251
|
Wang Y, Hayatsu M, Fujii T. Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ 2012; 27:111-21. [PMID: 22791042 PMCID: PMC4036013 DOI: 10.1264/jsme2.me11304] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Detection of bacterial gene expression in soil emerged in the early 1990s and provided information on bacterial responses in their original soil environments. As a key procedure in the detection, extraction of bacterial RNA from soil has attracted much interest, and many methods of soil RNA extraction have been reported in the past 20 years. In addition to various RT-PCR-based technologies, new technologies for gene expression analysis, such as microarrays and high-throughput sequencing technologies, have recently been applied to examine bacterial gene expression in soil. These technologies are driving improvements in RNA extraction protocols. In this mini-review, progress in the extraction of bacterial RNA from soil is summarized with emphasis on the major difficulties in the development of methodologies and corresponding strategies to overcome them.
Collapse
Affiliation(s)
- Yong Wang
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | |
Collapse
|
252
|
Lagier JC, Million M, Hugon P, Armougom F, Raoult D. Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2012; 2:136. [PMID: 23130351 PMCID: PMC3487222 DOI: 10.3389/fcimb.2012.00136] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/16/2012] [Indexed: 12/28/2022] Open
Abstract
The composition of human gut microbiota and their relationship with the host and, consequently, with human health and disease, presents several challenges to microbiologists. Originally dominated by culture-dependent methods for exploring this ecosystem, the advent of molecular tools has revolutionized our ability to investigate these relationships. However, many biases that have led to contradictory results have been identified. Microbial culturomics, a recent concept based on a use of several culture conditions with identification by MALDI-TOF followed by the genome sequencing of the new species cultured had allowed a complementarity with metagenomics. Culturomics allowed to isolate 31 new bacterial species, the largest human virus, the largest bacteria, and the largest Archaea from human. Moreover, some members of this ecosystem, such as Eukaryotes, giant viruses, Archaea, and Planctomycetes, have been neglected by the majority of studies. In addition, numerous factors, such as age, geographic provenance, dietary habits, antibiotics, or probiotics, can influence the composition of the microbiota. Finally, in addition to the countless biases associated with the study techniques, a considerable limitation to the interpretation of studies of human gut microbiota is associated with funding sources and transparency disclosures. In the future, studies independent of food industry funding and using complementary methods from a broad range of both culture-based and molecular tools will increase our knowledge of the repertoire of this complex ecosystem and host-microbiota mutualism.
Collapse
Affiliation(s)
- Jean-Christophe Lagier
- URMITE, UM63, CNRS 7278, L'Institut de Recherche pour le Développement 198, INSERM 1095, Aix-Marseille Université Marseille, France
| | | | | | | | | |
Collapse
|
253
|
Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH. Are uncultivated bacteria really uncultivable? Microbes Environ 2012; 27:356-66. [PMID: 23059723 PMCID: PMC4103542 DOI: 10.1264/jsme2.me12092] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 06/20/2012] [Indexed: 11/16/2022] Open
Abstract
Many strategies have been used to increase the number of bacterial cells that can be grown from environmental samples but cultivation efficiency remains a challenge for microbial ecologists. The difficulty of cultivating a fraction of bacteria in environmental samples can be classified into two non-exclusive categories. Bacterial taxa with no cultivated representatives for which appropriate laboratory conditions necessary for growth are yet to be identified. The other class is cells in a non-dividing state (also known as dormant or viable but not culturable cells) that require the removal or addition of certain factors to re-initiate growth. A number of strategies, from simple to high throughput techniques, are reviewed that have been used to increase the cultivation efficiency of environmental samples. Some of the underlying mechanisms that contribute to the success of these cultivation strategies are described. Overall this review emphasizes the need of researchers to first understand the factors that are hindering cultivation to identify the best strategies to improve cultivation efficiency.
Collapse
Affiliation(s)
- Indun Dewi Puspita
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062–8517,
Japan
| | - Michiko Tanaka
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Kozo Asano
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Cindy H. Nakatsu
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907,
USA
| |
Collapse
|
254
|
Buhimschi IA, Nayeri UA, Laky CA, Razeq SA, Dulay AT, Buhimschi CS. Advances in medical diagnosis of intra-amniotic infection. ACTA ACUST UNITED AC 2012; 7:5-16. [PMID: 23530840 DOI: 10.1517/17530059.2012.709232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Intrauterine infection is a global problem and a significant contributor to morbidity and perinatal death. The host response to infection causes an inflammatory state that acts synergistically with microbial insult to induce preterm birth and fetal damage. Prompt and accurate diagnosis of intra-amniotic infection in the asymptomatic stage of the disease is critical for improved maternal and neonatal outcomes. AREAS COVERED This article provides an overview of the most recent progress, challenges, and opportunities for discovery and clinical implementation of various maternal serum, cervicovaginal, and amniotic fluid biomarkers in pregnancies complicated by intra-amniotic infection. EXPERT OPINION Clinically relevant biomarkers are critical to the accurate diagnostic of intrauterine infection. Front-end implementation of such biomarkers will also translate in lower incidence of early-onset neonatal sepsis (EONS) which is an important determinant of neonatal morbidity and mortality associated with prematurity. However, of the hundreds of differentially expressed proteins, only few may have clinical utility and thus function as biomarkers. The small number of validation studies along with barriers to implementation of technological innovations in the clinical setting are current limitations.
