251
|
Abstract
After some 60 years in research, a few months before my final retirement (there were a few temporary ones), the time has come to reminisce.
Collapse
|
252
|
Abstract
The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare.
Collapse
Affiliation(s)
- Jiri G Safar
- Department of Pathology, National Prion Disease Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
253
|
Affiliation(s)
- Charles Weissmann
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America.
| |
Collapse
|
254
|
The extended cell panel assay characterizes the relationship of prion strains RML, 79A, and 139A and reveals conversion of 139A to 79A-like prions in cell culture. J Virol 2012; 86:5297-303. [PMID: 22379091 DOI: 10.1128/jvi.00181-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three commonly used isolates of murine prions, 79A, 139A, and RML, were derived from the so-called Chandler isolate, which was obtained by propagating prions from scrapie-infected goat brain in mice. RML is widely believed to be identical with 139A; however, using the extended cell panel assay (ECPA), we here show that 139A and RML isolates are distinct, while 79A and RML could not be distinguished. We undertook to clone 79A and 139A prions by endpoint dilution in murine neuroblastoma-derived PK1 cells. Cloned 79A prions, when returned to mouse brain, were unchanged and indistinguishable from RML by ECPA. However, 139A-derived clones, when returned to brain, yielded prions distinct from 139A and similar to 79A and RML. Thus, when 139A prions were transferred to PK1 cells, 79A/RML-like prions, either present as a minor component in the brain 139A population or generated by mutation in the cells, were selected and, after being returned to brain, were the major if not only component of the population.
Collapse
|
255
|
Beringue V, Herzog L, Jaumain E, Reine F, Sibille P, Le Dur A, Vilotte JL, Laude H. Facilitated Cross-Species Transmission of Prions in Extraneural Tissue. Science 2012; 335:472-5. [DOI: 10.1126/science.1215659] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
256
|
King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 2012; 1462:61-80. [PMID: 22445064 DOI: 10.1016/j.brainres.2012.01.016] [Citation(s) in RCA: 508] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 02/08/2023]
Abstract
Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable 'prion domain' enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer's disease and Huntington's disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the prion domains of RNA-binding proteins could underlie the classical non-cell-autonomous emanation of neurodegenerative pathology from originating epicenters to neighboring portions of the nervous system. This article is part of a Special Issue entitled RNA-Binding Proteins.
Collapse
Affiliation(s)
- Oliver D King
- Boston Biomedical Research Institute, 64 Grove St., Watertown, MA 02472, USA.
| | | | | |
Collapse
|
257
|
Abstract
RNA viruses, such as human immunodeficiency virus, hepatitis C virus, influenza virus, and poliovirus replicate with very high mutation rates and exhibit very high genetic diversity. The extremely high genetic diversity of RNA virus populations originates that they replicate as complex mutant spectra known as viral quasispecies. The quasispecies dynamics of RNA viruses are closely related to viral pathogenesis and disease, and antiviral treatment strategies. Over the past several decades, the quasispecies concept has been expanded to provide an adequate framework to explain complex behavior of RNA virus populations. Recently, the quasispecies concept has been used to study other complex biological systems, such as tumor cells, bacteria, and prions. Here, we focus on some questions regarding viral and theoretical quasispecies concepts, as well as more practical aspects connected to pathogenesis and resistance to antiviral treatments. A better knowledge of virus diversification and evolution may be critical in preventing and treating the spread of pathogenic viruses.
Collapse
|
258
|
Li J, Mahal SP, Demczyk CA, Weissmann C. Mutability of prions. EMBO Rep 2011; 12:1243-50. [PMID: 21997293 PMCID: PMC3245691 DOI: 10.1038/embor.2011.191] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 11/17/2022] Open
Abstract
Prions are shown to be mutable, and prion substrains have distinct mutation capacity. However, even clones that seem virtually immutable change when the environmental conditions are altered. Mutability is thus a prion substrain-specific attribute. Murine prions transferred from brain to cultured cells gradually adapt to the new environment. Brain-derived 22L prions can infect neuroblastoma-derived PK1 cells in the presence of swainsonine (swa); that is, they are ‘swa resistant'. PK1 cell-adapted 22L prions are swa sensitive; however, propagation in swa results in selection of swa-resistant substrains. Cloned, PK1 cell-adapted 22L prions were initially unable to develop swa resistance (‘swa incompetent'); however, after serial propagation for 30–90 doublings, four of nine clones became swa competent, showing that swa-resistant ‘mutants' arose during replication. Mutations in the case of prions are attributed to heritable changes in PrPSc conformation. One clone remained swa incompetent even after 1035-fold expansion; surprisingly, after propagation in brain, it yielded swa-resistant prions, indistinguishable from the original 22L population. Thus, cell-adapted 22L prions assumed either mutable or virtually immutable conformations; however, when passaged through the brain all became mutable. Mutability is thus a substrain-specific attribute.
