251
|
Francescon P, Beddar S, Satariano N, Das IJ. Variation of kQclin,Qmsr (fclin,fmsr) for the small-field dosimetric parameters percentage depth dose, tissue-maximum ratio, and off-axis ratio. Med Phys 2014; 41:101708. [PMID: 25281947 PMCID: PMC5175987 DOI: 10.1118/1.4895978] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/25/2014] [Accepted: 08/31/2014] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Evaluate the ability of different dosimeters to correctly measure the dosimetric parameters percentage depth dose (PDD), tissue-maximum ratio (TMR), and off-axis ratio (OAR) in water for small fields. METHODS Monte Carlo (MC) simulations were used to estimate the variation of kQclin,Qmsr (fclin,fmsr) for several types of microdetectors as a function of depth and distance from the central axis for PDD, TMR, and OAR measurements. The variation of kQclin,Qmsr (fclin,fmsr) enables one to evaluate the ability of a detector to reproduce the PDD, TMR, and OAR in water and consequently determine whether it is necessary to apply correction factors. The correctness of the simulations was verified by assessing the ratios between the PDDs and OARs of 5- and 25-mm circular collimators used with a linear accelerator measured with two different types of dosimeters (the PTW 60012 diode and PTW PinPoint 31014 microchamber) and the PDDs and the OARs measured with the Exradin W1 plastic scintillator detector (PSD) and comparing those ratios with the corresponding ratios predicted by the MC simulations. RESULTS MC simulations reproduced results with acceptable accuracy compared to the experimental results; therefore, MC simulations can be used to successfully predict the behavior of different dosimeters in small fields. The Exradin W1 PSD was the only dosimeter that reproduced the PDDs, TMRs, and OARs in water with high accuracy. With the exception of the EDGE diode, the stereotactic diodes reproduced the PDDs and the TMRs in water with a systematic error of less than 2% at depths of up to 25 cm; however, they produced OAR values that were significantly different from those in water, especially in the tail region (lower than 20% in some cases). The microchambers could be used for PDD measurements for fields greater than those produced using a 10-mm collimator. However, with the detector stem parallel to the beam axis, the microchambers could be used for TMR measurements for all field sizes. The microchambers could not be used for OAR measurements for small fields. CONCLUSIONS Compared with MC simulation, the Exradin W1 PSD can reproduce the PDDs, TMRs, and OARs in water with a high degree of accuracy; thus, the correction used for converting dose is very close to unity. The stereotactic diode is a viable alternative because it shows an acceptable systematic error in the measurement of PDDs and TMRs and a significant underestimation in only the tail region of the OAR measurements, where the dose is low and differences in dose may not be therapeutically meaningful.
Collapse
Affiliation(s)
- Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Viale Rodolfi, Vicenza 36100, Italy
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77005
| | - Ninfa Satariano
- Department of Radiation Oncology, Ospedale Di Vicenza, Viale Rodolfi, Vicenza 36100, Italy
| | - Indra J Das
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
252
|
Brown DW, Shulman A, Hudson A, Smith W, Fisher B, Hollon J, Pipman Y, Van Dyk J, Einck J. A framework for the implementation of new radiation therapy technologies and treatment techniques in low-income countries. Phys Med 2014; 30:791-8. [PMID: 25096162 DOI: 10.1016/j.ejmp.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/13/2014] [Indexed: 11/18/2022] Open
Abstract
We present a practical, generic, easy-to-use framework for the implementation of new radiation therapy technologies and treatment techniques in low-income countries. The framework is intended to standardize the implementation process, reduce the effort involved in generating an implementation strategy, and provide improved patient safety by reducing the likelihood that steps are missed during the implementation process. The 10 steps in the framework provide a practical approach to implementation. The steps are, 1) Site and resource assessment, 2) Evaluation of equipment and funding, 3) Establishing timelines, 4) Defining the treatment process, 5) Equipment commissioning, 6) Training and competency assessment, 7) Prospective risk analysis, 8) System testing, 9) External dosimetric audit and incident learning, and 10) Support and follow-up. For each step, practical advice for completing the step is provided, as well as links to helpful supplementary material. An associated checklist is provided that can be used to track progress through the steps in the framework. While the emphasis of this paper is on addressing the needs of low-income countries, the concepts also apply in high-income countries.
Collapse
Affiliation(s)
- Derek W Brown
- University of Calgary, Depts of Oncology and Physics and Astronomy, Tom Baker Cancer Centre, Calgary, AB, Canada.
| | | | | | - Wendy Smith
- University of Calgary, Depts of Oncology and Physics and Astronomy, Tom Baker Cancer Centre, Calgary, AB, Canada.
| | | | - Jon Hollon
- Varian Medical Systems, Palo Alto, CA, USA.
| | - Yakov Pipman
- International Educational Activities Committee, American Association of Physicists in Medicine, USA.
| | - Jacob Van Dyk
- Dept of Medical Biophysics, Western University, London, ON, Canada.
| | - John Einck
- Dept of Oncology, Moores Cancer Center, San Diego, CA, USA.
| |
Collapse
|
253
|
Gersh JA, Best RCM, Watts RJ. The clinical impact of detector choice for beam scanning. J Appl Clin Med Phys 2014; 15:4801. [PMID: 25207408 PMCID: PMC5875504 DOI: 10.1120/jacmp.v15i4.4801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/22/2014] [Accepted: 03/06/2014] [Indexed: 11/23/2022] Open
Abstract
Recently, the developers of Eclipse have recommended the use of ionization chambers for all profile scanning, including for the modeling of VMAT and stereotactic applications. The purpose of this study is to show the clinical impact caused by the choice of detector with respect to its ability to accurately measure dose in the penumbra and tail regions of a scanned profile. Using scan data acquired with several detectors, including an IBA CC13, a PTW 60012, and a Sun Nuclear EDGE Detector, three complete beam models are created, one for each respective detector. Next, using each beam model, dose volumes are retrospectively recalculated from actual anonymous patient plans. These plans include three full‐arc VMAT prostate plans, three left chest wall plans delivered using irregular compensators, two half‐arc VMAT lung plans, three MLC‐collimated static‐field pairs, and two SBRT liver plans. Finally, plans are reweighted to deliver the same number of monitor units, and mean dose‐to‐target volumes and organs at risk are calculated and compared. Penumbra width did not play a role. Dose in the tail region of the profile made the largest difference. By overresponding in the tail region of the profile, the 60012 diode detector scan data affected the beam model in such a way that target doses were reduced by as much as 0.4% (in comparison to CC13 and EDGE data). This overresponse also resulted in an overestimation of dose to peripheral critical structure, whose dose consisted mainly of scatter. This study shows that, for modeling the 6 MV beam of Acuros XB in Eclipse Version 11, the choice to use a CC13 scanning ion chamber or an EDGE Detector was an unimportant choice, providing nearly identical models in the treatment planning system. PACS number: 87.55.kh
Collapse
|
254
|
Akino Y, Gibbons JP, Neck DW, Chu C, Das IJ. Intra- and intervariability in beam data commissioning among water phantom scanning systems. J Appl Clin Med Phys 2014; 15:4850. [PMID: 25207415 PMCID: PMC5875503 DOI: 10.1120/jacmp.v15i4.4850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/10/2014] [Accepted: 03/27/2014] [Indexed: 11/23/2022] Open
Abstract
Accurate beam data acquisition during commissioning is essential for modeling the treatment planning system and dose calculation in radiotherapy. Although currently several commercial scanning systems are available, there is no report that compared the differences among the systems because most institutions do not acquire several scanning systems due to the high cost, storage space, and infrequent usage. In this report, we demonstrate the intra‐ and intervariability of beam profiles measured with four commercial scanning systems. During a recent educational and training workshop, four different vendors of beam scanning water phantoms were invited to demonstrate the operation and data collection of their systems. Systems were set up utilizing vendor‐recommended protocols and were operated with a senior physicist, who was assigned as an instructor along with vendor. During the training sessions, each group was asked to measure beam parameters, and the intravariability in percent depth dose (PDD). At the end of the day, the profile of one linear accelerator was measured with each system to evaluate intervariability. Relatively very small (SD < 0.12%) intervariability in PDD was observed among four systems at a region deeper than peak (1.5 cm). All systems showed almost identical profiles. At the area within 80% of radiation field, the average, and maximum differences were within ± 0.35% and 0.80%, respectively, compared to arbitrarily chosen IBA system as reference. In the penumbrae region, the distance to agreement (DTA) of the region where dose difference exceed ± 1% was less than 1 mm. Repeated PDD measurement showed small intravariability with SD < 0.5%, although large SD was observed in the buildup region. All four water phantom scanning systems demonstrated adequate accuracy for beam data collection (i.e., within 1% of dose difference or 1 mm of DTA among each other). It is concluded that every system is capable of acquiring accurate beam. Thus the selection of a water scanning system should be based on institutional comfort, personal preference of software and hardware, and financial consideration. PACS number: 87.53.Bn
Collapse
|
255
|
Smit K, Sjöholm J, Kok JGM, Lagendijk JJW, Raaymakers BW. Relative dosimetry in a 1.5 T magnetic field: an MR-linac compatible prototype scanning water phantom. Phys Med Biol 2014; 59:4099-109. [DOI: 10.1088/0031-9155/59/15/4099] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
256
|
Ganesh KM, Pichandi A, Nehru RM, Ravikumar M. Design and Testing of Indigenous Cost Effective Three Dimensional Radiation Field Analyser (3D RFA). Technol Cancer Res Treat 2014; 13:195-209. [DOI: 10.7785/tcrt.2012.500370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of the study is to design and validate an indigenous three dimensional Radiation Field Analyser (3D RFA). The feed system made for X, Y and Z axis movements is of lead screw with deep ball bearing mechanism made up of stain less steel driven by stepper motors with accuracy less than 0.5 mm. The telescopic column lifting unit was designed using linear actuation technology for lifting the water phantom. The acrylic phantom with dimensions of 800 × 750 × 570 mm was made with thickness of 15 mm. The software was developed in visual basic programming language, classified into two types, viz. beam analyzer software and beam acquisition software. The premeasurement checks were performed as per TG 106 recommendations. The physical parameters of photon PDDs such as Dmax, D10, D20and Quality Index (QI), and the electron PDDs such as R50, Rp, E0, Epoand X-ray contamination values can be obtained instantaneously by using the developed RFA system. Also the results for profile data such as field size, central axis deviation, penumbra, flatness and symmetry calculated according to various protocols can be obtained for both photon and electron beams. The result of PDDs for photon beams were compared with BJR25 supplement values and the profile data were compared with TG 40 recommendation. The results were in agreement with standard protocols.
