251
|
Bera S, Korshavn KJ, Kar RK, Lim MH, Ramamoorthy A, Bhunia A. Biophysical insights into the membrane interaction of the core amyloid-forming Aβ40fragment K16–K28 and its role in the pathogenesis of Alzheimer's disease. Phys Chem Chem Phys 2016; 18:16890-901. [DOI: 10.1039/c6cp02023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Role of central hydrophobic region of Aβ40 in membrane interaction.
Collapse
Affiliation(s)
- Swapna Bera
- Department of Biophysics
- Bose Institute
- Kolkata 700 054
- India
| | | | - Rajiv K. Kar
- Department of Biophysics
- Bose Institute
- Kolkata 700 054
- India
| | - Mi Hee Lim
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Republic of Korea
| | | | - Anirban Bhunia
- Department of Biophysics
- Bose Institute
- Kolkata 700 054
- India
| |
Collapse
|
252
|
Sheena Mary Y, Aswathy VV, Panicker CY, Bielenica A, Brzózka P, Savczenko O, Armaković S, Armaković SJ, Van Alsenoy C. Spectroscopic, single crystal XRD structure, DFT and molecular dynamics investigation of 1-(3-chloro-4-fluorophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea. RSC Adv 2016. [DOI: 10.1039/c6ra21396k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The title compound 1-(3-chloro-4-fluorophenyl)-3-[3-(trifluoromethyl) phenyl]thiourea (ANF-2) was synthesized and structurally characterized by single crystal XRD.
Collapse
Affiliation(s)
- Y. Sheena Mary
- Department of Physics
- Fatima Mata National College
- Kollam
- India
| | - V. V. Aswathy
- Department of Physics
- Fatima Mata National College
- Kollam
- India
| | | | - Anna Bielenica
- Chair and Department of Biochemistry
- Medical University of Warsaw
- 02-097 Warszawa
- Poland
| | - Paulina Brzózka
- Department of Inorganic and Analytical Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warszawa
- Poland
| | | | - Stevan Armaković
- University of Novi Sad
- Faculty of Sciences
- Department of Physics
- 21000 Novi Sad
- Serbia
| | - Sanja J. Armaković
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | | |
Collapse
|
253
|
Bajusz D, Ferenczy GG, Keserű GM. Discovery of Subtype Selective Janus Kinase (JAK) Inhibitors by Structure-Based Virtual Screening. J Chem Inf Model 2015; 56:234-47. [DOI: 10.1021/acs.jcim.5b00634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research
Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research
Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research
Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| |
Collapse
|
254
|
Topno NS, Kannan M, Krishna R. Interacting mechanism of ID3 HLH domain towards E2A/E12 transcription factor - An Insight through molecular dynamics and docking approach. Biochem Biophys Rep 2015; 5:180-190. [PMID: 28955822 PMCID: PMC5600450 DOI: 10.1016/j.bbrep.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 10/29/2022] Open
Abstract
Inhibitor of DNA binding protein 3 (ID3) has long been characterized as an oncogene that implicates its functional role through its Helix-Loop-Helix (HLH) domain upon protein-protein interaction. An insight into the dimerization brought by this domain helps in identifying the key residues that favor the mechanism behind it. Molecular dynamics (MD) simulations were performed for the HLH proteins ID3 and Transcription factor E2-alpha (E2A/E12) and their ensemble complex (ID3-E2A/E12) to gather information about the HLH domain region and its role in the interaction process. Further evaluation of the results by Principal Component Analysis (PCA) and Free Energy Landscape (FEL) helped in revealing residues of E2A/E12: Lys570, Ala595, Val598, and Ile599 and ID3: Glu53, Gln63, and Gln66 buried in their HLH motifs imparting key roles in dimerization process. Furthermore the T-pad analysis results helped in identifying the key fluctuations and conformational transitions using the intrinsic properties of the residues present in the domain region of the proteins thus specifying their crucial role towards molecular recognition. The study provides an insight into the interacting mechanism of the ID3-E2A/E12 complex and maps the structural transitions arising in the essential conformational space indicating the key structural changes within the helical regions of the motif. It thereby describes how the internal dynamics of the proteins might regulate their intrinsic structural features and its subsequent functionality.
Collapse
Affiliation(s)
- Nishith Saurav Topno
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Muthu Kannan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ramadas Krishna
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
255
|
Lathrop BK, Kinch MS. Enhancing the Quality of Patent Claims Directed to Biologics with Biophysical Evidence. Biotechnol Law Rep 2015. [DOI: 10.1089/blr.2015.29020.lat] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
256
|
Lonsdale R, Reetz MT. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations. J Am Chem Soc 2015; 137:14733-42. [PMID: 26521678 DOI: 10.1021/jacs.5b08687] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enoate reductases catalyze the reduction of activated C═C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C═C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C═O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates.
Collapse
Affiliation(s)
- Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.,Fachbereich Chemie der Philipps-Universität , Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.,Fachbereich Chemie der Philipps-Universität , Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
257
|
Katiyar SP, Jain A, Dhanjal JK, Sundar D. Mixed Inhibition of cPEPCK by Genistein, Using an Extended Binding Site Located Adjacent to Its Catalytic Cleft. PLoS One 2015; 10:e0141987. [PMID: 26528723 PMCID: PMC4631375 DOI: 10.1371/journal.pone.0141987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022] Open
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (cPEPCK) is a critical enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis. cPEPCK converts oxaloacetic acid (OAA) into phosphoenol pyruvate (PEP) in the presence of GTP. cPEPCK is known to be associated with type 2 diabetes. Genistein is an isoflavone compound that shows anti-diabetic and anti-obesitic properties. Experimental studies have shown a decrease in the blood glucose level in the presence of genistein by lowering the functional activity of cPEPCK, an enzyme of gluconeogenesis. Using computational techniques such as molecular modeling, molecular docking, molecular dynamics simulation and binding free energy calculations, we identified cPEPCK as a direct target of genistein. We studied the molecular interactions of genistein with three possible conformations of cPEPCK-unbound cPEPCK (u_cPEPCK), GTP bound cPEPCK (GTP_cPEPCK) and GDP bound cPEPCK (GDP_cPEPCK). Binding of genistein was also compared with an already known cPEPCK inhibitor. We analyzed the interactions of genistein with cPEPCK enzyme and compared them with its natural substrate (OAA), product (PEP) and known inhibitor (3-MPA). Our results demonstrate that genistein uses the mechanism of mixed inhibition to block the functional activity of cPEPCK and thus can serve as a potential anti-diabetic and anti-obesity drug candidate. We also identified an extended binding site in the catalytic cleft of cPEPCK which is used by 3-MPA to inhibit cPEPCK non-competitively. We demonstrate that extended binding site of cPEPCK can further be exploited for designing new drugs against cPEPCK.