Collapse
Affiliation(s)
- Jiali Li
- Department of Infectology, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | | | | | | |
Collapse
|
259
|
Browning S, Baker CA, Smith E, Mahal SP, Herva ME, Demczyk CA, Li J, Weissmann C. Abrogation of complex glycosylation by swainsonine results in strain- and cell-specific inhibition of prion replication. J Biol Chem 2011; 286:40962-73. [PMID: 21930694 PMCID: PMC3220511 DOI: 10.1074/jbc.m111.283978] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/30/2011] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma-derived N2a-PK1 cells, fibroblastic LD9 cells, and CNS-derived CAD5 cells can be infected efficiently and persistently by various prion strains, as measured by the standard scrapie cell assay. Swainsonine, an inhibitor of Golgi α-mannosidase II that causes abnormal N-glycosylation, strongly inhibits infection of PK1 cells by RML, 79A and 22F, less so by 139A, and not at all by 22L prions, and it does not diminish propagation of any of these strains in LD9 or CAD5 cells. Misglycosylated PrP(C) formed in the presence of swainsonine is a good substrate for conversion to PrP(Sc), and misglycosylated PrP(Sc) is fully able to trigger infection and seed the protein misfolding cyclic amplification reaction. Distinct subclones of PK1 cells mediate swainsonine inhibition to very different degrees, implicating misglycosylation of one or more host proteins in the inhibitory process. The use of swainsonine and other glycosylation inhibitors described herein enhances the ability of the cell panel assay to differentiate between prion strains. Moreover, as shown elsewhere, the susceptibility of prions to inhibition by swainsonine in PK1 cells is a mutable trait.
Collapse
Affiliation(s)
- Shawn Browning
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | | | - Emery Smith
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | - Sukhvir P. Mahal
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | - Maria E. Herva
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | - Cheryl A. Demczyk
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | - Jiali Li
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | - Charles Weissmann
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| |
Collapse
|
260
|
Imran M, Mahmood S, Hussain R, Abid NB, Lone KP. Frequency distribution of PRNP polymorphisms in the Pakistani population. Gene 2011; 492:186-94. [PMID: 22062631 DOI: 10.1016/j.gene.2011.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/26/2011] [Accepted: 10/11/2011] [Indexed: 12/13/2022]
Abstract
Prion diseases are neurodegenerative conditions caused by misfolding of a normal host-encoded prion protein (PrPC) into pathogenic scrapie prion protein (PrPSc). In human prion diseases, the M129V prion protein polymorphism is known to confer susceptibility to the disease, determines PrPSc conformation and alters clinicopathological phenotypes. To date, all clinicopathologically confirmed cases of a variant form of Cruetzfeldt-Jacob disease (vCJD) have been 129MM homozygotes. There is also predominance of 129MM homozygotes in sporadic CJD (sCJD). No information regarding prion disorders is available from Pakistan. Although only invasive procedures like brain biopsy can confirm the diagnosis of prion disorders, testing a corresponding human population for variation in the prion protein gene (PRNP) may provide some insights into the presence of these disorders in a locality. The current study therefore aimed at exploring the genetic susceptibility of Pakistani population to CJD. A total of 909 unrelated individuals including 221 hemophiliacs representing all 4 major provinces of Pakistan were screened for M129V polymorphism and insertions or deletions of octapeptide repeats (OPRIs/OPRDs) using Polymerase Chain Reaction coupled with Restriction Fragment Length Polymorphism (PCR-RFLP). Concordance of the results of some PCR-RFLP reactions was also confirmed by dideoxy automated Sanger sequencing. The frequencies of M129V alleles (129M and 129V) and genotypes (129MM, 129MV and 129VV) were found in all 909 individuals to be 0.7101, 0.2899, 0.5270, 0.3663 and 0.1067, respectively. Deletion of 1 octapeptide repeat (1-OPRD) was detected in heterozygous state in PRNP of 10 individuals and in homozygous state in 1 individual. An insertion of 3 octapeptide repeats (3-OPRI) was found in 1 individual and an insertion of 1 octapeptide repeat (1-OPRI) in two individuals. Both 3-OPRI and 1-OPRI were present in heterozygous state and were linked to 129M allele. There were no significant χ2 differences between M129V allelic and genotypic frequencies of healthy individuals and hemophiliacs. However, M129V allelic and genotypic frequencies differed significantly between Pakistani population and East Asian and Western populations. Non-significant χ2 differences between M129V frequencies of healthy individuals and hemophiliacs suggest that individuals manifesting single gene disorders may provide naturally randomized samples for studies aiming at surveying the genetic variation. The combined excess of 129MM and 129VV homozygosity and the presence of 3-OPRI in 1 individual imply that Pakistani population is susceptible to prion disorders. Cases of prion disorders may exist in Pakistan, albeit at lower annual prevalence than other countries where life expectancy is greater than 65 years.