Collapse
Affiliation(s)
- K. M. Ganesh
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Hosur Road, Bangalore 560029, India
| | - A. Pichandi
- Health Care Global Hospitals, Sampingeram Nagar, Bangalore 560027, India
| | - R. M. Nehru
- Atomic Energy Regulatory Board, Mumbai 400094, India
| | - M. Ravikumar
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Hosur Road, Bangalore 560029, India
| |
Collapse
|
257
|
McEwen M, DeWerd L, Ibbott G, Followill D, Rogers DWO, Seltzer S, Seuntjens J. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams. Med Phys 2014; 41:041501. [PMID: 24694120 PMCID: PMC5148035 DOI: 10.1118/1.4866223] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 11/07/2022] Open
Abstract
An addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water in megavoltage photon beams is presented. This addendum continues the procedure laid out in TG-51 but new kQ data for photon beams, based on Monte Carlo simulations, are presented and recommendations are given to improve the accuracy and consistency of the protocol's implementation. The components of the uncertainty budget in determining absorbed dose to water at the reference point are introduced and the magnitude of each component discussed. Finally, the consistency of experimental determination of ND,w coefficients is discussed. It is expected that the implementation of this addendum will be straightforward, assuming that the user is already familiar with TG-51. The changes introduced by this report are generally minor, although new recommendations could result in procedural changes for individual users. It is expected that the effort on the medical physicist's part to implement this addendum will not be significant and could be done as part of the annual linac calibration.
Collapse
Affiliation(s)
- Malcolm McEwen
- National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada
| | - Larry DeWerd
- University of Wisconsin, 1111 Highland Avenue, Madison, Wisconsin 53705
| | - Geoffrey Ibbott
- Department of Radiation Physics, M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - David Followill
- IROC Houston QA Center, Radiological Physics Center, 8060 El Rio Street, Houston, Texas 77054
| | - David W O Rogers
- Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada
| | - Stephen Seltzer
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Jan Seuntjens
- Medical Physics Unit, McGill University, 1650 Cedar Avenue, Montreal, Québec, Canada
| |
Collapse
|
258
|
Foster RD, Speiser MP, Solberg TD. Commissioning and verification of the collapsed cone convolution superposition algorithm for SBRT delivery using flattening filter-free beams. J Appl Clin Med Phys 2014; 15:4631. [PMID: 24710452 PMCID: PMC5875462 DOI: 10.1120/jacmp.v15i2.4631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 11/25/2022] Open
Abstract
Linacs equipped with flattening filter‐free (FFF) megavoltage photon beams are now commercially available. However, the commissioning of FFF beams poses challenges that are not shared with traditional flattened megavoltage X‐ray beams. The planning system must model a beam that is peaked in the center and has an energy spectrum that is softer than the flattened beam. Removing the flattening filter also increases the maximum possible dose rates from 600 MU/min up to 2400 MU/min in some cases; this increase in dose rate affects the recombination correction factor, Pion, used during absolute dose calibration with ionization chambers. We present the first‐reported experience of commissioning, verification, and clinical use of the collapsed cone convolution superposition (CCCS) dose calculation algorithm for commercially available flattening filter‐free beams. Our commissioning data are compared to previously reported measurements and Monte Carlo studies of FFF beams. Commissioning was verified by making point‐dose measurement of test plans, irradiating the RPC lung phantom, and performing patient‐specific QA. The average point‐dose difference between calculations and measurements of all test plans and all patient specific QA measurements is 0.80%, and the RPC phantom absolute dose differences for the two thermoluminescent dosimeters (TLDs) in the phantom planning target volume (PTV) were 1% and 2%, respectively. One hundred percent (100%) of points in the RPC phantom films passed the RPC gamma criteria of 5% and 5 mm. Our results show that the CCCS algorithm can accurately model FFF beams and calculate SBRT dose distributions using those beams. PACS number: 87.55.kh
Collapse
|
259
|
Solberg TD, Medin PM, Ramirez E, Ding C, Foster RD, Yordy J. Commissioning and initial stereotactic ablative radiotherapy experience with Vero. J Appl Clin Med Phys 2014; 15:4685. [PMID: 24710458 PMCID: PMC5875460 DOI: 10.1120/jacmp.v15i2.4685] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/29/2013] [Accepted: 11/01/2013] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study is to describe the comprehensive commissioning process and initial clinical performance of the Vero linear accelerator, a new radiotherapy device recently installed at UT Southwestern Medical Center specifically developed for delivery of image‐guided stereotactic ablative radiotherapy (SABR). The Vero system utilizes a ring gantry to integrate a beam delivery platform with image guidance systems. The ring is capable of rotating ± 60° about the vertical axis to facilitate noncoplanar beam arrangements ideal for SABR delivery. The beam delivery platform consists of a 6 MV C‐band linac with a 60 leaf MLC projecting a maximum field size of 15×15 cm2 at isocenter. The Vero planning and delivery systems support a range of treatment techniques, including fixed beam conformal, dynamic conformal arcs, fixed gantry IMRT in either SMLC (step‐and‐shoot) or DMLC (dynamic) delivery, and hybrid arcs, which combines dynamic conformal arcs and fixed beam IMRT delivery. The accelerator and treatment head are mounted on a gimbal mechanism that allows the linac and MLC to pivot in two dimensions for tumor tracking. Two orthogonal kV imaging subsystems built into the ring facilitate both stereoscopic and volumetric (CBCT) image guidance. The system is also equipped with an always‐active electronic portal imaging device (EPID). We present our commissioning process and initial clinical experience focusing on SABR applications with the Vero, including: (1) beam data acquisition; (2) dosimetric commissioning of the treatment planning system, including evaluation of a Monte Carlo algorithm in a specially‐designed anthropomorphic thorax phantom; (3) validation using the Radiological Physics Center thorax, head and neck (IMRT), and spine credentialing phantoms; (4) end‐to‐end evaluation of IGRT localization accuracy; (5) ongoing system performance, including isocenter stability; and (6) clinical SABR applications. PACS number: 87.53.Ly
Collapse
Affiliation(s)
- Timothy D Solberg
- University of Pennsylvania, University of Texas Southwestern Medical Center.
| | | | | | | | | | | |
Collapse
|
260
|
Gibbons JP, Antolak JA, Followill DS, Huq MS, Klein EE, Lam KL, Palta JR, Roback DM, Reid M, Khan FM. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71. Med Phys 2014; 41:031501. [PMID: 24593704 PMCID: PMC5148083 DOI: 10.1118/1.4864244] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 11/07/2022] Open
Abstract
A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, D'0, that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where D'0 = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent D'0 ≤ 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of dm, with D'0 = 1 cGy/MU, although both systems are acceptable within the current protocol. For photon beams, the formalism includes the use of blocked fields, physical or dynamic wedges, and (static) multileaf collimation. No formalism is provided for intensity modulated radiation therapy calculations, although some general considerations and a review of current calculation techniques are included. For electron beams, the formalism provides for calculations at the standard and extended SSDs using either an effective SSD or an air-gap correction factor. Example tables and problems are included to illustrate the basic concepts within the presented formalism.
