251
|
Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, Seplyarskiy VB, Sharpe HJ, McKee T, Letourneau A, Ribaux PG, Popadin K, Basset-Seguin N, Ben Chaabene R, Santoni FA, Andrianova MA, Guipponi M, Garieri M, Verdan C, Grosdemange K, Sumara O, Eilers M, Aifantis I, Michielin O, de Sauvage FJ, Antonarakis SE, Nikolaev SI. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet 2016; 48:398-406. [PMID: 26950094 DOI: 10.1038/ng.3525] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022]
Abstract
Basal cell carcinoma (BCC) of the skin is the most common malignant neoplasm in humans. BCC is primarily driven by the Sonic Hedgehog (Hh) pathway. However, its phenotypic variation remains unexplained. Our genetic profiling of 293 BCCs found the highest mutation rate in cancer (65 mutations/Mb). Eighty-five percent of the BCCs harbored mutations in Hh pathway genes (PTCH1, 73% or SMO, 20% (P = 6.6 × 10(-8)) and SUFU, 8%) and in TP53 (61%). However, 85% of the BCCs also harbored additional driver mutations in other cancer-related genes. We observed recurrent mutations in MYCN (30%), PPP6C (15%), STK19 (10%), LATS1 (8%), ERBB2 (4%), PIK3CA (2%), and NRAS, KRAS or HRAS (2%), and loss-of-function and deleterious missense mutations were present in PTPN14 (23%), RB1 (8%) and FBXW7 (5%). Consistent with the mutational profiles, N-Myc and Hippo-YAP pathway target genes were upregulated. Functional analysis of the mutations in MYCN, PTPN14 and LATS1 suggested their potential relevance in BCC tumorigenesis.
Collapse
Affiliation(s)
- Ximena Bonilla
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | - Bryan King
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Fedor Bezrukov
- Department of Physics, University of Connecticut, Storrs, Connecticut, USA
- RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York, USA
| | - Gürkan Kaya
- Department of Dermatology, University Hospitals of Geneva, Geneva, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vladimir B Seplyarskiy
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Hayley J Sharpe
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Thomas McKee
- Service of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pascale G Ribaux
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Konstantin Popadin
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Nicole Basset-Seguin
- Department of Dermatology, Saint Louis Hospital, Paris 7 University, Paris, France
| | - Rouaa Ben Chaabene
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Maria A Andrianova
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Michel Guipponi
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Marco Garieri
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Carole Verdan
- Service of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
| | - Kerstin Grosdemange
- Department of Dermatology, University Hospitals of Geneva, Geneva, Switzerland
| | - Olga Sumara
- Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Olivier Michielin
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Oncology, University of Lausanne and Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Frederic J de Sauvage
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
252
|
Brash DE. UV-induced Melanin Chemiexcitation: A New Mode of Melanoma Pathogenesis. Toxicol Pathol 2016; 44:552-4. [PMID: 26951162 DOI: 10.1177/0192623316632072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts usually created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Surprisingly, we found that, in melanocytes, CPDs were generated for hours after UVA or UVB exposure. These "dark CPDs" constituted the majority of CPDs in cultured human and murine melanocytes and in mouse skin, and they were most prominent in skin containing pheomelanin, the melanin responsible for blonde and red hair. The mechanism was also a surprise. Dark cyclobutane pyrimidine dimers (CPDs) arise when ultraviolet (UV)-induced superoxide and nitric oxide combine to form peroxynitrite, one of the few biological molecules capable of exciting an electron. This process, termed "chemiexcitation," is the source of bioluminescence in lower organisms. Excitation occurred in fragments of melanin, creating a quantum triplet state that had the energy of a UV photon but which induced CPDs by radiationless energy transfer to DNA. UVA and peroxynitrite also solubilized melanin and permeabilized the nuclear membrane, allowing melanin to enter. Melanin is evidently carcinogenic as well as protective. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin.