Collapse
Affiliation(s)
- Irina A Buhimschi
- Yale University, Department of Obstetrics, Gynecology & Reprod. Science, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
255
|
Levy R, Borenstein E. Reverse Ecology: from systems to environments and back. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 751:329-45. [PMID: 22821465 DOI: 10.1007/978-1-4614-3567-9_15] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.
Collapse
Affiliation(s)
- Roie Levy
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
256
|
Jin XB, Sun RJ, Zhu JQ, Xu ZJ, Liu Z, Wang Q, Ye XY. Isolation and Identification of Bacillus altitudinis ZJ 186 from Marine Soil Samples and its Antifungal Activity Against Magnaporthe oryzae. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/crb.2012.13.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
257
|
New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol 2011; 78:194-203. [PMID: 22057871 DOI: 10.1128/aem.06813-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A significant number of microorganisms from the human oral cavity remain uncultivated. This is a major impediment to the study of human health since some of the uncultivated species may be involved in a variety of systemic diseases. We used a range of innovations previously developed to cultivate microorganisms from the human oral cavity, focusing on anaerobic species. These innovations include (i) in vivo cultivation to specifically enrich for species actively growing in the oral cavity (the "minitrap" method), (ii) single-cell long-term cultivation to minimize the effect of fast-growing microorganisms, and (iii) modifications of conventional enrichment techniques, using media that did not contain sugar, including glucose. To enable cultivation of obligate anaerobes, we maintained strict anaerobic conditions in most of our cultivation experiments. We report that, on a per cell basis, the most successful recovery was achieved using minitrap enrichment (11%), followed by single-cell cultivation (3%) and conventional plating (1%). Taxonomically, the richest collection was obtained using the single-cell cultivation method, followed by minitrap and conventional enrichment, comprising representatives of 13, 9, and 4 genera, respectively. Interestingly, no single species was isolated by all three methods, indicating method complementarity. An important result is the isolation and maintenance in pure culture of 10 strains previously only known by their molecular signatures, as well as representatives of what are likely to be three new microbial genera. We conclude that the ensemble of new methods we introduced will likely help close the gap between cultivated and uncultivated species from the human oral cavity.
Collapse
|
258
|
Evaluation of matrix-assisted laser desorption ionization-time of flight whole cell profiles for assessing the cultivable diversity of aerobic and moderately halophilic prokaryotes thriving in solar saltern sediments. Syst Appl Microbiol 2011; 34:69-75. [DOI: 10.1016/j.syapm.2010.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/02/2010] [Accepted: 11/15/2010] [Indexed: 11/22/2022]
|
259
|
Abstract
Isolated, clonal populations of cells are rarely found in nature. The emergent properties of microbial consortia present a challenge for the systems approach to biology, as chances for competition, communication, or collaboration multiply with the number of interacting agents. This review focuses on recent work on intercourse within biofilms, among quorum-sensing populations, and between cross-feeding metabolic cooperators. New tools from synthetic biology allow microbial interactions to be designed and tightly controlled, creating valuable model systems. We address both natural and synthetic partnerships, with an emphasis on how system behaviors derive from the properties of their components. Essential features of microbial biology arose in the context of a very mixed culture and cannot be understood without unscrambling it.
Collapse
Affiliation(s)
- Edwin H Wintermute
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
260
|
Klitgord N, Segrè D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 2010; 6:e1001002. [PMID: 21124952 PMCID: PMC2987903 DOI: 10.1371/journal.pcbi.1001002] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/20/2010] [Indexed: 11/18/2022] Open
Abstract
Interactions between microbial species are sometimes mediated by the exchange of small molecules, secreted by one species and metabolized by another. Both one-way (commensal) and two-way (mutualistic) interactions may contribute to complex networks of interdependencies. Understanding these interactions constitutes an open challenge in microbial ecology, with applications ranging from the human microbiome to environmental sustainability. In parallel to natural communities, it is possible to explore interactions in artificial microbial ecosystems, e.g. pairs of genetically engineered mutualistic strains. Here we computationally generate artificial microbial ecosystems without re-engineering the microbes themselves, but rather by predicting their growth on appropriately designed media. We use genome-scale stoichiometric models of metabolism to identify media that can sustain growth for a pair of species, but fail to do so for one or both individual species, thereby inducing putative symbiotic interactions. We first tested our approach on two previously studied mutualistic pairs, and on a pair of highly curated model organisms, showing that our algorithms successfully recapitulate known interactions, robustly predict new ones, and provide novel insight on exchanged molecules. We then applied our method to all possible pairs of seven microbial species, and found that it is always possible to identify putative media that induce commensalism or mutualism. Our analysis also suggests that symbiotic interactions may arise more readily through environmental fluctuations than genetic modifications. We envision that our approach will help generate microbe-microbe interaction maps useful for understanding microbial consortia dynamics and evolution, and for exploring the full potential of natural metabolic pathways for metabolic engineering applications.
Collapse
Affiliation(s)
- Niels Klitgord
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Biology and Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|