Collapse
Affiliation(s)
- John P Gibbons
- Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana 70809
| | - John A Antolak
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - David S Followill
- Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, Texas 77030
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | - Eric E Klein
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kwok L Lam
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jatinder R Palta
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Donald M Roback
- Department of Radiation Oncology, Cancer Centers of North Carolina, Raleigh, North Carolina 27607
| | - Mark Reid
- Department of Medical Physics, Fletcher-Allen Health Care, Burlington, Vermont 05401
| | - Faiz M Khan
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
261
|
Du W, Cho SH, Zhang X, Hoffman KE, Kudchadker RJ. Quantification of beam complexity in intensity-modulated radiation therapy treatment plans. Med Phys 2014; 41:021716. [DOI: 10.1118/1.4861821] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
262
|
Lee CY, Kim WC, Kim HJ, Ji YH, Kim KB, Lee SH, Min CK, Jo GH, Shin DO, Kim SH, Huh HD. Feasibility Study of the microDiamond Detector for Measurement of Small Field Photon Beam. ACTA ACUST UNITED AC 2014. [DOI: 10.14316/pmp.2014.25.4.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chang Yeol Lee
- Department of Radiation Oncology, College of Medicine, Inha University, Incheon, Korea
| | - Woo Chul Kim
- Department of Radiation Oncology, College of Medicine, Inha University, Incheon, Korea
| | - Hun Jeong Kim
- Department of Radiation Oncology, College of Medicine, Inha University, Incheon, Korea
| | - Young Hoon Ji
- Research Institute of Radiological and Medical Sciences, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kum Bae Kim
- Research Institute of Radiological and Medical Sciences, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Sang Hoon Lee
- Department of Radiation Oncology, College of Medicine, Kwandong University, Gangneung, Korea
| | - Chul Kee Min
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Gwang Hwan Jo
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Dong Oh Shin
- Department of Radiation Oncology, College of Medicine, Kyunghee University, Seoul, Korea
| | - Seong Hoon Kim
- Department of Radiation Oncology, College of Medicine, Hanyang University, Seoul, Korea
| | - Hyun Do Huh
- Department of Radiation Oncology, College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
263
|
Kumar R, Sharma SD, Philomina A, Topkar A. Dosimetric characteristics of a PIN diode for radiotherapy application. Technol Cancer Res Treat 2013; 13:361-7. [PMID: 24325130 DOI: 10.7785/tcrt.2012.500388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PIN diode developed by Bhabha Atomic Research Centre (BARC) was modified for its use as a dosimeter in radiation therapy. For this purpose the diode was mounted on a printed circuit board (PCB) and provided with necessary connections so that its response against irradiation can be recorded by a standard radiotherapy electrometer. The dosimetric characteristics of the diode were studied in Co-60 gamma rays as well as high energy X-rays. The measured sensitivity of this PIN diode is 4 nC/cGy which is about ten times higher than some commercial diode dosimeters. The leakage current from the diode is 0.04 nA. The response of the PIN diode is linear in the range of 20-1000 cGy which covers the full range of radiation dose encountered in radiotherapy treatments. The non-linearity of the diode response is 3.5% at 20 cGy and it is less than 1.5% at higher dose values. Its repeatability is within 0.5%. The angular response variation is about 5.6% within 6608 with respect to normal beam incidence. The response of the PIN diode at 6 and 18 MV X-rays varies within 2% with respect to its response at Co-60 gamma rays. The source to surface distance (SSD) dependence of the PIN diode was studied for Co-60 beam. It was found that the response of the diode decreases almost linearly relative to given dose for beams with constant collimator setting but increasing SSD (decreasing dose-rate). Within this study the diode response varied by about 2.5% between the maximum and minimum SSD. The dose-rate dependence of the PIN diode for 6 and 15 MV-rays was studied. The variation in response of diode for both energies in the studied dose range is less than 1%. The field size dependence of the PIN diode response is within 1% with respect to the response of ionisation chamber. These studies indicate that the characteristics of the PIN diode are suitable for use in radiotherapy dosimetry.
Collapse
Affiliation(s)
- R Kumar
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400094, India.
| | | | | | | |
Collapse
|
264
|
Lechner W, Palmans H, Sölkner L, Grochowska P, Georg D. Detector comparison for small field output factor measurements in flattening filter free photon beams. Radiother Oncol 2013; 109:356-60. [DOI: 10.1016/j.radonc.2013.10.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/11/2013] [Accepted: 10/19/2013] [Indexed: 11/28/2022]
|
265
|
Benítez E, Casado F, García-Pareja S, Martín-Viera J, Moreno C, Parra V. Evaluation of a liquid ionization chamber for relative dosimetry in small and large fields of radiotherapy photon beams. RADIAT MEAS 2013. [DOI: 10.1016/j.radmeas.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
266
|
Rankine LJ, Newton J, Bache ST, Das SK, Adamovics J, Kirsch DG, Oldham M. Investigating end-to-end accuracy of image guided radiation treatment delivery using a micro-irradiator. Phys Med Biol 2013; 58:7791-801. [PMID: 24140983 DOI: 10.1088/0031-9155/58/21/7791] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is significant interest in delivering precisely targeted small-volume radiation treatments, in the pre-clinical setting, to study dose-volume relationships with tumour control and normal tissue damage. For these studies it is vital that image guidance systems and target positioning are accurately aligned (IGRT), in order to deliver dose precisely and accurately according to the treatment plan. In this work we investigate the IGRT targeting accuracy of the X-RAD 225 Cx system from Precision X-Ray using high-resolution 3D dosimetry techniques. Small cylindrical PRESAGE® dosimeters were used with optical-CT readout (DMOS) to verify the accuracy of 2.5, 1.0, and 5.0 mm X-RAD cone attachments. The dosimeters were equipped with four target points, visible on both CBCT and optical-CT, at which a 7-field coplanar treatment plan was delivered with the respective cone. Targeting accuracy (distance to agreement between the target point and delivery isocenter) and cone alignment (isocenter precision under gantry rotation) were measured using the optical-CT images. Optical-CT readout of the first 2.5 mm cone dosimeter revealed a significant targeting error of 2.1 ± 0.6 mm and a cone misalignment of 1.3 ± 0.1 mm. After the IGRT hardware and software had been recalibrated, these errors were reduced to 0.5 ± 0.1 and 0.18 ± 0.04 mm respectively, within the manufacturer specified 0.5 mm. Results from the 1.0 mm cone were 0.5 ± 0.3 mm targeting accuracy and 0.4 ± 0.1 mm cone misalignment, within the 0.5 mm specification. The results from the 5.0 mm cone were 1.0 ± 0.2 mm targeting accuracy and 0.18 ± 0.06 mm cone misalignment, outside of accuracy specifications. Quality assurance of small field IGRT targeting and delivery accuracy is a challenging task. The use of a 3D dosimetry technique, where targets are visible on both CBCT and optical-CT, enabled identification and quantification of a targeting error in 3D. After correction, the targeting accuracy of the irradiator was verified to be within 0.5 mm (or 1.0 mm for the 5.0 mm cone) and the cone alignment was verified to be within 0.2 mm (or 0.4 mm for the 1.0 mm cone). The PRESAGE®/DMOS system proved valuable for end-to-end verification of small field IGRT capabilities.
