Collapse
|
258
|
Schurko AM, Logsdon JM, Eads BD. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evol Biol 2009; 9:78. [PMID: 19383157 PMCID: PMC2680839 DOI: 10.1186/1471-2148-9-78] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 04/21/2009] [Indexed: 11/21/2022] Open
Abstract
Background Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. Results We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. Conclusion We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.
Collapse
Affiliation(s)
- Andrew M Schurko
- Roy J Carver Center for Comparative Genomics and Department of Biology, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
259
|
Zhang XM, Wang Y, Lv XM, Li H, Sun P, Lu H, Li FL. NtCP56, a new cysteine protease in Nicotiana tabacum L., involved in pollen grain development. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1569-77. [PMID: 19246592 PMCID: PMC2671612 DOI: 10.1093/jxb/erp022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/02/2009] [Accepted: 01/20/2009] [Indexed: 05/22/2023]
Abstract
Proteinases play a critical role in developmental homeostasis and in response to environ-mental stimuli. Our present research reports that a new cysteine protease, NtCP56, is involved in the development of pollen grains in Nicotiana tabacum L. The NtCP56 gene, which encodes a protein of 361 amino acid residues with a calculated molecular mass of 40 kDa, is strongly expressed in anthers. The recombinant NtCP56 showed a high activity towards casein. Kinetic analysis revealed a K(m) of 2.20 mg ml(-1) and V(max) of 11.07 microg ml(-1) min(-1). The recombinant NtCP56 retained more than 50% of its maximum enzymatic activity from 20 degrees C to 60 degrees C with an optimum Tm range of 30-50 degrees C. The enzyme had a maximum activity at approximately pH 6.5. Suppression of the NtCP56 gene in anti-sense transgenic tobaccos resulted in the sterility of pollen grains. Our data indicated that, as a cysteine protease, NtCP56 might play an important role in pollen development.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | | |
Collapse
|
260
|
Abstract
Small RNAs (sRNAs) are common and effective modulators of gene expression in eukaryotic organisms. To characterize the sRNAs expressed during rice seed development, massively parallel signature sequencing (MPSS) was performed, resulting in the obtainment of 797 399 22-nt sequence signatures, of which 111 161 are distinct ones. Analysis on the distributions of sRNAs on chromosomes showed that most sRNAs originate from interspersed repeats that mainly consist of transposable elements, suggesting the major function of sRNAs in rice seeds is transposon silencing. Through integrative analysis, 26 novel miRNAs and 12 miRNA candidates were identified. Further analysis on the expression profiles of the known and novel miRNAs through hybridizing the generated chips revealed that most miRNAs were expressed preferentially in one or two rice tissues. Detailed comparison of the expression patterns of miRNAs and corresponding target genes revealed the negative correlation between them, while few of them are positively correlated. In addition, differential accumulations of miRNAs and corresponding miRNA*s suggest the functions of miRNA*s other than being passenger strands of mature miRNAs, and in regulating the miRNA functions.
Collapse
Affiliation(s)
| | | | - Hong-Wei Xue
- *To whom correspondence should be addressed. Tel: +86 21 54924059; Fax: +86 2154924060;
| |
Collapse
|
261
|
Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J 2008; 27:2702-11. [PMID: 18833190 DOI: 10.1038/emboj.2008.204] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 09/15/2008] [Indexed: 11/08/2022] Open
Abstract
Small RNAs exert an effect through diverse RNA interference pathways to transcriptionally or post-transcriptionally silence their targets. The Piwi-interacting RNAs (piRNAs) represent a germline-specific small RNA pathway where Piwi proteins themselves are thought to mediate piRNA biosynthesis. Here, we provide strong evidence for a piRNA amplification loop in zebrafish, in which Ziwi and Zili bind piRNAs of opposite polarity. Furthermore, we describe a function for Zili in transposon defense and germ cell differentiation, as well as a crucial function in meiosis, significantly extending the function of Piwi proteins beyond the control of transposable elements in vertebrates.