Collapse
Affiliation(s)
- Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
253
|
Harms PW, Collie AMB, Hovelson DH, Cani AK, Verhaegen ME, Patel RM, Fullen DR, Omata K, Dlugosz AA, Tomlins SA, Billings SD. Next generation sequencing of Cytokeratin 20-negative Merkel cell carcinoma reveals ultraviolet-signature mutations and recurrent TP53 and RB1 inactivation. Mod Pathol 2016; 29:240-8. [PMID: 26743471 PMCID: PMC4769666 DOI: 10.1038/modpathol.2015.154] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 12/18/2022]
Abstract
Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin 20 (CK20) is expressed in ~95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small-cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (10 Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high-confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping genetic changes with CK20-positive Merkel cell carcinoma, including RB1 mutations restricted to Merkel cell polyomavirus-negative tumors. However, some CK20-negative Merkel cell carcinomas harbor mutations not previously described in Merkel cell carcinoma. Hence, CK20-negative Merkel cell carcinomas harbor diverse oncogenic drivers which may represent therapeutic targets in individual tumors.
Collapse
Affiliation(s)
- Paul W. Harms
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, USA,Department of Dermatology, University of Michigan Health System, Ann Arbor, MI, USA,Michigan Center for Translational Pathology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Angela M. B. Collie
- Department of Pathology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA
| | - Daniel H. Hovelson
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, USA,Michigan Center for Translational Pathology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Andi K. Cani
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, USA,Michigan Center for Translational Pathology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Monique E. Verhaegen
- Department of Dermatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Rajiv M. Patel
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, USA,Department of Dermatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Douglas R. Fullen
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, USA,Department of Dermatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Kei Omata
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, USA,Michigan Center for Translational Pathology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Andrzej A. Dlugosz
- Department of Dermatology, University of Michigan Health System, Ann Arbor, MI, USA,Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI USA
| | - Scott A. Tomlins
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, USA,Michigan Center for Translational Pathology, University of Michigan Health System, Ann Arbor, MI, USA,Department of Urology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Steven D. Billings
- Department of Pathology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA
| |
Collapse
|
254
|
Marazzi M, Wibowo M, Gattuso H, Dumont E, Roca-Sanjuán D, Monari A. Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization. Phys Chem Chem Phys 2016; 18:7829-36. [DOI: 10.1039/c5cp07938a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a computational investigation of the hydrogen abstraction (H-abstraction) induced by triplet benzophenone (3BP) on thymine nucleobase and backbone sugar.
Collapse
Affiliation(s)
- Marco Marazzi
- Université de Lorraine - Nancy
- Theory-Modeling-Simulation SRSMC
- Vandoeuvre-les-Nancy
- France
- CNRS
| | - Meilani Wibowo
- Instituto de Ciencia Molecular
- Universitat de Valencia
- Valencia
- Spain
| | - Hugo Gattuso
- Université de Lorraine - Nancy
- Theory-Modeling-Simulation SRSMC
- Vandoeuvre-les-Nancy
- France
- CNRS
| | - Elise Dumont
- Ecole Normale Supérieure de Lyon and CNRS
- Laboratoire de Chimie
- Lyon
- France
| | | | - Antonio Monari
- Université de Lorraine - Nancy
- Theory-Modeling-Simulation SRSMC
- Vandoeuvre-les-Nancy
- France
- CNRS
| |
Collapse
|
255
|