Collapse
Affiliation(s)
- Muhammad Imran
- Centre for Research in Endocrinology and Reproductive Sciences (CRERS), Department of Physiology and Cell Biology, University of Health Sciences (UHS), Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan
| | | | | | | | | |
Collapse
|
261
|
Weissmann C, Li J, Mahal SP, Browning S. Prions on the move. EMBO Rep 2011; 12:1109-17. [PMID: 21997298 PMCID: PMC3207107 DOI: 10.1038/embor.2011.192] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/30/2011] [Indexed: 02/07/2023] Open
Abstract
Prions consist mainly, if not entirely, of PrP(Sc), an aggregated conformer of the host protein PrP(C). Prions come in different strains, all based on the same PrP(C) sequence, but differing in their conformations. The efficiency of prion transmission between species is usually low, but increases after serial transmission in the new host, suggesting a process involving mutation and selection. Even within the same species, the transfer of prions between cell types entails a selection of favoured 'substrains', and propagation of prions in the presence of an inhibitory drug can result in the appearance of drug-resistant prion populations. We propose that prion populations are comprised of a variety of conformers, constituting 'quasi-species', from which the one replicating most efficiently in a particular environment is selected.
Collapse
Affiliation(s)
- Charles Weissmann
- Department of Infectology, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA.
| | | | | | | |
Collapse
|
262
|
|
263
|
Inter-allelic prion propagation reveals conformational relationships among a multitude of [PSI] strains. PLoS Genet 2011; 7:e1002297. [PMID: 21980301 PMCID: PMC3183073 DOI: 10.1371/journal.pgen.1002297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/27/2011] [Indexed: 12/29/2022] Open
Abstract
Immense diversity of prion strains is observed, but its underlying mechanism is less clear. Three [PSI] prion strains--named VH, VK, and VL--were previously isolated in the wild-type yeast genetic background. Here we report the generation and characterization of eight new [PSI] isolates, obtained by propagating the wild-type strains with Sup35 proteins containing single amino-acid alterations. The VH strain splits into two distinct strains when propagated in each of the three genetic backgrounds, harboring respectively single mutations of N21L, R28P, and Gi47 (i.e. insertion of a glycine residue at position 47) on the Sup35 N-terminal prion-forming segment. The six new strains exhibit complex inter-conversion patterns, and one of them continuously mutates into another. However, when they are introduced back into the wild-type background, all 6 strains revert to the VH strain. We obtain two more [PSI] isolates by propagating VK and VL with the Gi47 and N21L backgrounds, respectively. The two isolates do not transmit to other mutant backgrounds but revert to their parental strains in the wild-type background. Our data indicate that a large number of [PSI] strains can be built on three basic Sup35 amyloid structures. It is proposed that the three basic structures differ by chain folding topologies, and sub-strains with the same topology differ in distinct ways by local structural adjustments. This "large number of variations on a small number of basic themes" may also be operative in generating strain diversities in other prion elements. It thus suggests a possible general scheme to classify a multitude of prion strains.