Collapse
|
262
|
Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 2008; 9:451. [PMID: 18826656 PMCID: PMC2576257 DOI: 10.1186/1471-2164-9-451] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 10/01/2008] [Indexed: 12/11/2022] Open
Abstract
Background Important developmental processes in both plants and animals are partly regulated by genes whose expression is modulated at the post-transcriptional level by processes such as RNA interference (RNAi). Dicers, Argonautes and RNA-dependent RNA polymerases (RDR) form the core components that facilitate gene silencing and have been implicated in the initiation and maintenance of the trigger RNA molecules, central to process of RNAi. Investigations in eukaryotes have revealed that these proteins are encoded by variable number of genes with plants showing relatively higher number in each gene family. To date, no systematic expression profiling of these genes in any of the organisms has been reported. Results In this study, we provide a complete analysis of rice Dicer-like, Argonaute and RDR gene families including gene structure, genomic localization and phylogenetic relatedness among gene family members. We also present microarray-based expression profiling of these genes during 14 stages of reproductive and 5 stages of vegetative development and in response to cold, salt and dehydration stress. We have identified 8 Dicer-like (OsDCLs), 19 Argonaute (OsAGOs) and 5 RNA-dependent RNA polymerase (OsRDRs) genes in rice. Based on phylogeny, each of these genes families have been categorized into four subgroups. Although most of the genes express both in vegetative and reproductive organs, 2 OsDCLs, 14 OsAGOs and 3 OsRDRs were found to express specifically/preferentially during stages of reproductive development. Of these, 2 OsAGOs exhibited preferential up-regulation in seeds. One of the Argonautes (OsAGO2) also showed specific up-regulation in response to cold, salt and dehydration stress. Conclusion This investigation has identified 23 rice genes belonging to DCL, Argonaute and RDR gene families that could potentially be involved in reproductive development-specific gene regulatory mechanisms. These data provide an insight into probable domains of activity of these genes and a basis for further, more detailed investigations aimed at understanding the contribution of individual components of RNA silencing machinery during reproductive phase of plant development.
Collapse
|
263
|
Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD. Comparative transcriptomics of Arabidopsis sperm cells. PLANT PHYSIOLOGY 2008; 148:1168-81. [PMID: 18667720 PMCID: PMC2556834 DOI: 10.1104/pp.108.125229] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/27/2008] [Indexed: 05/19/2023]
Abstract
In flowering plants, the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part in fertilization are crucial goals in the study of plant reproduction. Studies of gene expression in male gametes of maize (Zea mays) and Plumbago and in lily (Lilium longiflorum) generative cells already showed that the previously held view of transcriptionally inert male gametes was not true, but genome-wide studies were lacking. Analyses in the model plant Arabidopsis (Arabidopsis thaliana) were hindered, because no method to isolate sperm cells was available. Here, we used fluorescence-activated cell sorting to isolate sperm cells from Arabidopsis, allowing GeneChip analysis of their transcriptome at a genome-wide level. Comparative analysis of the sperm cell transcriptome with those of representative sporophytic tissues and of pollen showed that sperm has a distinct and diverse transcriptional profile. Functional classifications of genes with enriched expression in sperm cells showed that DNA repair, ubiquitin-mediated proteolysis, and cell cycle progression are overrepresented Gene Ontology categories. Moreover, analysis of the small RNA and DNA methylation pathways suggests that distinct mechanisms might be involved in regulating the epigenetic state of the paternal genome. We identified numerous candidate genes whose involvement in sperm cell development and fertilization can now be directly tested in Arabidopsis. These results provide a roadmap to decipher the role of sperm-expressed proteins.
Collapse
Affiliation(s)
- Filipe Borges
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
264
|
Vaucheret H. Plant ARGONAUTES. TRENDS IN PLANT SCIENCE 2008; 13:350-8. [PMID: 18508405 DOI: 10.1016/j.tplants.2008.04.007] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/15/2008] [Accepted: 04/18/2008] [Indexed: 05/20/2023]
Abstract
ARGONAUTE (AGO) proteins are integral players in all known small RNA-directed regulatory pathways. Eukaryotes produce numerous types of small RNAs, such as microRNAs (miRNA), small interfering RNAs (siRNA), PIWI-interacting RNAs (piRNAs), scanRNAs and 21U-RNAs, and these RNA species associate with different types of AGO family members, such as AGO, PIWI and group 3 proteins. Small RNA-guided AGO proteins regulate gene expression at various levels, including internal genomic DNA sequence elimination (in ciliates), translational repression (animals), and RNA cleavage (all eukaryotes), which in some cases is followed by DNA methylation and chromatin remodeling. The plant model species Arabidopsis contains ten AGO proteins belonging to three phylogenetic clades. This review covers our current knowledge of plant AGO functions during miRNA- and siRNA-mediated regulation of development and stress responses, siRNA-mediated antiviral immune response, and siRNA-mediated regulation of chromatin structure and transposons.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), 78026 Versailles Cedex, France.
| |
Collapse
|