Tao S, Park SL, Rojo de la Vega M, Zhang DD, Wondrak GT. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2. Free Radic Biol Med 2015; 89:690-700. [PMID: 26456052 PMCID: PMC4684723 DOI: 10.1016/j.freeradbiomed.2015.08.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photodamage and carcinogenesis, and an urgent need exists for improved molecular photoprotective strategies different from (or synergistic with) photon absorption. Recent studies suggest a photoprotective role of cutaneous gene expression orchestrated by the transcription factor NRF2 (nuclear factor-E2-related factor 2). Here we have explored the molecular mechanism underlying carotenoid-based systemic skin photoprotection in SKH-1 mice and provide genetic evidence that photoprotection achieved by the FDA-approved apocarotenoid and food additive bixin depends on NRF2 activation. Bixin activates NRF2 through the critical Cys-151 sensor residue in KEAP1, orchestrating a broad cytoprotective response in cultured human keratinocytes as revealed by antioxidant gene expression array analysis. Following dose optimization studies for cutaneous NRF2 activation by systemic administration of bixin, feasibility of bixin-based suppression of acute cutaneous photodamage from solar UV exposure was investigated in Nrf2(+/+) versus Nrf2(-/-) SKH-1 mice. Systemic administration of bixin suppressed skin photodamage, attenuating epidermal oxidative DNA damage and inflammatory responses in Nrf2(+/+) but not in Nrf2(-/-) mice, confirming the NRF2-dependence of bixin-based cytoprotection. Taken together, these data demonstrate feasibility of achieving NRF2-dependent cutaneous photoprotection by systemic administration of the apocarotenoid bixin, a natural food additive consumed worldwide.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Sophia L Park
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
256
|
Gupta S, Artomov M, Goggins W, Daly M, Tsao H. Gender Disparity and Mutation Burden in Metastatic Melanoma. J Natl Cancer Inst 2015; 107:djv221. [PMID: 26296643 PMCID: PMC4643631 DOI: 10.1093/jnci/djv221] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 01/22/2023] Open
Abstract
Gender differences in melanoma incidence and outcome have been consistently observed but remain biologically unexplained. We hypothesized that tumors are genetically distinct between men and women and analyzed the mutation spectra in 266 metastatic melanomas (102 women and 164 men) from The Cancer Genome Atlas (TCGA). We found a statistically significantly greater burden of missense mutations among men (male median 298 vs female median = 211.5; male-to-female ratio [M:F] = 1.85, 95% confidence interval [CI] = 1.44 to 2.39). We validated these initial findings using available data from a separate melanoma exome cohort (n = 95) and found a similar increase in missense mutations among men (male median 393 vs female median 259; M:F = 1.59, 95% CI = 1.12 to 2.27). In addition, we found improved survival with increasing log-transformed missense mutation count (univariate hazard ratio = 0.82, 95% CI = 0.69 to 0.98) for TCGA samples. Our analyses demonstrate for the first time a gender difference in mutation burden in cutaneous melanoma.
Collapse
Affiliation(s)
- Sameer Gupta
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (SG, HT); Analytic and Translational Genetic Unit, Massachusetts General Hospital, Boston, MA (MA, MD); Broad Institute, Cambridge, MA (MA, MD); Chemistry and Chemical Biology Department, Harvard University, Cambridge, MA (MA); School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong (WG)
| | - Mykyta Artomov
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (SG, HT); Analytic and Translational Genetic Unit, Massachusetts General Hospital, Boston, MA (MA, MD); Broad Institute, Cambridge, MA (MA, MD); Chemistry and Chemical Biology Department, Harvard University, Cambridge, MA (MA); School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong (WG)
| | - William Goggins
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (SG, HT); Analytic and Translational Genetic Unit, Massachusetts General Hospital, Boston, MA (MA, MD); Broad Institute, Cambridge, MA (MA, MD); Chemistry and Chemical Biology Department, Harvard University, Cambridge, MA (MA); School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong (WG)
| | - Mark Daly
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (SG, HT); Analytic and Translational Genetic Unit, Massachusetts General Hospital, Boston, MA (MA, MD); Broad Institute, Cambridge, MA (MA, MD); Chemistry and Chemical Biology Department, Harvard University, Cambridge, MA (MA); School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong (WG)
| | - Hensin Tsao
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (SG, HT); Analytic and Translational Genetic Unit, Massachusetts General Hospital, Boston, MA (MA, MD); Broad Institute, Cambridge, MA (MA, MD); Chemistry and Chemical Biology Department, Harvard University, Cambridge, MA (MA); School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong (WG).