Collapse
|
264
|
Quasispecies as a matter of fact: viruses and beyond. Virus Res 2011; 162:203-15. [PMID: 21945638 PMCID: PMC7172439 DOI: 10.1016/j.virusres.2011.09.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 12/13/2022]
Abstract
We review the origins of the quasispecies concept and its relevance for RNA virus evolution, viral pathogenesis and antiviral treatment strategies. We emphasize a critical point of quasispecies that refers to genome collectivities as the unit of selection, and establish parallels between RNA viruses and some cellular systems such as bacteria and tumor cells. We refer also to tantalizing new observations that suggest quasispecies behavior in prions, perhaps as a result of the same quantum-mechanical indeterminations that underlie protein conformation and error-prone replication in genetic systems. If substantiated, these observations with prions could lead to new research on the structure-function relationship of non-nucleic acid biological molecules.
Collapse
|
265
|
Kim C, Haldiman T, Cohen Y, Chen W, Blevins J, Sy MS, Cohen M, Safar JG. Protease-sensitive conformers in broad spectrum of distinct PrPSc structures in sporadic Creutzfeldt-Jakob disease are indicator of progression rate. PLoS Pathog 2011; 7:e1002242. [PMID: 21931554 PMCID: PMC3169556 DOI: 10.1371/journal.ppat.1002242] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/12/2011] [Indexed: 11/21/2022] Open
Abstract
The origin, range, and structure of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), are largely unknown. To investigate the molecular mechanism responsible for the broad phenotypic variability of sCJD, we analyzed the conformational characteristics of protease-sensitive and protease-resistant fractions of the pathogenic prion protein (PrPSc) using novel conformational methods derived from a conformation-dependent immunoassay (CDI). In 46 brains of patients homozygous for polymorphisms in the PRNP gene and exhibiting either Type 1 or Type 2 western blot pattern of the PrPSc, we identified an extensive array of PrPSc structures that differ in protease sensitivity, display of critical domains, and conformational stability. Surprisingly, in sCJD cases homozygous for methionine or valine at codon 129 of the PRNP gene, the concentration and stability of protease-sensitive conformers of PrPSc correlated with progression rate of the disease. These data indicate that sCJD brains exhibit a wide spectrum of PrPSc structural states, and accordingly argue for a broad spectrum of prion strains coding for different phenotypes. The link between disease duration, levels, and stability of protease-sensitive conformers of PrPSc suggests that these conformers play an important role in the pathogenesis of sCJD. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common human prion disease worldwide. This neurodegenerative disease, which is transmissible and invariably fatal, is characterized by the accumulation of an abnormally folded isoform (PrPSc) of a host-encoded protein (PrPC), predominantly in the brain. Most researchers believe that PrPSc is the infectious agent and five or six subtypes of sCJD have been identified. Whether or not these subtypes represent distinct strains of sCJD prions is debated in the context of the extraordinary variability of sCJD phenotypes, frequent co-occurrence of different PrPSc fragments in the same brain, and the fact that up to 90% of protease-sensitive PrPSc eludes the conventional analysis because it is destroyed by protease treatment. Using novel conformational methods, we identified within each clinical and pathological category an array of PrPSc structures that differ in protease-sensitivity, display of critical domains, and conformational stability. Each of these features offers evidence of a distinct conformation. The link between the rate at which the disease progresses, on the one hand, and the concentration and stability of protease-sensitive conformers of PrPSc on the other, suggests that these conformers play an important role in how the disease originates and progresses.
Collapse
Affiliation(s)
- Chae Kim
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tracy Haldiman
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yvonne Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wei Chen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Janis Blevins
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jiri G. Safar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
266
|
Synthesis of 9-substituted 2,3,4,9-tetrahydro-1H-carbazole derivatives and evaluation of their anti-prion activity in TSE-infected cells. Eur J Med Chem 2011; 46:5675-9. [PMID: 21906853 DOI: 10.1016/j.ejmech.2011.08.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 11/22/2022]
Abstract
2,3,4,9-Tetrahydro-9-[2-hydroxy-3-(1-piperidinyl)propyl]-6-methyl-1H-carbazol-1-one (GJP14) is a novel anti-prion compound that we previously discovered by in silico screening and cellular assay. In this study, a variety of GJP14 derivatives were prepared using pyrrole derivatives, (haloalkyl)oxiranes, and amines, and their anti-prion activity was evaluated in TSE-infected cells. It was found that the tricyclic aromatic ring, a hydroxy group at the 2-position and an amino group at the 3-position of the N-propyl group were the basic requirements for anti-prion activity. The derivatives bearing an N-ortho-halobenzyl group exhibited an improved activity, and the most potent derivative was 8 times as effective as the original lead compound, GJP14.