Collapse
Affiliation(s)
- L J Rankine
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
267
|
Taddei PJ, Jalbout W, Howell RM, Khater N, Geara F, Homann K, Newhauser WD. Analytical model for out-of-field dose in photon craniospinal irradiation. Phys Med Biol 2013; 58:7463-79. [PMID: 24099782 DOI: 10.1088/0031-9155/58/21/7463] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The prediction of late effects after radiotherapy in organs outside a treatment field requires accurate estimations of out-of-field dose. However, out-of-field dose is not calculated accurately by commercial treatment planning systems (TPSs). The purpose of this study was to develop and test an analytical model for out-of-field dose during craniospinal irradiation (CSI) from photon beams produced by a linear accelerator. In two separate evaluations of the model, we measured absorbed dose for a 6 MV CSI using thermoluminescent dosimeters placed throughout an anthropomorphic phantom and fit the measured data to an analytical model of absorbed dose versus distance outside of the composite field edge. These measurements were performed in two separate clinics-the University of Texas MD Anderson Cancer Center (MD Anderson) and the American University of Beirut Medical Center (AUBMC)-using the same phantom but different linear accelerators and TPSs commissioned for patient treatments. The measurement at AUBMC also included in-field locations. Measured dose values were compared to those predicted by TPSs and parameters were fit to the model in each setting. In each clinic, 95% of the measured data were contained within a factor of 0.2 and one root mean square deviation of the model-based values. The root mean square deviations of the mathematical model were 0.91 cGy Gy(-1) and 1.67 cGy Gy(-1) in the MD Anderson and AUBMC clinics, respectively. The TPS predictions agreed poorly with measurements in regions of sharp dose gradient, e.g., near the field edge. At distances greater than 1 cm from the field edge, the TPS underestimated the dose by an average of 14% ± 24% and 44% ± 19% in the MD Anderson and AUBMC clinics, respectively. The in-field measured dose values of the measurement at AUBMC matched the dose values calculated by the TPS to within 2%. Dose algorithms in TPSs systematically underestimated the actual out-of-field dose. Therefore, it is important to use an improved model based on measurements when estimating out-of-field dose. The model proposed in this study performed well for this purpose in two clinics and may be applicable in other clinics with similar treatment field configurations.
Collapse
Affiliation(s)
- Phillip J Taddei
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA. Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|
268
|
Qin S, Zhang M, Kim S, Chen T, Kim LH, Haffty BG, Yue NJ. A systematic approach to statistical analysis in dosimetry and patient-specific IMRT plan verification measurements. Radiat Oncol 2013; 8:225. [PMID: 24074185 PMCID: PMC3852372 DOI: 10.1186/1748-717x-8-225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/22/2013] [Indexed: 11/10/2022] Open
Abstract
PURPOSE In the presence of random uncertainties, delivered radiation treatment doses in patient likely exhibit a statistical distribution. The expected dose and variance of this distribution are unknown and are most likely not equal to the planned value since the current treatment planning systems cannot exactly model and simulate treatment machine. Relevant clinical questions are 1) how to quantitatively estimate the expected delivered dose and extrapolate the expected dose to the treatment dose over a treatment course and 2) how to evaluate the treatment dose relative to the corresponding planned dose. This study is to present a systematic approach to address these questions and to apply this approach to patient-specific IMRT (PSIMRT) plan verifications. METHODS The expected delivered dose in patient and variance are quantitatively estimated using Student T distribution and Chi Distribution, respectively, based on pre-treatment QA measurements. Relationships between the expected dose and the delivered dose over a treatment course and between the expected dose and the planned dose are quantified with mathematical formalisms. The requirement and evaluation of the pre-treatment QA measurement results are also quantitatively related to the desired treatment accuracy and to the to-be-delivered treatment course itself. The developed methodology was applied to PSIMRT plan verification procedures for both QA result evaluation and treatment quality estimation. RESULTS Statistically, the pre-treatment QA measurement process was dictated not only by the corresponding plan but also by the delivered dose deviation, number of measurements, treatment fractionation, potential uncertainties during patient treatment, and desired treatment accuracy tolerance. For the PSIMRT QA procedures, in theory, more than one measurement had to be performed to evaluate whether the to-be-delivered treatment course would meet the desired dose coverage and treatment tolerance. CONCLUSION By acknowledging and considering the statistical nature of multi-fractional delivery of radiation treatment, we have established a quantitative methodology to evaluate the PSIMRT QA results. Both the statistical parameters associated with the QA measurement procedure and treatment course need to be taken into account to evaluate the QA outcome and to determine whether the plan is acceptable and whether additional measures should be taken to reduce treatment uncertainties. The result from a single QA measurement without the appropriate statistical analysis can be misleading. When the required number of measurements is comparable to the planned number of fractions and the variance is unacceptably high, action must be taken to either modify the plan or adjust the beam delivery system.
Collapse
Affiliation(s)
- Songbing Qin
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, 08903 New Brunswick, New Jersey, USA.
| | | | | | | | | | | | | |
Collapse
|
269
|
Gete E, Duzenli C, Milette MP, Mestrovic A, Hyde D, Bergman AM, Teke T. A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac. Med Phys 2013; 40:021707. [PMID: 23387730 DOI: 10.1118/1.4773883] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To commission and benchmark a vendor-supplied (Varian Medical Systems) Monte Carlo phase-space data for the 6 MV flattening filter free (FFF) energy mode on a TrueBeam linear accelerator for the purpose of quality assurance of clinical volumetric modulated arc therapy (VMAT) treatment plans. A method for rendering the phase-space data compatible with BEAMnrc/DOSXYZnrc simulation software package is presented. METHODS Monte Carlo (MC) simulations were performed to benchmark the TrueBeam 6 MV FFF phase space data that have been released by the Varian MC Research team. The simulations to benchmark the phase space data were done in three steps. First, the original phase space which was created on a cylindrical surface was converted into a format that was compatible with BEAMnrc. Second, BEAMnrc was used to create field size specific phase spaces located underneath the jaws. Third, doses were calculated with DOSXYZnrc in a water phantom for fields ranging from 1 × 1 to 40 × 40 cm(2). Calculated percent depth doses (PDD), transverse profiles, and output factors were compared with measurements for all the fields simulated. After completing the benchmarking study, three stereotactic body radiotherapy (SBRT) VMAT plans created with the Eclipse treatment planning system (TPS) were calculated with Monte Carlo. Ion chamber and film measurements were also performed on these plans. 3D gamma analysis was used to compare Monte Carlo calculation with TPS calculations and with film measurement. RESULTS For the benchmarking study, MC calculated and measured values agreed within 1% and 1.5% for PDDs and in-field transverse profiles, respectively, for field sizes >1 × 1 cm(2). Agreements in the 80%-20% penumbra widths were better than 2 mm for all the fields that were compared. With the exception of the 1 × 1 cm(2) field, the agreement between measured and calculated output factors was within 1%. It is of note that excellent agreement in output factors for all field sizes including highly asymmetric fields was achieved without accounting for backscatter into the beam monitor chamber. For the SBRT VMAT plans, the agreement between Monte Carlo and ion chamber point dose measurements was within 1%. Excellent agreement between Monte Carlo, treatment planning system and Gafchromic film dose distribution was observed with over 99% of the points in the high dose volume passing the 3%, 3 mm gamma test. CONCLUSIONS The authors have presented a method for making the Varian IAEA compliant 6 MV FFF phase space file of the TrueBeam linac compatible with BEAMnrc/DOSXYZnrc. After benchmarking the modified phase space against measurement, they have demonstrated its potential for use in MC based quality assurance of complex delivery techniques.
Collapse
Affiliation(s)
- Ermias Gete
- Medical Physics, BC Cancer Agency, Vancouver Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
270
|
Wang R, Pittet P, Ribouton J, Lu GN, Chaikh A, Ahnesjö A. Implementation and validation of a fluence pencil kernels model for GaN-based dosimetry in photon beam radiotherapy. Phys Med Biol 2013; 58:6701-12. [PMID: 24018737 DOI: 10.1088/0031-9155/58/19/6701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gallium nitride (GaN), a direct-gap semiconductor that is radioluminescent, can be used as a transducer yielding a high signal from a small detecting volume and thus potentially suitable for use in small fields and for high dose gradients. A common drawback of semiconductor dosimeters with effective atomic numbers higher than soft tissues is that their responses depend on the presence of low energy photons for which the photoelectric cross section varies strongly with atomic number, which may affect the accuracy of dosimetric measurements. To tackle this 'over-response' issue, we propose a model for GaN-based dosimetry with readout correction. The local photon spectrum is calculated by convolving fluence pencil kernel spectra with the beam aperture fluence distribution. The response of a GaN detector is modelled by combining large cavity theory and small cavity theory for the low and high energy components of the local spectrum. Monte Carlo simulations are employed for determination of specific correction factors for different GaN transducer sizes and irradiation conditions. Some model parameters such as the cut-off energy and partitioning energy are discussed. The accuracy of the GaN dosimetric response model has been evaluated for tissue phantom ratio experiments along the central axis. These experiments have shown that calculated and measured GaN responses stay within ±3% at all depths beyond the build-up depth. The calculated GaN response factor is also in good agreement with measured data (±2.5%). The validated model with response compensation improves significantly the accuracy of dosimetric measurements: below 2.5% deviation as compared to 13% without compensation, for a 10 × 10 cm(2) field, at depth from 1.5 to 22 cm.