| |
Collapse
|
257
|
Murine melanomas accelerated by a single UVR exposure carry photoproduct footprints but lack UV signature C>T mutations in critical genes. Oncogene 2015; 35:3342-50. [DOI: 10.1038/onc.2015.386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 12/26/2022]
|
258
|
Ikehata H, Mori T, Yamamoto M. In Vivo Spectrum of UVC-induced Mutation in Mouse Skin Epidermis May Reflect the Cytosine Deamination Propensity of Cyclobutane Pyrimidine Dimers. Photochem Photobiol 2015; 91:1488-96. [PMID: 26335024 DOI: 10.1111/php.12525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/23/2015] [Indexed: 01/15/2023]
Abstract
Although ultraviolet radiation (UVR) has a genotoxicity for inducing skin cancers, the skin may tolerate UVC component because the epidermal layer prevents this short wavelength range from passing through. Here, UVC genotoxicity for mouse skin was evaluated in terms of DNA damage formation and mutagenicity. UVC induced UVR photolesions and mutations remarkably in the epidermis but poorly in the dermis, confirming the barrier ability of the epidermis against shorter UVR wavelengths. Moreover, the epidermis itself responded to UVC mutagenicity with mutation induction suppression, which suppressed the mutant frequencies to a remarkably low, constant level regardless of UVC dose. The mutation spectrum observed in UVC-exposed epidermis showed a predominance of UV-signature mutation, which occurred frequently in 5'-TCG-3', 5'-TCA-3' and 5'-CCA-3' contexts. Especially, for the former two contexts, the mutations recurred at several sites with more remarkable recurrences at the 5'-TCG-3' sites. Comparison of the UVC mutation spectrum with those observed in longer UVR wavelength ranges led us to a mechanism that explains why the sequence context preference of UV-signature mutation changes according to the wavelength, which is based on the difference in the mCpG preference of cyclobutane pyrimidine dimer (CPD) formation among UVR ranges and the sequence context-dependent cytosine deamination propensity of CPD.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshio Mori
- Radioisotope Research Center, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
259
|
Olsen CM, Wilson LF, Green AC, Bain CJ, Fritschi L, Neale RE, Whiteman DC. Cancers in Australia attributable to exposure to solar ultraviolet radiation and prevented by regular sunscreen use. Aust N Z J Public Health 2015; 39:471-6. [PMID: 26437734 PMCID: PMC4606762 DOI: 10.1111/1753-6405.12470] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To estimate the proportion and numbers of cancers occurring in Australia attributable to solar ultraviolet radiation (UVR) and the proportion and numbers prevented by regular sun protection factor (SPF) 15+ sunscreen use. METHODS We estimated the population attributable fraction (PAF) and numbers of melanomas and keratinocyte cancers (i.e. basal cell carcinomas and squamous cell carcinomas) due to exposure to ambient UVR resulting from residing in Australia versus residing in the UK (for melanoma) or Scandinavia (for keratinocyte cancers). We also estimated the prevented fraction (PF): the proportion of cancers that would have occurred but were likely prevented by regular sunscreen use. RESULTS An estimated 7,220 melanomas (PAF 63%) and essentially all keratinocyte cancers occurring in Australia were attributable to high ambient UVR levels in Australia. We estimated that regular sunscreen use prevented around 14,190 (PF 9.3%) and 1,730 (PF 14%) people from developing SCC and melanoma, respectively. CONCLUSIONS Although our approach was conservative, a high proportion of skin cancers in Australia are attributable to high ambient levels of UVR. Prevailing levels of sunscreen use probably reduced skin cancer incidence by 10-15%. IMPLICATIONS Most skin cancers are preventable. Sunscreen should be a component of a comprehensive sun protection strategy.