Collapse
|
267
|
Conformational transformation and selection of synthetic prion strains. J Mol Biol 2011; 413:527-42. [PMID: 21839745 DOI: 10.1016/j.jmb.2011.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 11/20/2022]
Abstract
Prion protein is capable of folding into multiple self-replicating prion strains that produce phenotypically distinct neurological disorders. Although prion strains often breed true upon passage, they can also transform or "mutate" despite being devoid of nucleic acids. To dissect the mechanism of prion strain transformation, we studied the physicochemical evolution of a mouse synthetic prion (MoSP) strain, MoSP1, after repeated passage in mice and cultured cells. We show that MoSP1 gradually adopted shorter incubation times and lower conformational stabilities. These changes were accompanied by structural transformation, as indicated by a shift in the molecular mass of the protease-resistant core of MoSP1 from approximately 19 kDa [MoSP1(2)] to 21 kDa [MoSP1(1)]. We show that MoSP1(1) and MoSP1(2) can breed with fidelity when cloned in cells; however, when present as a mixture, MoSP1(1) preferentially proliferated, leading to the disappearance of MoSP1(2). In culture, the rate of this transformation process can be influenced by the composition of the culture media and the presence of polyamidoamines. Our findings demonstrate that prions can exist as a conformationally diverse population of strains, each capable of replicating with high fidelity. Rare conformational conversion, followed by competitive selection among the resulting pool of conformers, provides a mechanism for the adaptation of the prion population to its host environment.
Collapse
|
268
|
Dissociation of infectivity from seeding ability in prions with alternate docking mechanism. PLoS Pathog 2011; 7:e1002128. [PMID: 21779169 PMCID: PMC3136465 DOI: 10.1371/journal.ppat.1002128] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 05/04/2011] [Indexed: 11/21/2022] Open
Abstract
Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrPSc, suggesting that these domains of cellular prion protein (PrPC) serve as docking sites for PrPSc during prion propagation. To examine the role of polybasic domains in the context of full-length PrPC, we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ∼5 rounds of sPMCA, PrPSc molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrPSc prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrPSc molecules. Remarkably, ΔC-PrPSc and other polybasic domain PrPSc molecules displayed diminished or absent biological infectivity relative to wild-type PrPSc, despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrPSc prions interact with PrPC molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrPSc propagation. Furthermore, polybasic domain deficient PrPSc molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrPSc molecules may not depend on a single stereotypic mechanism, but that normal PrPC/PrPSc interaction through polybasic domains may be required to generate prion infectivity. Prions are unconventional infectious agents that cause fatal diseases in humans and other animals. Previous studies have suggested that prion infectivity depends upon the ability of a sample to change the shape of a normal brain protein called the prion protein (PrP) into a disease-associated shape. Other studies have identified a pair of positively charged domains within the structure of PrP that appear to be important for the interaction between the normal and disease-associated shapes of the prion protein. In this report, we show that the shape of normal PrP can change into the disease-associated form through a novel mechanism that does not involve positively charged domains. However, it appears that interaction through the positively charged domains is required to produce infectious prions efficiently. Our results show for the first time that the ability to change the shape of normal PrP into its disease-associated state is not the sole determinant of prion infectivity.
Collapse
|
269
|
Abstract
Prions represent a group of proteins with a unique capacity to fold into different conformations. One isoform is rich in beta-pleated sheets and can aggregate into amyloid that may be pathogenic. This abnormal form propagates itself by imposing its confirmation on the homologous normal host cell protein. Pathogenic prions have been shown to cause lethal neurodegenerative diseases in humans and animals. These diseases are sometimes infectious and hence referred to as transmissible spongiform encephalopathies. In the present review, the remarkable evolution of the heterodox prion concept is summarized. The origin of this phenomenon is based on information transfer between homologous proteins, without the involvement of nucleic acid-encoded mechanisms. Historically, kuru and Creutzfeldt-Jakob disease (CJD) were the first infectious prion diseases to be identified in man. It was their relationship to scrapie in sheep and experimental rodents that allowed an unravelling of the particular molecular mechanism that underlie the disease process. Transmission between humans has been documented to have occurred in particular contexts, including ritual cannibalism, iatrogenic transmission because of pituitary gland-derived growth hormone or the use in neurosurgical procedures of dura mater from cadavers, and the temporary use of a prion-contaminated protein-rich feed for cows. The latter caused a major outbreak of bovine spongiform encephalopathy, which spread to man by human consumption of contaminated meat, causing approximately 200 cases of variant CJD. All these epidemics now appear to be over because of measures taken to curtail further spread of prions. Recent studies have shown that the mechanism of protein aggregation may apply to a wider range of diseases in and possibly also outside the brain, some of which are relatively common such as Alzheimer's and Parkinson's diseases. Furthermore, it has become apparent that the phenomenon of prion aggregation may have a wider physiological importance, but a full understanding of this remains to be defined. It may involve maintaining neuronal functions and possibly contributing to the establishment of long-term memory.