Collapse
Affiliation(s)
- Ruoxi Wang
- Institut des Nanotechnologies de Lyon INL, CNRS UMR5270, Université Lyon 1, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
271
|
Sarkar B, Manikandan A, Nandy M, Gossman MS, Sureka CS, Ray A, Sujatha N. A mathematical approach to beam matching. Br J Radiol 2013; 86:20130238. [PMID: 23995874 DOI: 10.1259/bjr.20130238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE This report provides the mathematical commissioning instructions for the evaluation of beam matching between two different linear accelerators. METHODS Test packages were first obtained including an open beam profile, a wedge beam profile and a depth-dose curve, each from a 10×10 cm(2) beam. From these plots, a spatial error (SE) and a percentage dose error were introduced to form new plots. These three test package curves and the associated error curves were then differentiated in space with respect to dose for a first and second derivative to determine the slope and curvature of each data set. The derivatives, also known as bandwidths, were analysed to determine the level of acceptability for the beam matching test described in this study. RESULTS The open and wedged beam profiles and depth-dose curve in the build-up region were determined to match within 1% dose error and 1-mm SE at 71.4% and 70.8% for of all points, respectively. For the depth-dose analysis specifically, beam matching was achieved for 96.8% of all points at 1%/1 mm beyond the depth of maximum dose. CONCLUSION To quantify the beam matching procedure in any clinic, the user needs to merely generate test packages from their reference linear accelerator. It then follows that if the bandwidths are smooth and continuous across the profile and depth, there is greater likelihood of beam matching. Differentiated spatial and percentage variation analysis is appropriate, ideal and accurate for this commissioning process. ADVANCES IN KNOWLEDGE We report a mathematically rigorous formulation for the qualitative evaluation of beam matching between linear accelerators.
Collapse
Affiliation(s)
- B Sarkar
- Department of Radiation Oncology, Medical Physics Division, Advance Medicare and Research Institute Cancer Centre, Kolkata, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
272
|
Thwaites D. Accuracy required and achievable in radiotherapy dosimetry: have modern technology and techniques changed our views? ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/444/1/012006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
273
|
Pérez-Andújar A, Newhauser WD, Taddei PJ, Mahajan A, Howell RM. The predicted relative risk of premature ovarian failure for three radiotherapy modalities in a girl receiving craniospinal irradiation. Phys Med Biol 2013; 58:3107-23. [PMID: 23603657 PMCID: PMC3875375 DOI: 10.1088/0031-9155/58/10/3107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In girls and young women, irradiation of the ovaries can reduce the number of viable ovarian primordial follicles, which may lead to premature ovarian failure (POF) and subsequently to sterility. One strategy to minimize this late effect is to reduce the radiation dose to the ovaries. A primary means of reducing dose is to choose a radiotherapy technique that avoids irradiating nearby normal tissue; however, the relative risk of POF (RRPOF) due to the various therapeutic options has not been assessed. This study compared the predicted RRPOF after craniospinal proton radiotherapy, conventional photon radiotherapy (CRT) and intensity-modulated photon radiotherapy (IMRT). We calculated the equivalent dose delivered to the ovaries of an 11-year-old girl from therapeutic and stray radiation. We then predicted the percentage of ovarian primordial follicles killed by radiation and used this as a measure of the RRPOF; we also calculated the ratio of the relative risk of POF (RRRPOF) among the three radiotherapies. Proton radiotherapy had a lower RRPOF than either of the other two types. We also tested the sensitivity of the RRRPOF between photon and proton therapies to the anatomic position of the ovaries, i.e., proximity to the treatment field (2 ≤ RRRPOF ≤ 10). We found that CRT and IMRT have higher risks of POF than passive-scattering proton radiotherapy (PRT) does, regardless of uncertainties in the ovarian location. Overall, PRT represents a lower RRPOF over the two other modalities.
Collapse
Affiliation(s)
- A Pérez-Andújar
- Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
274
|
Kron T, Clivio A, Vanetti E, Nicolini G, Cramb J, Lonski P, Cozzi L, Fogliata A. Small field segments surrounded by large areas only shielded by a multileaf collimator: comparison of experiments and dose calculation. Med Phys 2013; 39:7480-9. [PMID: 23231297 DOI: 10.1118/1.4762564] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Complex radiotherapy fields delivered using a tertiary multileaf collimator (MLC) often feature small open segments surrounded by large areas of the beam only shielded by the MLC. The aim of this study was to test the ability of two modern dose calculation algorithms to accurately calculate the dose in these fields which would be common, for example, in volumetric modulated arc treatment (VMAT) and study the impact of variations in dosimetric leaf gap (DLG), focal spot size, and MLC transmission in the beam models. METHODS Nine test fields with small fields (0.6-3 cm side length) surrounded by large MLC shielded areas (secondary collimator 12 × 12 cm(2)) were created using a 6 MV beam from a Varian Clinac iX linear accelerator with 120 leaf MLC. Measurements of output factors and profiles were performed using a diamond detector (PTW) and compared to two dose calculations algorithms anisotropic analytical algorithm [(AAA) and Acuros XB] implemented on a commercial radiotherapy treatment planning system (Varian Eclipse 10). RESULTS Both calculation algorithms predicted output factors within 1% for field sizes larger than 1 × 1 cm(2). For smaller fields AAA tended to underestimate the dose. Profiles were predicted well for all fields except for problems of Acuros XB to model the secondary penumbra between MLC shielded fields and the secondary collimator. A focal spot size of 1 mm or less, DLG 1.4 mm and MLC transmission of 1.4% provided a generally good model for our experimental setup. CONCLUSIONS AAA and Acuros XB were found to predict the dose under small MLC defined field segments well. While DLG and focal spot affect mostly the penumbra, the choice of correct MLC transmission will be essential to model treatments such as VMAT accurately.