Collapse
Affiliation(s)
- Shashank Prakash Katiyar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Arpit Jain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Jaspreet Kaur Dhanjal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
258
|
Pharmacophore modeling, 3D-QSAR, and docking study of pyrozolo[1,5-a]pyridine/4,4-dimethylpyrazolone analogues as PDE4 selective inhibitors. J Mol Model 2015; 21:289. [DOI: 10.1007/s00894-015-2837-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/09/2015] [Indexed: 01/26/2023]
|
259
|
Baud O, Yuan S, Veya L, Filipek S, Vogel H, Pick H. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles. Sci Rep 2015; 5:14948. [PMID: 26449412 PMCID: PMC4598832 DOI: 10.1038/srep14948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022] Open
Abstract
A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level.
Collapse
Affiliation(s)
- Olivia Baud
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| | - Shuguang Yuan
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| | - Luc Veya
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| | - Slawomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| | - Horst Pick
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| |
Collapse
|
260
|
Gupta A, Jain R, Wahi D, Goyal S, Jamal S, Grover A. Abrogation of AuroraA-TPX2 by novel natural inhibitors: molecular dynamics-based mechanistic analysis. J Recept Signal Transduct Res 2015; 35:626-33. [PMID: 26390942 DOI: 10.3109/10799893.2015.1041645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Cancer is characterized by uncontrolled cell growth and genetic instabilities. The human Aurora-A kinase protein plays a crucial role in spindle assembly during mitosis and is activated by another candidate oncogene, targeting protein for Xklp2 (TPX2). It has been proposed that dissociation of Aurora A-TPX2 complex leads to disruption of mitotic spindle apparatus, thereby preventing cell division and further tumor growth. MATERIALS AND METHODS A large natural compound library was docked against the active site of Aurora A-TPX2 complex. The protein-ligand complexes were subjected to molecular dynamics simulation to ascertain their binding stability. The drug properties of the compounds were analyzed to observe their drug-like properties. RESULTS The virtual screening of natural compound library yielded two high scoring compounds, the first compound CTOM [ZINC ID: 38143674] (Glide score: -9.49) was stable for 17 ns while the second TTOM (Glide score: -9.07) was stable for 15 ns. While CTOM interacted with His280, Thr288 of Aurora A and Tyr34, Lys38 of TPX2, TTOM interacted with Arg285 and Arg286 in addition to the residues involved with CTOM. CONCLUSIONS We report two natural compounds as potential drugs leads for the disruption of this complex. These ligands show a preferable docking score and have many drugs like properties within in the range of 95% of known drugs. The study provides evidence that CTOM and TTOM can efficiently inhibit the TPX2-mediated activation of Aurora A. Thus, it paves way for an elaborate investigation and establishes the importance of computational approaches as time- and cost-effective techniques.
Collapse
Affiliation(s)
- Ankita Gupta
- a Department of Biotechnology , Delhi Technological University , New Delhi , India and
| | - Ritu Jain
- b School of Biotechnology, Jawaharlal Nehru University , New Delhi , India
| | - Divya Wahi
- b School of Biotechnology, Jawaharlal Nehru University , New Delhi , India
| | - Sukriti Goyal
- b School of Biotechnology, Jawaharlal Nehru University , New Delhi , India
| | - Salma Jamal
- b School of Biotechnology, Jawaharlal Nehru University , New Delhi , India
| | - Abhinav Grover
- b School of Biotechnology, Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
261
|
Exploring the Molecular Interactions of 7,8-Dihydroxyflavone and Its Derivatives with TrkB and VEGFR2 Proteins. Int J Mol Sci 2015; 16:21087-108. [PMID: 26404256 PMCID: PMC4613243 DOI: 10.3390/ijms160921087] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
7,8-dihydroxyflavone (7,8-DHF) is a TrkB receptor agonist, and treatment with this flavonoid derivative brings about an enhanced TrkB phosphorylation and promotes downstream cellular signalling. Flavonoids are also known to exert an inhibitory effect on the vascular endothelial growth factor receptor (VEGFR) family of tyrosine kinase receptors. VEGFR2 is one of the important receptors involved in the regulation of vasculogenesis and angiogenesis and has also been implicated to exhibit various neuroprotective roles. Its upregulation and uncontrolled activity is associated with a range of pathological conditions such as age-related macular degeneration and various proliferative disorders. In this study, we investigated molecular interactions of 7,8-DHF and its derivatives with both the TrkB receptor as well as VEGFR2. Using a combination of molecular docking and computational mapping tools involving molecular dynamics approaches we have elucidated additional residues and binding energies involved in 7,8-DHF interactions with the TrkB Ig2 domain and VEGFR2. Our investigations have revealed for the first time that 7,8-DHF has dual biochemical action and its treatment may have divergent effects on the TrkB via its extracellular Ig2 domain and on the VEGFR2 receptor through the intracellular kinase domain. Contrary to its agonistic effects on the TrkB receptor, 7,8-DHF was found to downregulate VEGFR2 phosphorylation both in 661W photoreceptor cells and in retinal tissue.
Collapse
|
262
|
Dhanjal JK, Sreenidhi AK, Bafna K, Katiyar SP, Goyal S, Grover A, Sundar D. Computational Structure-Based De Novo Design of Hypothetical Inhibitors against the Anti- Inflammatory Target COX-2. PLoS One 2015; 10:e0134691. [PMID: 26241744 PMCID: PMC4524694 DOI: 10.1371/journal.pone.0134691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) produces prostaglandins in inflamed tissues and hence has been considered as an important target for the development of anti-inflammatory drugs since long. Administration of traditional non-steroidal anti-inflammatory drugs (NSAIDs) and other COX-2 selective inhibitors (COXIBS) for the treat of inflammation has been found to be associated with side effects, which mainly includes gastro-intestinal (GI) toxicity. The present study involves developing a virtual library of novel molecules with high druglikeliness using structure-based de novo drug designing and 2D fingerprinting approach. A library of 2657 drug like molecules was generated. 2D fingerprinting based screening of the designed library gave a unique set of compounds. Molecular docking approach was then used to identify two compounds highly specific for COX-2 isoform. Molecular dynamics simulations of protein-ligand complexes revealed that the candidate ligands were dynamically stable within the cyclooxygenase binding site of COX-2. The ligands were further analyzed for their druglikeliness, ADMET properties and synthetic accessibility using knowledge based set of rules. The results revealed that the molecules are predicted to selectively bind to COX-2 enzyme thereby potentially overcoming the limitations posed by the drugs in clinical use.