Collapse
Affiliation(s)
- Catherine M Olsen
- QIMR Berghofer Medical Research Institute, Queensland
- School of Public Health, The University of Queensland
| | | | - Adele C Green
- QIMR Berghofer Medical Research Institute, Queensland
- School of Public Health, The University of Queensland
- Cancer Research UK, Manchester Institute and Institute of Inflammation and Repair, University of Manchester, United Kingdom
| | - Christopher J Bain
- QIMR Berghofer Medical Research Institute, Queensland
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Australian Capital Territory
| | - Lin Fritschi
- School of Public Health, Curtin University, Western Australia
| | - Rachel E Neale
- QIMR Berghofer Medical Research Institute, Queensland
- School of Public Health, The University of Queensland
| | - David C Whiteman
- QIMR Berghofer Medical Research Institute, Queensland
- School of Public Health, The University of Queensland
| |
Collapse
|
260
|
Affiliation(s)
- Douglas E Brash
- Departments of Therapeutic Radiology and Dermatology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
261
|
Development and validation of a new transgenic hairless albino mouse as a mutational model for potential assessment of photocarcinogenicity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 791:42-52. [PMID: 26338542 DOI: 10.1016/j.mrgentox.2015.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/24/2022]
Abstract
Short-term phototoxicity testing is useful in selecting test agents for the longer and more expensive photocarcinogenesis safety tests; however, no validated short-term tests have been proven reliable in predicting the outcome of a photocarcinogenesis safety test. A transgenic, hairless, albino (THA) mouse model was developed that carries the gpt and red/gam [Spi(-)] genes from the gpt delta mouse background and the phenotypes from the SKH-1 mouse background to use as a short-term test in lieu of photocarcinogenesis safety tests. Validation of the THA mouse model was confirmed by exposing groups of male mice to sub-erythemal doses of ultraviolet B (UVB) irradiation for three consecutive days emitted from calibrated overhead, Kodacel-filtered fluorescent lamps and measuring the mutant frequencies (MFs) in the gpt and red/gam (Spi(-)) genes and types of mutations in the gpt gene. The doses or irradiation were monitored with broad-spectrum dosimeters that were calibrated to a NIST-traceable standard and cumulative CIE-weighted doses were 20.55 and 41.0mJ/cm(2) (effective). Mice were sacrificed 14 days after the final UVB exposure and MFs in both the gpt and red/gam genes were evaluated in the epidermis. The exposure of mice to UVB induced significant ten- to twelve-fold increases in the gpt MF and three- to five-fold increases in the Spi(-) MF over their respective background MF, 26±3×10(-6) and 9±1×10(-6). The gpt mutation spectra were significantly different between that of the UVB-irradiated and that of non-irradiated mice although the mutation spectra of both groups were dominated by C→T transitions (84% and 66%). In mice exposed to UVB, the C→T transitions occurred almost exclusively at dipyrimidine sites (92%), whereas in non-irradiated control mice, the C→T transitions occurred at CpG sites (86%). These results suggest that the newly developed THA mice are a useful and reliable model for testing UVB-induced mutagenicity in skin tissue. The application of this model for short-term prediction of solar-induced skin carcinogenicity is presently under investigation.
Collapse
|
262
|
Dumont E, Monari A. Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Front Chem 2015; 3:43. [PMID: 26236706 PMCID: PMC4500984 DOI: 10.3389/fchem.2015.00043] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
DNA is constantly exposed to damaging threats coming from oxidative stress, i.e., from the presence of free radicals and reactive oxygen species. Sensitization from exogenous and endogenous compounds that strongly enhance the frequency of light-induced lesions also plays an important role. The experimental determination of DNA lesions, though a difficult subject, is somehow well established and allows to elucidate even extremely rare DNA lesions. In parallel, molecular modeling has become fundamental to clearly understand the fine mechanisms related to DNA defects induction. Indeed, it offers an unprecedented possibility to get access to an atomistic or even electronic resolution. Ab initio molecular dynamics may also describe the time-evolution of the molecular system and its reactivity. Yet the modeling of DNA (photo-)reactions does necessitate elaborate multi-scale methodologies to tackle a damage induction reactivity that takes place in a complex environment. The double-stranded DNA environment is first characterized by a very high flexibility, but also a strongly inhomogeneous electrostatic embedding. Additionally, one aims at capturing more subtle effects, such as the sequence selectivity which is of critical important for DNA damage. The structure and dynamics of the DNA/sensitizers complexes, as well as the photo-induced electron- and energy-transfer phenomena taking place upon sensitization, should be carefully modeled. Finally the factors inducing different repair ratios for different lesions should also be rationalized. In this review we will critically analyze the different computational strategies used to model DNA lesions. A clear picture of the complex interplay between reactivity and structural factors will be sketched. The use of proper multi-scale modeling leads to the in-depth comprehension of DNA lesions mechanisms and also to the rational design of new chemo-therapeutic agents.