Collapse
Affiliation(s)
- T Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Huang JY, Followill DS, Wang XA, Kry SF. Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments. J Appl Clin Med Phys 2013; 14:4139. [PMID: 23470942 PMCID: PMC5714363 DOI: 10.1120/jacmp.v14i2.4139] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/23/2012] [Accepted: 10/23/2012] [Indexed: 01/13/2023] Open
Abstract
Although treatment planning systems are generally thought to have poor accuracy for out‐of‐field dose calculations, little work has been done to quantify this dose calculation inaccuracy for modern treatment techniques, such as intensity‐ modulated radiation therapy (IMRT), or to understand the sources of this inaccuracy. The aim of this work is to evaluate the accuracy of out‐of‐field dose calculations by a commercial treatment planning system (TPS), Pinnacle3 v.9.0, for IMRT treatment plans. Three IMRT plans were delivered to anthropomorphic phantoms, and out‐of‐field doses were measured using thermoluminescent detectors (TLDs). The TLD‐measured dose was then compared to the TPS‐calculated dose to quantify the accuracy of TPS calculations at various distances from the field edge and out‐of‐field anatomical locations of interest (i.e., radiosensitive organs). The individual components of out‐of‐field dose (patient scatter, collimator scatter, and head leakage) were also calculated in Pinnacle and compared to Monte Carlo simulations for a 10×10 cm2 field. Our results show that the treatment planning system generally underestimated the out‐of‐field dose and that this underestimation worsened (accuracy decreased) for increasing distances from the field edge. For the three IMRT treatment plans investigated, the TPS underestimated the dose by an average of 50%. Our results also showed that collimator scatter was underestimated by the TPS near the treatment field, while all components of out‐of‐field dose were severely underestimated at greater distances from the field edge. This study highlights the limitations of commercial treatment planning systems in calculating out‐of‐field dose and provides data about the level of accuracy, or rather inaccuracy, that can be expected for modern IMRT treatments. Based on our results, use of the TPS‐reported dose could lead to an underestimation of secondary cancer induction risk, as well as poor clinical decision‐making for pregnant patients or patients with implantable cardiac pacemakers and defibrillators. PACS numbers: 87.53.Bn; 7.55.D‐
Collapse
Affiliation(s)
- Jessie Y Huang
- The University of Texas Health Science Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
276
|
Glide-Hurst C, Bellon M, Foster R, Altunbas C, Speiser M, Altman M, Westerly D, Wen N, Zhao B, Miften M, Chetty IJ, Solberg T. Commissioning of the Varian TrueBeam linear accelerator: A multi-institutional study. Med Phys 2013; 40:031719. [DOI: 10.1118/1.4790563] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
277
|
Di Venanzio C, Marinelli M, Milani E, Prestopino G, Verona C, Verona-Rinati G, Falco MD, Bagalà P, Santoni R, Pimpinella M. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry. Med Phys 2013; 40:021712. [DOI: 10.1118/1.4774360] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
278
|
Ritter T, Balter JM, Lee C, Roberts D, Roberson PL. Audit tool for external beam radiation therapy departments. Pract Radiat Oncol 2012; 2:e39-e44. [DOI: 10.1016/j.prro.2012.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
|
279
|
Howell RM, Giebeler A, Koontz-Raisig W, Mahajan A, Etzel CJ, D’Amelio AM, Homann KL, Newhauser WD. Comparison of therapeutic dosimetric data from passively scattered proton and photon craniospinal irradiations for medulloblastoma. Radiat Oncol 2012; 7:116. [PMID: 22828073 PMCID: PMC3430590 DOI: 10.1186/1748-717x-7-116] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For many decades, the standard of care radiotherapy regimen for medulloblastoma has been photon (megavoltage x-rays) craniospinal irradiation (CSI). The late effects associated with CSI are well-documented in the literature and are in-part attributed to unwanted dose to healthy tissue. Recently, there is growing interest in using proton therapy for CSI in pediatric and adolescent patients to reduce this undesirable dose. Previous comparisons of dose to target and non-target organs from conventional photon CSI and passively scattered proton CSI have been limited to small populations (n ≤ 3) and have not considered the use of age-dependent target volumes in proton CSI. METHODS Standard of care treatment plans were developed for both photon and proton CSI for 18 patients. This cohort included both male and female medulloblastoma patients whose ages, heights, and weights spanned a clinically relevant and representative spectrum (age 2-16, BMI 16.4-37.9 kg/m2). Differences in plans were evaluated using Wilcoxon signed rank tests for various dosimetric parameters for the target volumes and normal tissue. RESULTS Proton CSI improved normal tissue sparing while also providing more homogeneous target coverage than photon CSI for patients across a wide age and BMI spectrum. Of the 24 parameters (V5, V10, V15, and V20 in the esophagus, heart, liver, thyroid, kidneys, and lungs) Wilcoxon signed rank test results indicated 20 were significantly higher for photon CSI compared to proton CSI (p ≤ 0.05) . Specifically, V15 and V20 in all six organs and V5, V10 in the esophagus, heart, liver, and thyroid were significantly higher with photon CSI. CONCLUSIONS Our patient cohort is the largest, to date, in which CSI with proton and photon therapies have been compared. This work adds to the body of literature that proton CSI reduces dose to normal tissue compared to photon CSI for pediatric patients who are at substantial risk for developing radiogenic late effects. Although the present study focused on medulloblastoma, our findings are generally applicable to other tumors that are treated with CSI.
Collapse
Affiliation(s)
- Rebecca M Howell
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX, USA
- Department of Radiation Physics, Unit 094, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Annelise Giebeler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX, USA
| | | | - Anita Mahajan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carol J Etzel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony M D’Amelio
- Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX, USA
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth L Homann
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX, USA
| | - Wayne D Newhauser
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX, USA
- Present Address: Louisiana State University, Department of Physics and Astronomy, Baton Rouge, LA, USA
| |
Collapse
|
280
|
Ciancaglioni I, Marinelli M, Milani E, Prestopino G, Verona C, Verona-Rinati G, Consorti R, Petrucci A, De Notaristefani F. Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams. Med Phys 2012; 39:4493-501. [DOI: 10.1118/1.4729739] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
281
|
Kim J, Wen N, Jin JY, Walls N, Kim S, Li H, Ren L, Huang Y, Doemer A, Faber K, Kunkel T, Balawi A, Garbarino K, Levin K, Patel S, Ajlouni M, Miller B, Nurushev T, Huntzinger C, Schulz R, Chetty IJ, Movsas B, Ryu S. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J Appl Clin Med Phys 2012; 13:3729. [PMID: 22584170 PMCID: PMC5716565 DOI: 10.1120/jacmp.v13i3.3729] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/14/2011] [Accepted: 01/25/2012] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to perform comprehensive measurements and testing of a Novalis Tx linear accelerator, and to develop technical guidelines for com-missioning from the time of acceptance testing to the first clinical treatment. The Novalis Tx (NTX) linear accelerator is equipped with, among other features, a high-definition MLC (HD120 MLC) with 2.5 mm central leaves, a 6D robotic couch, an optical guidance positioning system, as well as X-ray-based image guidance tools to provide high accuracy radiation delivery for stereotactic radiosurgery and stereotactic body radiation therapy procedures. We have performed extensive tests for each of the components, and analyzed the clinical data collected in our clinic. We present technical guidelines in this report focusing on methods for: (1) efficient and accurate beam data collection for commissioning treatment planning systems, including small field output measurements conducted using a wide range of detectors; (2) commissioning tests for the HD120 MLC; (3) data collection for the baseline characteristics of the on-board imager (OBI) and ExacTrac X-ray (ETX) image guidance systems in conjunction with the 6D robotic couch; and (4) end-to-end testing of the entire clinical process. Established from our clinical experience thus far, recommendations are provided for accurate and efficient use of the OBI and ETX localization systems for intra- and extracranial treatment sites. Four results are presented. (1) Basic beam data measurements: Our measurements confirmed the necessity of using small detectors for small fields. Total scatter factors varied significantly (30% to approximately 62%) for small field measurements among detectors. Unshielded stereotactic field diode (SFD) overestimated dose by ~ 2% for large field sizes. Ion chambers with active diameters of 6 mm suffered from significant volume averaging. The sharpest profile penumbra was observed for the SFD because of its small active diameter (0.6 mm). (2) MLC commissioning: Winston Lutz test, light/radiation field congruence, and Picket Fence tests were performed and were within criteria established by the relevant task group reports. The measured mean MLC transmission and dynamic leaf gap of 6 MV SRS beam were 1.17% and 0.36 mm, respectively. (3) Baseline characteristics of OBI and ETX: The isocenter localization errors in the left/right, posterior/anterior, and superior/inferior directions were, respectively, -0.2 ± 0.2 mm, -0.8 ± 0.2 mm, and -0.8 ± 0.4 mm for ETX, and 0.5 ± 0.7 mm, 0.6 ± 0.5 mm, and 0.0 ± 0.5 mm for OBI cone-beam computed tomography. The registration angular discrepancy was 0.1 ± 0.2°, and the maximum robotic couch error was 0.2°. (4) End-to-end tests: The measured isocenter dose differences from the planned values were 0.8% and 0.4%, measured respectively by an ion chamber and film. The gamma pass rate, measured by EBT2 film, was 95% (3% DD and 1 mm DTA). Through a systematic series of quantitative commissioning experiments and end-to-end tests and our initial clinical experience, described in this report, we demonstrate that the NTX is a robust system, with the image guidance and MLC requirements to treat a wide variety of sites - in particular for highly accurate delivery of SRS and SBRT-based treatments.