Collapse
Affiliation(s)
- Jaspreet Kaur Dhanjal
- Department of Biochemical Engineering and Biotechnology, Indian institute of Technology Delhi, New Delhi, India
| | - Anith Kumar Sreenidhi
- Department of Biochemical Engineering and Biotechnology, Indian institute of Technology Delhi, New Delhi, India
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Khushboo Bafna
- Department of Biochemical Engineering and Biotechnology, Indian institute of Technology Delhi, New Delhi, India
| | - Shashank Prakash Katiyar
- Department of Biochemical Engineering and Biotechnology, Indian institute of Technology Delhi, New Delhi, India
| | - Sukriti Goyal
- Apaji Institute of Mathematics & Applied Computer Technology, Banasthali University, Tonk, Rajasthan, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian institute of Technology Delhi, New Delhi, India
- * E-mail:
| |
Collapse
|
263
|
Curpăn RF, Halip L, Borota A, Mracec M, Mracec M. Modeling of dexmedetomidine conformers and their interactions with alpha2 adrenergic receptor subtypes. Struct Chem 2015. [DOI: 10.1007/s11224-015-0645-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
264
|
Sawhney B, Chopra K, Misra R, Ranjan A. Identification of Plasmodium falciparum apicoplast-targeted tRNA-guanine transglycosylase and its potential inhibitors using comparative genomics, molecular modelling, docking and simulation studies. J Biomol Struct Dyn 2015; 33:2404-20. [PMID: 25869381 DOI: 10.1080/07391102.2015.1040074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
tRNA modifications play an important role in the proper folding of tRNA and thereby determine its functionality as an adaptor molecule. Notwithstanding the centrality of this basic process in translation, a major gap in the genomics of Plasmodium falciparum is unambiguous identification of enzymes catalysing the various tRNA modifications. In this study, tRNA-modifying enzymes of P. falciparum were annotated using homology-based approach. Based on the presence of these identified enzymes, the modifications were compared with those of prokaryotic and eukaryotic organisms. Through sequence comparison and phylogenetic analysis, we have identified P. falciparum apicoplast tRNA-guanine 34 transglycosylase (TGT, EC: 2.4.2.29), which shows evidence of its prokaryotic origin. The docking analysis of the modelled TGT structures revealed that binding of quinazolinone derivatives is more favourable with P. falciparum apicoplast TGT as compared to human TGT. Molecular dynamic simulation and molecular mechanics/generalized Born surface area analysis of the complex confirmed the greater binding affinity of the ligand in the binding pocket of P. falciparum TGT protein. Further, evolutionary patterning analysis identified the amino acids of P. falciparum apicoplast TGT that are under purifying selection pressure and hence can be good inhibitor-targeting sites. Based on these computational studies, we suggest that P. falciparum apicoplast tRNA-guanine 34 transglycosylase can be a promising drug target.
Collapse
Affiliation(s)
- Bhavik Sawhney
- a Computational and Functional Genomics Group , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500001 , India.,b Graduate School , Manipal University , Manipal, Karnataka 576104 , India
| | - Kriti Chopra
- a Computational and Functional Genomics Group , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500001 , India.,c Department of Biotechnology and Bioinformatics, School of Life Sciences , University of Hyderabad , Gachibowli, Hyderabad , Telangana 500046 , India.,d National Centre for Cell Science, NCCS Complex , University of Pune Campus , Ganeshkhind, Pune , Maharashtra 411007 , India
| | - Rohan Misra
- a Computational and Functional Genomics Group , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500001 , India.,b Graduate School , Manipal University , Manipal, Karnataka 576104 , India
| | - Akash Ranjan
- a Computational and Functional Genomics Group , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500001 , India
| |
Collapse
|
265
|
Diastereo- and enantioseparation of a Nα-Boc amino acid with a zwitterionic quinine-based stationary phase: Focus on the stereorecognition mechanism. Anal Chim Acta 2015; 885:174-82. [DOI: 10.1016/j.aca.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023]
|
266
|
Cromm PM, Spiegel J, Grossmann TN. Hydrocarbon stapled peptides as modulators of biological function. ACS Chem Biol 2015; 10:1362-75. [PMID: 25798993 DOI: 10.1021/cb501020r] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based drug discovery has experienced a significant upturn within the past decade since the introduction of chemical modifications and unnatural amino acids has allowed for overcoming some of the drawbacks associated with peptide therapeutics. Strengthened by such features, modified peptides become capable of occupying a niche that emerges between the two major classes of today's therapeutics-small molecules (<500 Da) and biologics (>5000 Da). Stabilized α-helices have proven particularly successful at impairing disease-relevant PPIs previously considered "undruggable." Among those, hydrocarbon stapled α-helical peptides have emerged as a novel class of potential peptide therapeutics. This review provides a comprehensive overview of the development and applications of hydrocarbon stapled peptides discussing the benefits and limitations of this technique.
Collapse
Affiliation(s)
- Philipp M. Cromm
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jochen Spiegel
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Tom N. Grossmann
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| |
Collapse
|
267
|
Subramani PA, Narala VR, Michael RD, Lomada D, Reddy MC. Molecular docking and simulation of Curcumin with Geranylgeranyl Transferase1 (GGTase1) and Farnesyl Transferase (FTase). Bioinformation 2015; 11:248-53. [PMID: 26124569 PMCID: PMC4464541 DOI: 10.6026/97320630011248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/23/2022] Open
Abstract
Protein prenylation is a posttranslational modification that is indispensable for translocation of membrane GTPases like Ras, Rho, Ras etc. Proteins of Ras family undergo farnesylation by FTase while Rho family goes through geranylgeranylation by GGTase1. There is only an infinitesimal difference in signal recognition between FTase and GGTase1. FTase inhibitors mostly end up selecting the cells with mutated Ras proteins that have acquired affinity towards GGTase1 in cancer microcosms. Therefore, it is of interest to identify GGTase1 and FTase dual inhibitors using the docking tool AutoDock Vina. Docking data show that curcumin (from turmeric) has higher binding affinity to GGTase1 than that of established peptidomimetic GGTase1 inhibitors (GGTI) such as GGTI-297, GGTI-298, CHEMBL525185. Curcumin also interacts with FTase with binding energy comparable to co-crystalized compound 2-[3-(3-ethyl-1-methyl-2-oxo-azepan-3-yl)-phenoxy]-4-[1-amino-1-(1-methyl-1h-imidizol-5-yl)-ethyl]-benzonitrile (BNE). The docked complex was further simulated for 10 ns using molecular dynamics simulation for stability. Thus, the molecular basis for curcumin binding to GGTase1 and FTase is reported.
