251
|
Human skeletal muscle is refractory to the anabolic effects of leucine during the postprandial muscle-full period in older men. Clin Sci (Lond) 2017; 131:2643-2653. [PMID: 28982725 PMCID: PMC5869244 DOI: 10.1042/cs20171230] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022]
Abstract
Leucine modulates muscle protein synthesis (MPS), with potential to facilitate accrual/maintenance of muscle mass. Animal models suggest that leucine boluses shortly after meals may prolong MPS and delay onset of a “muscle-full” state. However, the effects of nutrient “top-ups” in humans, and particularly older adults where deficits exist, have not been explored. We determined the effects of a leucine top-up after essential amino acid (EAA) feeding on anabolic signaling, MPS, and muscle energy metabolism in older men. During 13C6-phenylalanine infusion, 16 men (∼70 years) consumed 15 g of EAA with (n=8, FED + LEU) or without (n=8, FED) 3 g of leucine top-up 90 min later. Repeated blood and muscle sampling permitted measurement of fasting and postprandial plasma EAA, insulin, anabolic signaling including mTOR complex 1 (mTORC1) substrates, cellular ATP and phosphorylocreatine, and MPS. Oral EAA achieved rapid insulinemia (12.5 iU·ml−1 25 min post-feed), essential aminoacidemia (3000 μM, 45–65 min post-feed), and activation of mTORC1 signaling. Leucine top-up prolonged plasma EAA (2800 μM, 135 min) and leucine availability (1050 μM, 135 min post-feed). Fasting FSRs of 0.046 and 0.056%·h-1 (FED and FED + LEU respectively) increased to 0.085 and 0.085%·h-1 90–180 min post-feed and returned to basal rates after 180 min in both groups. Phosphorylation of mTORC1 substrates returned to fasting levels 240 min post-feed in both groups. Feeding had limited effect on muscle high-energy phosphates, but did induce eukaryotic elongation factor 2 (eEF2) phosphorylation. We demonstrate the refractoriness of muscle to nutrient-led anabolic stimulation in the postprandial period; thus, leucine supplements should be taken outside of meals, or with meals containing suboptimal protein in terms of either amount or EAA composition.
Collapse
|
252
|
Mishra M, Tiwari S, Gomes AV. Protein purification and analysis: next generation Western blotting techniques. Expert Rev Proteomics 2017; 14:1037-1053. [PMID: 28974114 DOI: 10.1080/14789450.2017.1388167] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Western blotting is one of the most commonly used techniques in molecular biology and proteomics. Since western blotting is a multistep protocol, variations and errors can occur at any step reducing the reliability and reproducibility of this technique. Recent reports suggest that a few key steps, such as the sample preparation method, the amount and source of primary antibody used, as well as the normalization method utilized, are critical for reproducible western blot results. Areas covered: In this review, improvements in different areas of western blotting, including protein transfer and antibody validation, are summarized. The review discusses the most advanced western blotting techniques available and highlights the relationship between next generation western blotting techniques and its clinical relevance. Expert commentary: Over the last decade significant improvements have been made in creating more sensitive, automated, and advanced techniques by optimizing various aspects of the western blot protocol. New methods such as single cell-resolution western blot, capillary electrophoresis, DigiWest, automated microfluid western blotting and microchip electrophoresis have all been developed to reduce potential problems associated with the western blotting technique. Innovative developments in instrumentation and increased sensitivity for western blots offer novel possibilities for increasing the clinical implications of western blot.
Collapse
Affiliation(s)
- Manish Mishra
- a Department of Physiology , University of Saskatchewan College of Medicine , Saskatoon , SK , Canada
| | - Shuchita Tiwari
- b Department of Neurobiology, Physiology, and Behavior , University of California , Davis , CA , USA
| | - Aldrin V Gomes
- b Department of Neurobiology, Physiology, and Behavior , University of California , Davis , CA , USA.,c Department of Physiology and Membrane Biology , University of California , Davis , CA , USA
| |
Collapse
|
253
|
Boltaev U, Meyer Y, Tolibzoda F, Jacques T, Gassaway M, Xu Q, Wagner F, Zhang YL, Palmer M, Holson E, Sames D. Multiplex quantitative assays indicate a need for reevaluating reported small-molecule TrkB agonists. Sci Signal 2017; 10:10/493/eaal1670. [PMID: 28831019 DOI: 10.1126/scisignal.aal1670] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), have emerged as key regulators of brain plasticity and represent disease-modifying targets for several brain disorders, including Alzheimer's disease and major depressive disorder. Because of poor pharmacokinetic properties of BDNF, the interest in small-molecule TrkB agonists and modulators is high. Several compounds have been reported to act as TrkB agonists, and their increasing use in various nervous system disorder models creates the perception that these are reliable probes. To examine key pharmacological parameters of these compounds in detail, we have developed and optimized a series of complementary quantitative assays that measure TrkB receptor activation, TrkB-dependent downstream signaling, and gene expression in different cellular contexts. Although BDNF and other neurotrophic factors elicited robust and dose-dependent receptor activation and downstream signaling, we were unable to reproduce these activities using the reported small-molecule TrkB agonists. Our findings indicate that experimental results obtained with these compounds must be carefully interpreted and highlight the challenge of developing reliable pharmacological activators of this key molecular target.
Collapse
Affiliation(s)
- Umed Boltaev
- Department of Chemistry, Columbia University, New York, NY 10027, USA.,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| | - Yves Meyer
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Farangis Tolibzoda
- Department of Chemistry, Columbia University, New York, NY 10027, USA.,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| | - Teresa Jacques
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Madalee Gassaway
- Department of Chemistry, Columbia University, New York, NY 10027, USA.,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| | - Qihong Xu
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Florence Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michelle Palmer
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Edward Holson
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY 10027, USA. .,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| |
Collapse
|