Collapse
Affiliation(s)
- Jinkoo Kim
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Das IJ, Njeh CF, Orton CG. Point/counterpoint: vendor provided machine data should never be used as a substitute for fully commissioning a linear accelerator. Med Phys 2012; 39:569-72. [PMID: 22320765 DOI: 10.1118/1.3658740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Indra J Das
- Radiation Oncology Department, Indiana University-School of Medicine, Indianapolis, IN 46202-5289, USA.
| | | | | |
Collapse
|
283
|
Newton J, Oldham M, Thomas A, Li Y, Adamovics J, Kirsch DG, Das S. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques. Med Phys 2012; 38:6754-62. [PMID: 22149857 DOI: 10.1118/1.3663675] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. METHODS Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS∕PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS∕PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min. RESULTS Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT2 and PRESAGE® measured OFs, PDDs, and profiles. CONCLUSIONS The combination of independent 2D and 3D measurements was found to be valuable to ensure accurate and comprehensive commissioning. Film measurements were time consuming and challenging due to the difficulty of film alignment in small fields. PRESAGE® 3D measurements were comprehensive and efficient, because alignment errors are negligible, and all parameters for multiple fields could be obtained from a single dosimeter and scan. However, achieving accurate superficial data (within 4 mm) is not yet feasible due to optical surface artifacts.
Collapse
Affiliation(s)
- Joseph Newton
- Department of Radiation Oncology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
284
|
Bakhtiari M. Effect of surface waves on radiotherapy dosimetric measurements in water tanks. J Med Phys 2012; 36:230-3. [PMID: 22228932 PMCID: PMC3249734 DOI: 10.4103/0971-6203.89972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/27/2011] [Accepted: 08/07/2011] [Indexed: 11/26/2022] Open
Abstract
The effect of surface waves, generated by moving the scanning arms in water phantoms, on radiation dosimetry is studied. It is shown that in large water tanks, high arm speeds can result in dosimetric errors of up to 5%. The measurements that are started after damping the water waves can result in about a 50% improvement in accuracy of measurements. It is shown that the water surfaces at the start of the measurements have high fluctuations that transform to a steady phase by elapsing time.
Collapse
Affiliation(s)
- Mohammad Bakhtiari
- RadAmerica II, LLC, 9501 Franklin Square Dr. Baltimore, MD 21237, Baltimore, USA
| |
Collapse
|
285
|
Solberg TD, Balter JM, Benedict SH, Fraass BA, Kavanagh B, Miyamoto C, Pawlicki T, Potters L, Yamada Y. Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: Executive summary. Pract Radiat Oncol 2012; 2:2-9. [PMID: 25740120 PMCID: PMC3808746 DOI: 10.1016/j.prro.2011.06.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Timothy D Solberg
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - James M Balter
- Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan
| | - Stanley H Benedict
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia
| | - Benedick A Fraass
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado, Denver, Aurora, Colorado
| | - Curtis Miyamoto
- Department of Radiation Oncology, Temple University, Philadelphia, Pennsylvania
| | - Todd Pawlicki
- Department of Radiation Oncology, University of California, San Diego, California
| | - Louis Potters
- Department of Radiation Medicine, Long Island Jewish Medical Center, New Hyde Park, New York
| | - Yoshiya Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
286
|
Commissioning and early experience with a new-generation low-energy linear accelerator with advanced delivery and imaging functionalities. Radiat Oncol 2011; 6:129. [PMID: 21961830 PMCID: PMC3197498 DOI: 10.1186/1748-717x-6-129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/30/2011] [Indexed: 12/04/2022] Open
Abstract
Background A new-generation low-energy linear accelerator (UNIQUE) was introduced in the clinical arena during 2009 by Varian Medical Systems. The world's first UNIQUE was installed at Oncology Institute of Southern Switzerland and put into clinical operation in June 2010. The aim of the present contribution was to report experience about its commissioning and first year results from clinical operation. Methods Commissioning data, beam characteristics and the modeling into the treatment planning system were summarized. Imaging system of UNIQUE included a 2D-2D matching capability and tests were performed to identify system repositioning capability. Finally, since the system is capable of delivering volumetric modulated arc therapy with RapidArc, a summary of the tests performed for such modality to assess its performance in preclinical settings and during clinical usage was included. Results Isocenter virtual diameter was measured as less than 0.2 mm. Observed accuracy of isocenter determination and repositioning for 2D-2D matching procedures in image guidance was <1.2 mm. Concerning reproducibility and stability over a period of 1 year, deviations from reference were found <0.3 ± 0.2% for linac output, <0.1% for homogeneity, similarly to symmetry. Rotational accuracy of the entire gantry-portal imager system showed a maximum deviation from nominal 0.0 of <1.2 mm. Pre treatment quality assurance of RapidArc plans resulted with a Gamma Agreement Index (fraction of points passing the gamma criteria) of 97.0 ± 1.6% on the first 182 arcs verified. Conclusions The results of the commissioning tests and of the first period of clinical operation, resulted meeting specifications and having good margins respect to tolerances. UNIQUE was put into operation for all delivery techniques; in particular, as shown by the pre-treatment quality assurance results, it enabled accurate and safe delivery of RapidArc plans.
Collapse
|
287
|
Dieterich S, Cavedon C, Chuang CF, Cohen AB, Garrett JA, Lee CL, Lowenstein JR, d'souza MF, Taylor DD, Wu X, Yu C. Report of AAPM TG 135: Quality assurance for robotic radiosurgery. Med Phys 2011; 38:2914-36. [DOI: 10.1118/1.3579139] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
288
|
Litzenberg DW, Amro H, Prisciandaro JI, Acosta E, Gallagher I, Roberts DA. Dosimetric impact of density variations in Solid Water 457 water-equivalent slabs. J Appl Clin Med Phys 2011; 12:3398. [PMID: 21844848 PMCID: PMC5718651 DOI: 10.1120/jacmp.v12i3.3398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 01/18/2011] [Accepted: 03/01/2011] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to determine the dosimetric impact of density variations observed in water-equivalent solid slabs. Measurements were performed using two 30 cm × 30 cm water-equivalent slabs, one being 4 cm think and the other 5 cm thick. The location and extent of density variations were determined by computed tomography (CT) scans. Additional imaging measurements were made with an amorphous silicon megavoltage portal imaging device and an ultrasound unit. Dosimetric measurements were conducted with a 2D ion chamber array, and a scanned diode in water. Additional measurements and calculations were made of small rectilinear void inhomogeneities formed with water-equivalent slabs, using a 2D ion chamber array and the convolution superposition algorithm. Two general types of density variation features were observed on CT images: 1) regions of many centimeters across, but typically only a few millimeters thick, with electron densities a few percent lower than the bulk material, and 2) cylindrical regions roughly 0.2 cm in diameter and up to 20 cm long with electron densities up to 5% lower than the surrounding material. The density variations were not visible on kilovoltage, megavoltage or ultrasound images. The dosimetric impact of the density variations were not detectable to within 0.1% using the 2D ion chamber array or the scanning photon diode at distances 0.4 cm to 2 cm beyond the features. High-resolution dosimetric calculations using the convolution-superposition algorithm with density corrections enabled on CT-based datasets showed no discernable dosimetric impact. Calculations and measurements on simulated voids place the upper limit on possible dosimetric variations from observed density variations at much less than 0.6%. CT imaging of water-equivalent slabs may reveal density variations which are otherwise unobserved with kV, MV, or ultrasound imaging. No dosimetric impact from these features was measureable with an ion chamber array or scanned photon diode. Consequently, they were determined to be acceptable for all clinical use.
Collapse
Affiliation(s)
- Dale W Litzenberg
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
289
|
A study into the relationship between the measured penumbra and effective source size in the modeling of the Pinnacle RTPS. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2011; 34:233-41. [DOI: 10.1007/s13246-011-0070-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 03/20/2011] [Indexed: 11/25/2022]
|
290
|
McDonald D, Yount C, Koch N, Ashenafi M, Peng J, Vanek K. Calibration of the Gamma Knife Perfexion using TG-21 and the solid water Leksell dosimetry phantom. Med Phys 2011; 38:1685-93. [DOI: 10.1118/1.3557884] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
291
|
Low DA, Moran JM, Dempsey JF, Dong L, Oldham M. Dosimetry tools and techniques for IMRT. Med Phys 2011; 38:1313-38. [DOI: 10.1118/1.3514120] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
292
|
Feygelman V, Zhang G, Stevens C, Nelms BE. Evaluation of a new VMAT QA device, or the "X" and "O" array geometries. J Appl Clin Med Phys 2011; 12:3346. [PMID: 21587178 PMCID: PMC5718675 DOI: 10.1120/jacmp.v12i2.3346] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 10/03/2010] [Accepted: 11/08/2010] [Indexed: 11/29/2022] Open
Abstract
We introduce a logical process of three distinct phases to begin the evaluation of a new 3D dosimetry array. The array under investigation is a hollow cylinder phantom with diode detectors fixed in a helical shell forming an “O” axial detector cross section (ArcCHECK), with comparisons drawn to a previously studied 3D array with diodes fixed in two crossing planes forming an “X” axial cross section (Delta4). Phase I testing of the ArcCHECK establishes: robust relative calibration (response equalization) of the individual detectors, minor field size dependency of response not present in a 2D predecessor, and uncorrected angular response dependence in the axial plane. Phase II testing reveals vast differences between the two devices when studying fixed‐width full circle arcs. These differences are primarily due to arc discretization by the TPS that produces low passing rates for the peripheral detectors of the ArcCHECK, but high passing rates for the Delta4. Similar, although less pronounced, effects are seen for the test VMAT plans modeled after the AAPM TG119 report. The very different 3D detector locations of the two devices, along with the knock‐on effect of different percent normalization strategies, prove that the analysis results from the devices are distinct and noninterchangeable; they are truly measuring different things. The value of what each device measures, namely their correlation with – or ability to predict – clinically relevant errors in calculation and/or delivery of dose is the subject of future Phase III work. PACS number: 87.55Qr
Collapse
Affiliation(s)
- Vladimir Feygelman
- Division of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida 33612, USA.