Collapse
Affiliation(s)
- Parasuraman Aiya Subramani
- Centre for Fish Immunology, School of Life Sciences, Vels University, Pallavaram, Chennai-600117, India ; Department of Zoology, Yogi Vemana University, Kadapa
| | | | - R Dinakaran Michael
- Centre for Fish Immunology, School of Life Sciences, Vels University, Pallavaram, Chennai-600117, India
| | | | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India-516003
| |
Collapse
|
268
|
Structural perspective of ARHI mediated inhibition of STAT3 signaling: An insight into the inactive to active transition of ARHI and its interaction with STAT3 and importinβ. Cell Signal 2015; 27:739-55. [DOI: 10.1016/j.cellsig.2014.11.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/11/2014] [Accepted: 11/21/2014] [Indexed: 01/27/2023]
|
269
|
Use of ligand-based pharmacophore modeling and docking approach to find novel acetylcholinesterase inhibitors for treating Alzheimer's. Biomed Pharmacother 2015; 71:146-52. [DOI: 10.1016/j.biopha.2015.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 11/24/2022] Open
|
270
|
Kundaikar HS, Degani MS. Insights into the Interaction Mechanism of Ligands with Aβ42 Based on Molecular Dynamics Simulations and Mechanics: Implications of Role of Common Binding Site in Drug Design for Alzheimer's Disease. Chem Biol Drug Des 2015; 86:805-12. [PMID: 25763767 DOI: 10.1111/cbdd.12555] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/02/2015] [Accepted: 03/02/2015] [Indexed: 12/13/2022]
Abstract
Aggregation of β-amyloid (Aβ) into oligomers and further into fibrils is hypothesized to be a key factor in pathology of Alzheimer's disease (AD). In this study, mapping and docking were used to study the binding of ligands to protofibrils. It was followed by molecular simulations to understand the differences in interactions of known therapeutic agents such as curcumin, fluorescence-based amyloid staining agents such as thioflavin T, and diagnostic agents such as florbetapir (AV45), with Aβ protofibrils. We show that therapeutic agents bind to and distort the protofibrils, thus causing destabilization or prevention of oligomerization, in contrast to diagnostic agents which bind to but do not distort such structures. This has implications in the rational design of ligands, both for diagnostics and therapeutics of AD.
Collapse
Affiliation(s)
- Harish S Kundaikar
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| |
Collapse
|
271
|
He Y, Chen D, Zheng W. An enhanced functional interrogation/manipulation of intracellular signaling pathways with the peptide ‘stapling’ technology. Oncogene 2015; 34:5685-98. [DOI: 10.1038/onc.2015.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/13/2022]
|
272
|
Maity M, Dolui S, Maiti NC. Hydrogen bonding plays a significant role in the binding of coomassie brilliant blue-R to hemoglobin: FT-IR, fluorescence and molecular dynamics studies. Phys Chem Chem Phys 2015; 17:31216-27. [DOI: 10.1039/c5cp04661k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coomassie brilliant blue-R (CBB-R) specifically binds to bovine hemoglobin with a stoichiometric ratio of 1 : 1.
Collapse
Affiliation(s)
- Mritunjoy Maity
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- India
| | - Sandip Dolui
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- India
| | - Nakul C. Maiti
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- India
| |
Collapse
|
273
|
Badrinarayan P, Sastry GN. Specificity rendering 'hot-spots' for aurora kinase inhibitor design: the role of non-covalent interactions and conformational transitions. PLoS One 2014; 9:e113773. [PMID: 25485544 PMCID: PMC4259475 DOI: 10.1371/journal.pone.0113773] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/29/2014] [Indexed: 11/19/2022] Open
Abstract
The present study examines the conformational transitions occurring among the major structural motifs of Aurora kinase (AK) concomitant with the DFG-flip and deciphers the role of non-covalent interactions in rendering specificity. Multiple sequence alignment, docking and structural analysis of a repertoire of 56 crystal structures of AK from Protein Data Bank (PDB) has been carried out. The crystal structures were systematically categorized based on the conformational disposition of the DFG-loop [in (DI) 42, out (DO) 5 and out-up (DOU) 9], G-loop [extended (GE) 53 and folded (GF) 3] and αC-helix [in (CI) 42 and out (CO) 14]. The overlapping subsets on categorization show the inter-dependency among structural motifs. Therefore, the four distinct possibilities a) 2W1C (DI, CI, GE) b) 3E5A (DI, CI, GF) c) 3DJ6 (DI, CO, GF) d) 3UNZ (DOU, CO, GF) along with their co-crystals and apo-forms were subjected to molecular dynamics simulations of 40 ns each to evaluate the variations of individual residues and their impact on forming interactions. The non-covalent interactions formed by the 157 AK co-crystals with different regions of the binding site were initially studied with the docked complexes and structure interaction fingerprints. The frequency of the most prominent interactions was gauged in the AK inhibitors from PDB and the four representative conformations during 40 ns. Based on this study, seven major non-covalent interactions and their complementary sites in AK capable of rendering specificity have been prioritized for the design of different classes of inhibitors.
Collapse
Affiliation(s)
- Preethi Badrinarayan
- Molecular Modeling Group, Organic Chemical Sciences, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad- 500 607, India
| | - G. Narahari Sastry
- Molecular Modeling Group, Organic Chemical Sciences, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad- 500 607, India
| |
Collapse
|
274
|
Tyagi C, Gupta A, Goyal S, Dhanjal JK, Grover A. Fragment based group QSAR and molecular dynamics mechanistic studies on arylthioindole derivatives targeting the α-β interfacial site of human tubulin. BMC Genomics 2014; 15 Suppl 9:S3. [PMID: 25521775 PMCID: PMC4290613 DOI: 10.1186/1471-2164-15-s9-s3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A number of microtubule disassembly blocking agents and inhibitors of tubulin polymerization have been elements of great interest in anti-cancer therapy, some of them even entering into the clinical trials. One such class of tubulin assembly inhibitors is of arylthioindole derivatives which results in effective microtubule disorganization responsible for cell apoptosis by interacting with the colchicine binding site of the β-unit of tubulin close to the interface with the α unit. We modelled the human tubulin β unit (chain D) protein and performed docking studies to elucidate the detailed binding mode of actions associated with their inhibition. The activity enhancing structural aspects were evaluated using a fragment-based Group QSAR (G-QSAR) model and was validated statistically to determine its robustness. A combinatorial library was generated keeping the arylthioindole moiety as the template and their activities were predicted. RESULTS The G-QSAR model obtained was statistically significant with r2 value of 0.85, cross validated correlation coefficient q2 value of 0.71 and pred_r2 (r2 value for test set) value of 0.89. A high F test value of 65.76 suggests robustness of the model. Screening of the combinatorial library on the basis of predicted activity values yielded two compounds HPI (predicted pIC50 = 6.042) and MSI (predicted pIC50 = 6.001) whose interactions with the D chain of modelled human tubulin protein were evaluated in detail. A toxicity evaluation resulted in MSI being less toxic in comparison to HPI. CONCLUSIONS The study provides an insight into the crucial structural requirements and the necessary chemical substitutions required for the arylthioindole moiety to exhibit enhanced inhibitory activity against human tubulin. The two reported compounds HPI and MSI showed promising anti cancer activities and thus can be considered as potent leads against cancer. The toxicity evaluation of these compounds suggests that MSI is a promising therapeutic candidate. This study provided another stepping stone in the direction of evaluating tubulin inhibition and microtubule disassembly degeneration as viable targets for development of novel therapeutics against cancer.