Collapse
Affiliation(s)
- E Norrby
- Center for the History of Science, Royal Swedish Academy of Sciences, Stockholm, Sweden.
| |
Collapse
|
270
|
Abstract
Autocatalysis is a fundamental concept, used in a wide range of domains. From the most general definition of autocatalysis, that is, a process in which a chemical compound is able to catalyze its own formation, several different systems can be described. We detail the different categories of autocatalyses and compare them on the basis of their mechanistic, kinetic, and dynamic properties. It is shown how autocatalytic patterns can be generated by different systems of chemical reactions. With the notion of autocatalysis covering a large variety of mechanistic realizations with very similar behaviors, it is proposed that the key signature of autocatalysis is its kinetic pattern expressed in a mathematical form.
Collapse
Affiliation(s)
- Raphaël Plasson
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Yokohama, 223-8852 Japan.
| | | | | | | |
Collapse
|
271
|
A simple, versatile and sensitive cell-based assay for prions from various species. PLoS One 2011; 6:e20563. [PMID: 21655184 PMCID: PMC3105100 DOI: 10.1371/journal.pone.0020563] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/03/2011] [Indexed: 12/03/2022] Open
Abstract
Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies.
Collapse
|
272
|
Plasson R, Brandenburg A, Jullien L, Bersini H. Autocatalysis: at the root of self-replication. ARTIFICIAL LIFE 2011; 17:219-236. [PMID: 21554116 DOI: 10.1162/artl_a_00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Autocatalysis is a fundamental concept, used in a wide range of domains. From its most general definition, that is, a process in which a chemical compound is able to catalyze its own formation, several different systems can be described. We detail the different categories of autocatalyses, and compare them on the basis of their mechanistic, kinetic, and dynamic properties. It is shown how autocatalytic patterns can be generated by different systems of chemical reactions. The notion of autocatalysis covers a large variety of mechanistic realizations with very similar behaviors; it is proposed that its key signature is its kinetic pattern expressed in a mathematical form. This notion, while describing dynamic behaviors at the most fundamental level, is at the basis for developing higher-level concepts towards life: autocatalytic sets, and autopoietic systems.
Collapse
Affiliation(s)
- Raphaël Plasson
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama, Japan.
| | | | | | | |
Collapse
|
273
|
Wardrop DJ, Bowen EG. Nitrenium ion-mediated alkene bis-cyclofunctionalization: total synthesis of (-)-swainsonine. Org Lett 2011; 13:2376-9. [PMID: 21486077 PMCID: PMC3100185 DOI: 10.1021/ol2006117] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total synthesis of (-)-swainsonine from 2,3-O-isopropylidene-D-erythrose in 12 steps and an overall yield of 28% is reported. The pivotal transformation in our route to this indolizidine alkaloid is the formation of the pyrrolidine ring and C-8a/8 stereodiad through the diastereoselective, bis-cyclofunctionalization of an γ,δ-unsaturated O-alkyl hydroxamate. This transformation is believed to proceed via the intramolecular capture of an N-acyl-N-alkoxyaziridinium ion generated by the diastereoselective addition of a singlet acylnitrenium ion to the pendant alkene.