Collapse
Affiliation(s)
- Elise Dumont
- Laboratoire de Chimie, UMR 5182 Centre National de la Recherche Scientifique, École Normale Supérieure de Lyon Lyon, France
| | - Antonio Monari
- Université de Lorraine - Nancy, Theory-Modeling-Simulation, Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC) Vandoeuvre-les-Nancy, France ; Centre National de la Recherche Scientifique, Theory-Modeling-Simulation, Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC) Vandoeuvre-les-Nancy, France
| |
Collapse
|
263
|
Premi S, Brash DE. Unanticipated role of melanin in causing carcinogenic cyclobutane pyrimidine dimmers. Mol Cell Oncol 2015; 3:e1033588. [PMID: 27308551 DOI: 10.1080/23723556.2015.1033588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Ultraviolet radiation (UVR) instantaneously generates cyclobutane pyrimidine dimers (CPDs). Paradoxically, we recently observed that UV enables the protective pigment melanin to create CPDs in the dark long after the exposure ends. UV-induced reactive oxygen species (ROS) oxidize melanin to create melanin carbonyls in a high-energy quantum state. These energetic melanin carbonyls transfer their energy to DNA in the dark, creating CPDs in the absence of UVR.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, CT, USA
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, CT, USA
| |
Collapse
|
264
|
Abstract
We describe the landscape of genomic alterations in cutaneous melanomas through DNA, RNA, and protein-based analysis of 333 primary and/or metastatic melanomas from 331 patients. We establish a framework for genomic classification into one of four subtypes based on the pattern of the most prevalent significantly mutated genes: mutant BRAF, mutant RAS, mutant NF1, and Triple-WT (wild-type). Integrative analysis reveals enrichment of KIT mutations and focal amplifications and complex structural rearrangements as a feature of the Triple-WT subtype. We found no significant outcome correlation with genomic classification, but samples assigned a transcriptomic subclass enriched for immune gene expression associated with lymphocyte infiltrate on pathology review and high LCK protein expression, a T cell marker, were associated with improved patient survival. This clinicopathological and multi-dimensional analysis suggests that the prognosis of melanoma patients with regional metastases is influenced by tumor stroma immunobiology, offering insights to further personalize therapeutic decision-making.
Collapse
Affiliation(s)
- The Cancer Genome Atlas Network
- Cancer Genome Atlas Program Office, National Cancer Institute at NIH, 31 Center Drive, Bldg. 31, Suite 3A20, Bethesda, MD 20892, USA
| |
Collapse
|
265
|
Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, Wedge DC, Fullam A, Alexandrov LB, Tubio JM, Stebbings L, Menzies A, Widaa S, Stratton MR, Jones PH, Campbell PJ. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015; 348:880-6. [PMID: 25999502 PMCID: PMC4471149 DOI: 10.1126/science.aaa6806] [Citation(s) in RCA: 1194] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
How somatic mutations accumulate in normal cells is central to understanding cancer development but is poorly understood. We performed ultradeep sequencing of 74 cancer genes in small (0.8 to 4.7 square millimeters) biopsies of normal skin. Across 234 biopsies of sun-exposed eyelid epidermis from four individuals, the burden of somatic mutations averaged two to six mutations per megabase per cell, similar to that seen in many cancers, and exhibited characteristic signatures of exposure to ultraviolet light. Remarkably, multiple cancer genes are under strong positive selection even in physiologically normal skin, including most of the key drivers of cutaneous squamous cell carcinomas. Positively selected mutations were found in 18 to 32% of normal skin cells at a density of ~140 driver mutations per square centimeter. We observed variability in the driver landscape among individuals and variability in the sizes of clonal expansions across genes. Thus, aged sun-exposed skin is a patchwork of thousands of evolving clones with over a quarter of cells carrying cancer-causing mutations while maintaining the physiological functions of epidermis.