Collapse
Affiliation(s)
- Chetna Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India - 110067
| | - Ankita Gupta
- Department of Biotechnology, Delhi Technological University, New Delhi, India -110042
| | - Sukriti Goyal
- Apaji Institute of Mathematics & Applied Computer Technology, Banasthali University, Tonk, Rajasthan, India - 304022
| | | | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India - 110067
| |
Collapse
|
275
|
Grover S, Dhanjal JK, Goyal S, Grover A, Sundar D. Computational identification of novel natural inhibitors of glucagon receptor for checking type II diabetes mellitus. BMC Bioinformatics 2014; 15 Suppl 16:S13. [PMID: 25521597 PMCID: PMC4290642 DOI: 10.1186/1471-2105-15-s16-s13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interaction of the small peptide hormone glucagon with glucagon receptor (GCGR) stimulates the release of glucose from the hepatic cells during fasting; hence GCGR performs a significant function in glucose homeostasis. Inhibiting the interaction between glucagon and its receptor has been reported to control hepatic glucose overproduction and thus GCGR has evolved as an attractive therapeutic target for the treatment of type II diabetes mellitus. RESULTS In the present study, a large library of natural compounds was screened against 7 transmembrane domain of GCGR to identify novel therapeutic molecules that can inhibit the binding of glucagon with GCGR. Molecular dynamics simulations were performed to study the dynamic behaviour of the docked complexes and the molecular interactions between the screened compounds and the ligand binding residues of GCGR were analysed in detail. The top scoring compounds were also compared with already documented GCGR inhibitors- MK-0893 and LY2409021 for their binding affinity and other ADME properties. Finally, we have reported two natural drug like compounds PIB and CAA which showed good binding affinity for GCGR and are potent inhibitor of its functional activity. CONCLUSION This study contributes evidence for application of these compounds as prospective small ligand molecules against type II diabetes. Novel natural drug like inhibitors against the 7 transmembrane domain of GCGR have been identified which showed high binding affinity and potent inhibition of GCGR.
Collapse
|
276
|
Miller BR, Parish CA, Wu EY. Molecular dynamics study of the opening mechanism for DNA polymerase I. PLoS Comput Biol 2014; 10:e1003961. [PMID: 25474643 PMCID: PMC4256020 DOI: 10.1371/journal.pcbi.1003961] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme:DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics.
Collapse
Affiliation(s)
- Bill R. Miller
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- Department of Chemistry, University of Richmond, Richmond, Virginia, United States of America
| | - Carol A. Parish
- Department of Chemistry, University of Richmond, Richmond, Virginia, United States of America
| | - Eugene Y. Wu
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| |
Collapse
|
277
|
Goldfeld DA, Murphy R, Kim B, Wang L, Beuming T, Abel R, Friesner RA. Docking and free energy perturbation studies of ligand binding in the kappa opioid receptor. J Phys Chem B 2014; 119:824-35. [PMID: 25395044 DOI: 10.1021/jp5053612] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kappa opioid receptor (KOR) is an important target for pain and depression therapeutics that lack harmful and addictive qualities of existing medications. We present a model for the binding of morphinan ligands and JDTic to the JDTic/KOR crystal structure based on an atomic level description of the water structure within its active site. The model contains two key interaction motifs that are supported by experimental evidence. The first is the formation of a salt bridge between the ligand and Asp 138(3.32) in transmembrane domain (TM) 3. The second is the stabilization by the ligand of two high energy, isolated, and ice-like waters near TM5 and TM6. This model is incorporated via energetic terms into a new empirical scoring function, WScore, designed to assess interactions between ligands and localized water in a binding site. Pairing WScore with the docking program Glide discriminates known active KOR ligands from large sets of decoy molecules much better than Glide's older generation scoring functions, SP and XP. We also use rigorous free energy perturbation calculations to provide evidence for the proposed mechanism of interaction between ligands and KOR. The molecular description of ligand binding in KOR should provide a good starting point for future drug discovery efforts for this receptor.
Collapse
Affiliation(s)
- Dahlia A Goldfeld
- Department of Chemistry, Columbia University , 3000 Broadway, MC 3110, New York, New York 10027, United States
| | | | | | | | | | | | | |
Collapse
|
278
|
Famiglini V, La Regina G, Coluccia A, Pelliccia S, Brancale A, Maga G, Crespan E, Badia R, Riveira-Muñoz E, Esté JA, Ferretti R, Cirilli R, Zamperini C, Botta M, Schols D, Limongelli V, Agostino B, Novellino E, Silvestri R. Indolylarylsulfones carrying a heterocyclic tail as very potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors. J Med Chem 2014; 57:9945-57. [PMID: 25418038 DOI: 10.1021/jm5011622] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.