Collapse
Affiliation(s)
- Duncan J Wardrop
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States.
| | | |
Collapse
|
274
|
Dinkel PD, Siddiqua A, Huynh H, Shah M, Margittai M. Variations in filament conformation dictate seeding barrier between three- and four-repeat tau. Biochemistry 2011; 50:4330-6. [PMID: 21510682 DOI: 10.1021/bi2004685] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tau filaments are the pathological hallmark of >20 neurodegenerative diseases including Alzheimer's disease. Six tau isoforms exist that can be grouped into 4-repeat (4R) tau and 3-repeat (3R) tau based on the presence or absence of the second of four microtubule binding repeats. Recent evidence suggests that tau filaments can transfer between cells and spread through the brain. Here we demonstrate in vitro that seeded filament growth, a prerequisite for tau spreading, is crucially dependent on the isoform composition of individual seeds. Seeds of 3R tau and 3R/4R tau recruit both types of isoforms. Seeds of 4R tau recruit 4R tau, but not 3R tau, establishing an asymmetric barrier. Conformational templating of 4R tau onto 3R tau seeds eliminates this barrier, giving rise to a new type of tau filament. These findings provide fundamental mechanistic insights into the seeding, propagation, and diversification of tau filaments.
Collapse
Affiliation(s)
- Paul D Dinkel
- Department of Chemistry and Biochemistry, University of Denver, CO 80208, USA
| | | | | | | | | |
Collapse
|
275
|
Miyazawa K, Emmerling K, Manuelidis L. Replication and spread of CJD, kuru and scrapie agents in vivo and in cell culture. Virulence 2011; 2:188-99. [PMID: 21527829 DOI: 10.4161/viru.2.3.15880] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transmissible Spongiform Encephalopathy (TSE) agents are defined by their virulence for particular species, their spread in the population, their incubation time to cause disease, and their neuropathological sequelae. Murine adapted human agents, including sporadic CJD (sCJD), New Guinea kuru, and Japanese CJD agents, display particularly distinct incubation times and maximal infectious brain titers. They also induce agent-specific patterns of neurodegeneration. When these TSE agents are transmitted to cultured hypothalamic GT1 cells they maintain their unique identities. Nevertheless, the human kuru (kCJD) and Japanese FU-CJD agents, as well as the sheep 22L and 263K scrapie agents display doubling times that are 8x to 33x faster in cells than in brain, indicating release from complex innate immune responses. These data are most consistent with a foreign viral structure, rather than an infectious form of host prion protein (PrP-res). Profound agent-specific inhibitory effects are also apparent in GT1 cells, and maximal titer plateau in kCJD and FU-CJD differed by 1,000-fold in a cell-based assay. Remarkably, the lower titer kCJD agent rapidly induced de novo PrP-res in GT1 cells, whereas the high titer FU-CJD agent replicated silently for multiple passages. Although PrP-res is often considered to be toxic, PrP-res instead may be part of a primal defense and/or clearance mechanism against TSE environmental agents. Limited spread of particular TSE agents through nanotubes and cell-to-cell contacts probably underlies the long peripheral phase of human CJD.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Yale Medical School, Section of Neuropathology, New Haven, CT, USA
| | | | | |
Collapse
|
276
|
Somerville RA, Gentles N. Characterization of the effect of heat on agent strains of the transmissible spongiform encephalopathies. J Gen Virol 2011; 92:1738-1748. [PMID: 21471321 DOI: 10.1099/vir.0.030452-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The causal agents of the transmissible spongiform encephalopathy (TSE) diseases, sometimes called prion diseases, are characterized by high resistance to inactivation with heat. Results from thermal inactivation experiments on nine TSE strains, seven passaged in two PrP genotypes, showed differences in sensitivity to heat inactivation ranging over 17 °C. In addition, the rate of inactivation with increasing temperature varied between TSE models. In some cases passage in an alternative PrP genotype had little effect on the resulting inactivation properties, but for others the infectious agent was inactivated at lower temperatures. No strain with higher thermostability properties was selected. The effect of mixing two TSE strains, to see whether their properties were affected through interaction with each other, was also examined. The results showed that both strains behaved as expected from the behaviour of the unmixed controls, and that the strain responsible for inducing TSE disease could be identified. There was no evidence of a direct effect on intrinsic strain properties. Overall, the results illustrate the diversity in properties of TSE strains. They require intrinsic molecular properties of TSE agents to accommodate high resistance to inactivation and a mechanism, independent of the host, to directly encode these differences. These findings are more readily reconciled with models of TSE agents with two separate components, one of which is independent of the host and comprises a TSE-specific nucleic acid, than with models based solely on conformational changes to a host protein.