| | | | | | | |
Collapse
|
293
|
Howell RM, Scarboro SB, Kry SF, Yaldo DZ. Accuracy of out-of-field dose calculations by a commercial treatment planning system. Phys Med Biol 2010; 55:6999-7008. [PMID: 21076191 DOI: 10.1088/0031-9155/55/23/s03] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The dosimetric accuracy of treatment planning systems (TPSs) decreases for locations outside the treatment field borders. However, the true accuracy of specific TPSs for locations beyond the treatment field borders is not well documented. Our objective was to quantify the accuracy of out-of-field dose predicted by the commercially available Eclipse version 8.6 TPS (Varian Medical Systems, Palo Alto, CA) for a clinical treatment delivered on a Varian Clinac 2100. We calculated (in the TPS) and determined (with thermoluminescent dosimeters) doses at a total of 238 points of measurement (with distance from the field edge ranging from 3.75 to 11.25 cm). Our comparisons determined that the Eclipse TPS underestimated out-of-field doses by an average of 40% over the range of distances examined. As the distance from the treatment field increased, the TPS underestimated the dose with increasing magnitude--up to 55% at 11.25 cm from the treatment field border. These data confirm that accuracy beyond the treatment border is inadequate, and out-of-field data from TPSs should be used only with a clear understanding of this limitation. Studies that require accurate out-of-field dose should use other dose reconstruction methods, such as direct measurements or Monte Carlo calculations.
Collapse
Affiliation(s)
- Rebecca M Howell
- The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
294
|
Howell RM, Scarboro SB, Taddei PJ, Krishnan S, Kry SF, Newhauser WD. Methodology for determining doses to in-field, out-of-field and partially in-field organs for late effects studies in photon radiotherapy. Phys Med Biol 2010; 55:7009-23. [PMID: 21076193 DOI: 10.1088/0031-9155/55/23/s04] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An important but little examined aspect of radiation dosimetry studies involving organs outside the treatment field is how to assess dose to organs that are partially within a treatment field; this question is particularly important for studies intended to measure total absorbed dose in order to predict the risk of radiogenic late effects, such as second cancers. The purpose of this investigation was therefore to establish a method to categorize organs as in-field, out-of-field or partially in-field that would be applicable to both conventional and modern radiotherapy techniques. In this study, we defined guidelines to categorize the organs based on isodose inclusion criteria, developed methods to assess doses to partially in-field organs, and then tested the methods by applying them to a case of intensity-modulated radiotherapy for hepatocellular carcinoma based on actual patient data. For partially in-field organs, we recommend performing a sensitivity test to determine whether potential inaccuracies in low-dose regions of the DVH (from the treatment planning system) have a substantial effect on the mean organ dose, i.e. >5%. In such cases, we suggest supplementing calculated DVH data with measured dosimetric data using a volume-weighting technique to determine the mean dose.
Collapse
Affiliation(s)
- Rebecca M Howell
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
295
|
Simon TA, Kozelka J, Simon WE, Kahler D, Li J, Liu C. Characterization of a multi-axis ion chamber array. Med Phys 2010; 37:6101-11. [DOI: 10.1118/1.3505452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
296
|
Abstract
Quality assurance in radiotherapy affects the radiotherapy department organization, management, patient follow-up, distribution of responsibilities, training and equipment management. The development of innovative techniques for radiotherapy and associated radiotherapy equipment requires an adaptation of the concepts of quality assurance and quality control as practiced last 30 years. A new paradigm and new methods adapted from industry, including patient safety and quality care in a more holistic approach to quality assurance and quality control.
Collapse
|
297
|
Desroches J, Bouchard H, Lacroix F. Potential errors in optical density measurements due to scanning side in EBT and EBT2 Gafchromic film dosimetry. Med Phys 2010; 37:1565-70. [PMID: 20443477 DOI: 10.1118/1.3355895] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study is to determine the effect on the measured optical density of scanning on either side of a Gafchromic EBT and EBT2 film using an Epson (Epson Canada Ltd., Toronto, Ontario) 10000XL flat bed scanner. METHODS Calibration curves were constructed using EBT2 film scanned in landscape orientation in both reflection and transmission mode on an Epson 10000XL scanner. Calibration curves were also constructed using EBT film. Potential errors due to an optical density difference from scanning the film on either side ("face up" or "face down") were simulated. RESULTS Scanning the film face up or face down on the scanner bed while keeping the film angular orientation constant affects the measured optical density when scanning in reflection mode. In contrast, no statistically significant effect was seen when scanning in transmission mode. This effect can significantly affect relative and absolute dose measurements. As an application example, the authors demonstrate potential errors of 17.8% by inverting the film scanning side on the gamma index for 3%-3 mm criteria on a head and neck intensity modulated radiotherapy plan, and errors in absolute dose measurements ranging from 10% to 35% between 2 and 5 Gy. CONCLUSIONS Process consistency is the key to obtaining accurate and precise results in Gafchromic film dosimetry. When scanning in reflection mode, care must be taken to place the film consistently on the same side on the scanner bed.
Collapse
Affiliation(s)
- Joannie Desroches
- Département de Radio-Oncologie, Centre hospitalier de l'Université de Montreal, Montréal, Quebec H2L 4M1, Canada
| | | | | |
Collapse
|
298
|
McEwen M, Das I. TH-SAM-BRB-01: Commissioning and Calibrating a Linear Accelerator - State-Of-The-Art in 2010. Med Phys 2010. [DOI: 10.1118/1.3469458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
299
|
Amols HI, Van den Heuvel F, Orton CG. Point/counterpoint. Radiotherapy physicists have become glorified technicians rather than clinical scientists. Med Phys 2010; 37:1379-81. [PMID: 20443458 DOI: 10.1118/1.3298378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Howard I Amols
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
300
|
Adnani N. Design and clinical implementation of a TG-106 compliant linear accelerator data management system and MU calculator. J Appl Clin Med Phys 2010; 11:3212. [PMID: 20717087 PMCID: PMC5720439 DOI: 10.1120/jacmp.v11i3.3212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/29/2010] [Accepted: 02/25/2010] [Indexed: 11/23/2022] Open
Abstract
In an attempt to minimize errors and improve patient outcome in radiation therapy, a linear accelerator data management system was developed to provide radiation oncology physicists with a set of computerized tools to manage linear accelerator physics data. The entire program is written in Microsoft Visual Basic and has a user-friendly, front-end window with the following features and modules: (1) Generate, edit and approve commissioning and QA reports and other regulatory documents, (2) Configure commissioning tasks, (3) Acquire output factors, (4) Import scanned data, (5) Import PDD, TMRs and OAR tables directly from the scanning software, (6) Query physics data such as TMR, PDDs, OFs, and WFs, (7) Compare physics data to a different machine or a standard, (8) Compare physics data from the same machine (e.g. during annual calibrations), (9) Perform MU calculations on plans exported from the planning system via DICOM RT, (10) Perform TG-51 calibration, (11) Perform monthly calibration, (12) FTP physics data for purposes of remote peer review and/or inspections.
Collapse
Affiliation(s)
- Nabil Adnani
- D3 Products Division, Pittsburgh, PA 15206, USA.
| |
Collapse
|