Collapse
Affiliation(s)
- Valeria Famiglini
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Ratnaparkhi A, Muthu SA, Shiriskar SM, Pissurlenkar RR, Choudhary S, Ahmad B. Effects of hesperidin, a flavanone glycoside interaction on the conformation, stability, and aggregation of lysozyme: multispectroscopic and molecular dynamic simulation studies? J Biomol Struct Dyn 2014; 33:1866-79. [DOI: 10.1080/07391102.2014.975746] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
280
|
Dhanjal JK, Nigam N, Sharma S, Chaudhary A, Kaul SC, Grover A, Wadhwa R. Embelin inhibits TNF-α converting enzyme and cancer cell metastasis: molecular dynamics and experimental evidence. BMC Cancer 2014; 14:775. [PMID: 25336399 PMCID: PMC4210574 DOI: 10.1186/1471-2407-14-775] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/07/2014] [Indexed: 12/22/2022] Open
Abstract
Background Embelin, a quinone derivative, is found in the fruits of Embelia ribes Burm (Myrsinaceae). It has been shown to have a variety of therapeutic potentials including anthelmintic, anti-tumor, anti-diabetic, anti-bacterial and anti-inflammation. Inflammation is an immunological response to external harmful stimuli and is regulated by an endogenous pyrogen and pleiotropic pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α). TNF-α production has been implicated in a variety of other human pathologies including neurodegeneration and cancer. Several studies have shown that the anti-inflammatory activity of embelin is mediated by reduction in TNF-α. The latter is synthesized as a membrane anchored protein (pro-TNF-α); the soluble component of pro-TNF-α is then released into the extracellular space by the action of a protease called TNF-α converting enzyme (TACE). TACE, hence, has been proposed as a therapeutic target for inflammation and cancer. Methods We used molecular docking and experimental approaches to investigate the docking potential and molecular effects of embelin to TACE and human cancer cell characteristics, respectively. Results We demonstrate that embelin is a potential inhibitor of TACE. Furthermore, in vitro studies revealed that it inhibits malignant properties of cancer cells through inactivation of metastatic signaling molecules including MMPs, VEGF and hnRNP-K in breast cancer cells. Conclusion Based on the molecular dynamics and experimental data, embelin is proposed as a natural anti-inflammatory and anticancer drug.
Collapse
Affiliation(s)
| | | | | | | | | | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | |
Collapse
|
281
|
Sawyer TK, Guerlavais V, Darlak K, Feyfant E. Macrocyclic α-Helical Peptide Drug Discovery. MACROCYCLES IN DRUG DISCOVERY 2014. [DOI: 10.1039/9781782623113-00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Macrocyclic α-helical peptides have emerged as a promising new drug class and within the scope of hydrocarbon-stapled peptides such molecules have advanced into the clinic. The overarching concept of designing proteomimetics of an α-helical ‘ligand’ which binds its cognate ‘target’ relative to α-helical interfacing protein-protein interactions has been well-validated and expanded through numerous investigations for a plethora of therapeutic targets oftentimes referred to as “undruggable” with respect to other modalities (e.g., small-molecule or proteins). This chapter highlights the evolution of macrocyclic α-helical peptides in terms of target space, biophysical and computational chemistry, structural diversity and synthesis, drug design and chemical biology. It is noteworthy that hydrocarbon-stapled peptides have successfully risen to the summit of such drug discovery campaigns.
Collapse
|
282
|
Watts KS, Dalal P, Tebben AJ, Cheney DL, Shelley JC. Macrocycle Conformational Sampling with MacroModel. J Chem Inf Model 2014; 54:2680-96. [DOI: 10.1021/ci5001696] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Shawn Watts
- Schrödinger, Inc., 101 SW Main Street,
Suite 1300, Portland, Oregon 97204, United States
| | - Pranav Dalal
- D. E. Shaw India Software, Private Limited, Sanali Infopark, 8-2-120/113, Road No. 2, Banjara
Hills, Hyderabad 500 034, Andhra Pradesh, India
| | - Andrew J. Tebben
- Bristol-Myers Squibb, 3551 Lawrenceville
Road, Princeton, Lawrence Township, New Jersey 08648, United States
| | - Daniel L. Cheney
- Bristol-Myers Squibb, 311 Pennington−Rocky
Hill Road, Pennington, New
Jersey 08543, United States
| | - John C. Shelley
- Schrödinger, Inc., 101 SW Main Street,
Suite 1300, Portland, Oregon 97204, United States
| |
Collapse
|
283
|
Computational design of novel flavonoid analogues as potential AChE inhibitors: analysis using group-based QSAR, molecular docking and molecular dynamics simulations. Struct Chem 2014. [DOI: 10.1007/s11224-014-0494-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
284
|
Mangold S, O’Leary DJ, Grubbs RH. Z-Selective olefin metathesis on peptides: investigation of side-chain influence, preorganization, and guidelines in substrate selection. J Am Chem Soc 2014; 136:12469-78. [PMID: 25102124 PMCID: PMC4156862 DOI: 10.1021/ja507166g] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 12/27/2022]
Abstract
Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors.
Collapse
Affiliation(s)
- Shane
L. Mangold
- Arnold
and Mabel Beckman Laboratories for Chemical Synthesis, Division of
Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Daniel J. O’Leary
- Department
of Chemistry, Pomona College, Claremont, California 91711, United States
| | - Robert H. Grubbs
- Arnold
and Mabel Beckman Laboratories for Chemical Synthesis, Division of
Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
285
|
Beema Shafreen RM, Selvaraj C, Singh SK, Karutha Pandian S. In silico and in vitro studies of cinnamaldehyde and their derivatives against LuxS in Streptococcus pyogenes: effects on biofilm and virulence genes. J Mol Recognit 2014; 27:106-16. [PMID: 24436128 DOI: 10.1002/jmr.2339] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 01/23/2023]
Abstract
The LuxS-based signalling pathway has an important role in physiological and pathogenic functions that are capable of causing different infections. In the present study, cinnamaldehyde (CN) and their derivatives were evaluated for their inhibitory efficiency against LuxS by molecular modelling, docking, dynamics and free-energy calculations. Sequence and structure-similarity analysis of LuxS protein, five different amino acids were found to be highly conserved, of which GLY128 was identified as the key residue involved in the effective binding of the ligands. Quantum-polarized ligand docking protocol showed that 2nitro and 4nitro CN has a higher binding efficiency than CN, which very well corroborates with the in vitro studies. COMSTAT analysis for the microscopic images of the S. pyogenes biofilm showed that the ligands have antibiofilm potential. In addition, the results of quantitative polymerase chain reaction (qPCR) analysis revealed that the transcripts treated with the compounds showed decrease in luxS expression, which directly reflects with the reduction in expression of speB. No substantial effect was observed on the virulence regulator (srv) transcript. These results confirm that speB is controlled by the regulation of luxS. The decreased rate of S. pyogenes survival in the presence of these ligands envisaged the fact that the compounds could readily enhance opsonophagocytosis with the reduction of virulence factor secretion. Thus, the overall data supports the use of CN derivatives against quorum sensing-mediated infections caused by S. pyogenes.