Collapse
Affiliation(s)
| | - Amit Roshan
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Moritz Gerstung
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
| | - Peter Ellis
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
| | - Peter Van Loo
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK. Francis Crick Institute, London, UK. Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Stuart McLaren
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
| | - David C Wedge
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
| | - Anthony Fullam
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
| | | | - Jose M Tubio
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
| | - Lucy Stebbings
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
| | - Andrew Menzies
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
| | - Sara Widaa
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
| | | | - Philip H Jones
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Peter J Campbell
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK. Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
266
|
Altavilla SF, Segarra-Martí J, Nenov A, Conti I, Rivalta I, Garavelli M. Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate. Front Chem 2015; 3:29. [PMID: 25941671 PMCID: PMC4403598 DOI: 10.3389/fchem.2015.00029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/30/2015] [Indexed: 01/17/2023] Open
Abstract
The photophysics and photochemistry of water-solvated guanine monophosphate (GMP) are here characterized by means of a multireference quantum-chemical/molecular mechanics theoretical approach (CASPT2//CASSCF/AMBER) in order to elucidate the main photo-processes occurring upon UV-light irradiation. The effect of the solvent and of the phosphate group on the energetics and structural features of this system are evaluated for the first time employing high-level ab initio methods and thoroughly compared to those in vacuo previously reported in the literature and to the experimental evidence to assess to which extent they influence the photoinduced mechanisms. Solvated electronic excitation energies of solvated GMP at the Franck-Condon (FC) region show a red shift for the ππ(*) La and Lb states, whereas the energy of the oxygen lone-pair nπ(*) state is blue-shifted. The main photoinduced decay route is promoted through a ring-puckering motion along the bright lowest-lying La state toward a conical intersection (CI) with the ground state, involving a very shallow stationary point along the minimum energy pathway in contrast to the barrierless profile found in gas-phase, the point being placed at the end of the minimum energy path (MEP) thus endorsing its ultrafast deactivation in accordance with time-resolved transient and photoelectron spectroscopy experiments. The role of the nπ(*) state in the solvated system is severely diminished as the crossings with the initially populated La state and also with the Lb state are placed too high energetically to partake prominently in the deactivation photo-process. The proposed mechanism present in solvated and in vacuo DNA/RNA chromophores validates the intrinsic photostability mechanism through CI-mediated non-radiative processes accompanying the bright excited-state population toward the ground state and subsequent relaxation back to the FC region.
Collapse
Affiliation(s)
| | | | - Artur Nenov
- Dipartimento di Chimica “G. Ciamician,” Università di BolognaBologna, Italy
| | - Irene Conti
- Dipartimento di Chimica “G. Ciamician,” Università di BolognaBologna, Italy
| | - Ivan Rivalta
- École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, UMR 5182, Université de LyonLyon, France
| | - Marco Garavelli
- Dipartimento di Chimica “G. Ciamician,” Università di BolognaBologna, Italy
- École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, UMR 5182, Université de LyonLyon, France
| |
Collapse
|
267
|
Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A, Wakamatsu K, Bechara EJH, Halaban R, Douki T, Brash DE. Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 2015; 347:842-7. [PMID: 25700512 PMCID: PMC4432913 DOI: 10.1126/science.1256022] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts that are typically created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. We found that in melanocytes, CPDs are generated for >3 hours after exposure to UVA, a major component of the radiation in sunlight and in tanning beds. These "dark CPDs" constitute the majority of CPDs and include the cytosine-containing CPDs that initiate UV-signature C→T mutations. Dark CPDs arise when UV-induced reactive oxygen and nitrogen species combine to excite an electron in fragments of the pigment melanin. This creates a quantum triplet state that has the energy of a UV photon but induces CPDs by energy transfer to DNA in a radiation-independent manner. Melanin may thus be carcinogenic as well as protective against cancer. These findings also validate the long-standing suggestion that chemically generated excited electronic states are relevant to mammalian biology.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Silvia Wallisch
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Camila M Mano
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05513-970 SP, Brazil
| | - Adam B Weiner
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Antonella Bacchiocchi
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Etelvino J H Bechara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05513-970 SP, Brazil. Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, São Paulo 09972-270 SP, Brazil
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Thierry Douki
- INAC/LCIB UMR-E3 CEA-UJF/Commissariat à l'Energie Atomique (CEA), 38054 Grenoble Cedex 9, France
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|