Collapse
|
286
|
Sardella R, Lisanti A, Carotti A, Blasi P, Lindner W, Natalini B. Ketoprofen enantioseparation with a Cinchona
alkaloid based stationary phase: Enantiorecognition mechanism and release studies. J Sep Sci 2014; 37:2696-703. [DOI: 10.1002/jssc.201400630] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Roccaldo Sardella
- Department of Pharmaceutical Sciences; University of Perugia; Perugia Italy
| | - Antonella Lisanti
- Department of Pharmaceutical Sciences; University of Perugia; Perugia Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences; University of Perugia; Perugia Italy
| | - Paolo Blasi
- Department of Pharmaceutical Sciences; University of Perugia; Perugia Italy
| | - Wolfgang Lindner
- Department of Analytical Chemistry; University of Vienna; Vienna Austria
| | - Benedetto Natalini
- Department of Pharmaceutical Sciences; University of Perugia; Perugia Italy
| |
Collapse
|
287
|
Kakarala KK, Jamil K, Devaraji V. Structure and putative signaling mechanism of Protease activated receptor 2 (PAR2) - a promising target for breast cancer. J Mol Graph Model 2014; 53:179-199. [PMID: 25173751 DOI: 10.1016/j.jmgm.2014.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/12/2022]
Abstract
Experimental evidences have observed enhanced expression of protease activated receptor 2 (PAR2) in breast cancer consistently. However, it is not yet recognized as an important therapeutic target for breast cancer as the primary molecular mechanisms of its activation are not yet well-defined. Nevertheless, recent reports on the mechanism of GPCR activation and signaling have given new insights to GPCR functioning. In the light of these details, we attempted to understand PAR2 structure & function using molecular modeling techniques. In this work, we generated averaged representative stable models of PAR2, using protease activated receptor 1 (PAR1) as a template and selected conformation based on their binding affinity with PAR2 specific agonist, GB110. Further, the selected model was used for studying the binding affinity of putative ligands. The selected ligands were based on a recent publication on phylogenetic analysis of Class A rhodopsin family of GPCRs. This study reports putative ligands, their interacting residues, binding affinity and molecular dynamics simulation studies on PAR2-ligand complexes. The results reported from this study would be useful for researchers and academicians to investigate PAR2 function as its physiological role is still hypothetical. Further, this information may provide a novel therapeutic scheme to manage breast cancer.
Collapse
Affiliation(s)
- Kavita Kumari Kakarala
- Centre for Biotechnology and Bioinformatics (CBB), School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), 6th Floor, Buddha Bhawan, M.G. Road, Secunderabad 500003, Andhra Pradesh, India.
| | - Kaiser Jamil
- Centre for Biotechnology and Bioinformatics (CBB), School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), 6th Floor, Buddha Bhawan, M.G. Road, Secunderabad 500003, Andhra Pradesh, India
| | - Vinod Devaraji
- College of Pharmacy, Madras Medical College, E.V.R. Periyar Salai, Chennai 600003, India
| |
Collapse
|
288
|
Reddy KK, Singh SK. Combined ligand and structure-based approaches on HIV-1 integrase strand transfer inhibitors. Chem Biol Interact 2014; 218:71-81. [DOI: 10.1016/j.cbi.2014.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 11/25/2022]
|
289
|
Guo Z, Streu K, Krilov G, Mohanty U. Probing the Origin of Structural Stability of Single and Double Stapled p53 Peptide Analogs Bound to MDM2. Chem Biol Drug Des 2014; 83:631-42. [DOI: 10.1111/cbdd.12284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/06/2013] [Accepted: 01/06/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Zuojun Guo
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
- Genomics Institute of the Novartis Research Foundation; 10675 John Jay Hopkins Dr. San Diego CA 92121 USA
| | - Kristina Streu
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Goran Krilov
- Schrödinger, Inc.; 120 W 45th Street, 17th Fl. New York NY 10036 USA
| | - Udayan Mohanty
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
290
|
Casimiro-Garcia A, Piotrowski DW, Ambler C, Arhancet GB, Banker ME, Banks T, Boustany-Kari CM, Cai C, Chen X, Eudy R, Hepworth D, Hulford CA, Jennings SM, Loria PM, Meyers MJ, Petersen DN, Raheja NK, Sammons M, She L, Song K, Vrieze D, Wei L. Identification of (R)-6-(1-(4-Cyano-3-methylphenyl)-5-cyclopentyl-4,5-dihydro-1H-pyrazol-3-yl)-2-methoxynicotinic Acid, a Highly Potent and Selective Nonsteroidal Mineralocorticoid Receptor Antagonist. J Med Chem 2014; 57:4273-88. [DOI: 10.1021/jm500206r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Agustin Casimiro-Garcia
- Pfizer Worldwide Research and Development, 200 CambridgePark Drive, Cambridge, Massachusetts 02140, United States
| | - David W. Piotrowski
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Catherine Ambler
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Graciela B. Arhancet
- Pfizer Worldwide Medicinal Chemistry, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | - Mary Ellen Banker
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Tereece Banks
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Carine M. Boustany-Kari
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cuiman Cai
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Xiangyang Chen
- Pfizer Worldwide Medicinal Chemistry, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | - Rena Eudy
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David Hepworth
- Pfizer Worldwide Research and Development, 200 CambridgePark Drive, Cambridge, Massachusetts 02140, United States
| | - Catherine A. Hulford
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sandra M. Jennings
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paula M. Loria
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Marvin J. Meyers
- Pfizer Worldwide Medicinal Chemistry, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | - Donna N. Petersen
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Neil K. Raheja
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew Sammons
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Li She
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kun Song
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Derek Vrieze
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Liuqing Wei
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
291
|
Sardella R, Carotti A, Gioiello A, Lisanti A, Ianni F, Lindner W, Natalini B. Chromatographic separation of free dafachronic acid epimers with a novel triazole click quinidine-based chiral stationary phase. J Chromatogr A 2014; 1339:96-102. [DOI: 10.1016/j.chroma.2014.02.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
|
292
|
Sim AYL, Joseph T, Lane DP, Verma C. Mechanism of Stapled Peptide Binding to MDM2: Possible Consequences for Peptide Design. J Chem Theory Comput 2014; 10:1753-61. [DOI: 10.1021/ct4009238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Adelene Y. L. Sim
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
| | - Thomas Joseph
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
| | - David P. Lane
- p53
Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| | - Chandra Verma
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, Singapore 117543
| |
Collapse
|
293
|
Guo Z, Li B, Dzubiella J, Cheng LT, McCammon JA, Che J. Heterogeneous Hydration of p53/MDM2 Complex. J Chem Theory Comput 2014; 10:1302-1313. [PMID: 24803860 PMCID: PMC3958133 DOI: 10.1021/ct400967m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Indexed: 12/23/2022]
Abstract
![]()
Water-mediated
interactions play critical roles in biomolecular
recognition processes. Explicit solvent molecular dynamics (MD) simulations
and the variational implicit-solvent model (VISM) are used to study
those hydration properties during binding for the biologically important
p53/MDM2 complex. Unlike simple model solutes, in such a realistic
and heterogeneous solute–solvent system with both geometrical
and chemical complexity, the local water distribution sensitively
depends on nearby amino acid properties and the geometric shape of
the protein. We show that the VISM can accurately describe the locations
of high and low density solvation shells identified by the MD simulations
and can explain them by a local coupling balance of solvent–solute
interaction potentials and curvature. In particular, capillary transitions
between local dry and wet hydration states in the binding pocket are
captured for interdomain distance between 4 to 6 Å, right at
the onset of binding. The underlying physical connection between geometry
and polarity is illustrated and quantified. Our study offers a microscopic
and physical insight into the heterogeneous hydration behavior of
the biologically highly relevant p53/MDM2 system and demonstrates
the fundamental importance of hydrophobic effects for biological binding
processes. We hope our study can help to establish new design rules
for drugs and medical substances.
Collapse
Affiliation(s)
- Zuojun Guo
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bo Li
- Department of Mathematics and Center for Theoretical Biological Physics, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0112, United States
| | - Joachim Dzubiella
- Department of Physics, Humboldt University of Berlin , Newtonstr. 15, 12489 Berlin, Germany ; Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Li-Tien Cheng
- Department of Mathematics, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0112, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, Department of Pharmacology, Howard Hughes Medical Institute, and Center for Theoretical Biological Physics, University of California , San Diego, 9500 Gilman Drive, La Jolla, California 92093-0365, United States
| | - Jianwei Che
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
294
|
Bruns CJ, Li J, Frasconi M, Schneebeli ST, Iehl J, Jacquot de Rouville HP, Stupp SI, Voth GA, Stoddart JF. An Electrochemically and Thermally Switchable Donor-Acceptor [c2]Daisy Chain Rotaxane. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
295
|
Bruns CJ, Li J, Frasconi M, Schneebeli ST, Iehl J, Jacquot de Rouville HP, Stupp SI, Voth GA, Stoddart JF. An Electrochemically and Thermally Switchable Donor-Acceptor [c2]Daisy Chain Rotaxane. Angew Chem Int Ed Engl 2014; 53:1953-8. [DOI: 10.1002/anie.201308498] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/03/2013] [Indexed: 11/09/2022]
|
296
|
Mazzier D, Peggion C, Toniolo C, Moretto A. Enhancement of the helical content and stability induced in a linear oligopeptide by ani, i+4 intramolecularly double stapled, overlapping, bicyclic [31, 22, 5]-(E)ene motif. Biopolymers 2014; 102:115-23. [DOI: 10.1002/bip.22438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/28/2013] [Accepted: 10/11/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Daniela Mazzier
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova; 35131 Padova Italy
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova; 35131 Padova Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova; 35131 Padova Italy
| | - Alessandro Moretto
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova; 35131 Padova Italy
| |
Collapse
|
297
|
Reddy KK, Singh P, Singh SK. Blocking the interaction between HIV-1 integrase and human LEDGF/p75: mutational studies, virtual screening and molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2014; 10:526-36. [DOI: 10.1039/c3mb70418a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
298
|
Dhanjal JK, Goyal S, Sharma S, Hamid R, Grover A. Mechanistic insights into mode of action of potent natural antagonists of BACE-1 for checking Alzheimer's plaque pathology. Biochem Biophys Res Commun 2013; 443:1054-9. [PMID: 24365147 DOI: 10.1016/j.bbrc.2013.12.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 11/16/2022]
Abstract
Alzheimer's is a neurodegenerative disorder resulting in memory loss and decline in cognitive abilities. Accumulation of extracellular beta amyloidal plaques is one of the major pathology associated with this disease. β-Secretase or BACE-1 performs the initial and rate limiting step of amyloidic pathway in which 37-43 amino acid long peptides are generated which aggregate to form plaques. Inhibition of this enzyme offers a viable prospect to check the growth of these plaques. Numerous efforts have been made in recent years for the generation of BACE-1 inhibitors but many of them failed during the preclinical or clinical trials due to drug related or drug induced toxicity. In the present work, we have used computational methods to screen a large dataset of natural compounds to search for small molecules having BACE-1 inhibitory activity with low toxicity to normal cells. Molecular dynamics simulations were performed to analyze molecular interactions between the screened compounds and the active residues of the enzyme. Herein, we report two natural compounds of inhibitory nature active against β-secretase enzyme of amyloidic pathway and are potent lead molecules against Alzheimer's disease.
Collapse
Affiliation(s)
| | - Sukriti Goyal
- Apaji Institute of Mathematics & Applied Computer Technology, Banasthali University, Tonk 304022, Rajasthan, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Rabia Hamid
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
299
|
Shi X(E, Wales TE, Elkin C, Kawahata N, Engen JR, Annis DA. Hydrogen exchange-mass spectrometry measures stapled peptide conformational dynamics and predicts pharmacokinetic properties. Anal Chem 2013; 85:11185-8. [PMID: 24215480 PMCID: PMC3883098 DOI: 10.1021/ac403173p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peptide drugs have traditionally suffered from poor pharmacokinetic properties due to their conformational flexibility and the interaction of proteases with backbone amide bonds. "Stapled Peptides" are cyclized using an all-hydrocarbon cross-linking strategy to reinforce their α-helical conformation, yielding improved protease resistance and drug-like properties. Here we demonstrate that hydrogen exchange-mass spectrometry (HX-MS) effectively probes the conformational dynamics of Stapled Peptides derived from the survivin-borealin protein-protein interface and predicts their susceptibility to proteolytic degradation. In Stapled Peptides, amide exchange was reduced by over five orders-of-magnitude versus the native peptide sequence depending on staple placement. Furthermore, deuteration kinetics correlated directly with rates of proteolysis to reveal the optimal staple placement for improved drug properties.
Collapse
Affiliation(s)
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Carl Elkin
- Aileron Therapeutics, Inc., Cambridge, MA 02139
| | | | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | | |
Collapse
|
300
|
All-hydrocarbon stapled peptides as Synthetic Cell-Accessible Mini-Proteins. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 9:e1-e70. [PMID: 24064243 DOI: 10.1016/j.ddtec.2012.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|