Collapse
Affiliation(s)
- Robert A Somerville
- Neuropathogenesis Division, The Roslin Institute and Royal (Dick) Veterinary School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9PS, Scotland, UK
| | - Nicola Gentles
- Neuropathogenesis Division, The Roslin Institute and Royal (Dick) Veterinary School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9PS, Scotland, UK
| |
Collapse
|
277
|
Abstract
Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis ( 1, 2) . At each fibril end, β-sheets provide a template for recruiting and converting monomers ( 3) . Various amyloid fibrils often occur in the same individual, yet whether distinct protein aggregates aid or inhibit the assembly of heterologous proteins is unclear. In prion disease, different amyloid-like prion aggregate structures, or strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences ( 4-7) . Here we focus on the interactions reported to occur when two pre-existing amyloids or two distinct prion strains occur together in the central nervous system.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Department of Pathology, University of California San Diego, La Jolla, CA, USA. red b-sheets aligne
| | | | | |
Collapse
|
278
|
Savistchenko J, Arellano-Anaya ZE, Andréoletti O, Vilette D. Mammalian prions: tracking the infectious entities. Prion 2011; 5:84-7. [PMID: 21597318 DOI: 10.4161/pri.5.2.16096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Protein misfolding is central to the pathogenesis of several neurodegenerative disorders. Among these disorders, prion diseases are unique because they are transmissible. The conversion of the host-encoded GPI-anchored PrP protein into a structurally altered form is crucially associated with the infectious and neurotoxic properties of the resulting abnormal PrP. Many lines of evidence indicate that distinct aggregated forms with different size and protease resistance are produced during prion multiplication. The recent isolation of various subsets of abnormal PrP, along with the improved biochemical tools and infectivity detection assays have shed light on the diversity of abnormal PrP protein and may give insights into the features of the more infectious subsets of abnormal PrP.
Collapse
Affiliation(s)
- Jimmy Savistchenko
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, France
| | | | | | | |
Collapse
|
279
|
Bruce KL, Chernoff YO. Sequence specificity and fidelity of prion transmission in yeast. Semin Cell Dev Biol 2011; 22:444-51. [PMID: 21439395 DOI: 10.1016/j.semcdb.2011.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 11/27/2022]
Abstract
Amyloid formation is a widespread feature of various proteins. It is associated with both important diseases (including infectious mammalian prions) and biologically positive functions, and provides a basis for structural "templating" and protein-based epigenetic inheritance (for example, in the case of yeast prions). Amyloid templating is characterized by a high level of sequence specificity and conformational fidelity. Even slight variations in sequence may produce a strong barrier for prion transmission. Yeast models provide useful insight into a mechanism of amyloid specificity and fidelity. Accumulating evidence indicates that cross-species prion transmission is controlled by the identity of short sequences (specificity stretches) rather than by the overall level of sequence identity. Location of the specificity stretches determines the location and/or size of the cross-β amyloid region that controls patterns of prion variants. In some cases of cross-species prion transmission, fidelity of variant reproduction is impaired, leading to the formation of new structural variants. We propose that such a variant switch may occur due to choice of the alternatively located secondary specificity stretches, when interaction between the primary stretches is impaired due to sequence divergence.
Collapse
Affiliation(s)
- Kathryn L Bruce
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
| | | |
Collapse
|
280
|
Ayers JI, Schutt CR, Shikiya RA, Aguzzi A, Kincaid AE, Bartz JC. The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease. PLoS Pathog 2011; 7:e1001317. [PMID: 21437239 PMCID: PMC3060105 DOI: 10.1371/journal.ppat.1001317] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/10/2011] [Indexed: 02/07/2023] Open
Abstract
Prion strains are characterized by differences in the outcome of disease, most notably incubation period and neuropathological features. While it is established that the disease specific isoform of the prion protein, PrPSc, is an essential component of the infectious agent, the strain-specific relationship between PrPSc properties and the biological features of the resulting disease is not clear. To investigate this relationship, we examined the amplification efficiency and conformational stability of PrPSc from eight hamster-adapted prion strains and compared it to the resulting incubation period of disease and processing of PrPSc in neurons and glia. We found that short incubation period strains were characterized by more efficient PrPSc amplification and higher PrPSc conformational stabilities compared to long incubation period strains. In the CNS, the short incubation period strains were characterized by the accumulation of N-terminally truncated PrPSc in the soma of neurons, astrocytes and microglia in contrast to long incubation period strains where PrPSc did not accumulate to detectable levels in the soma of neurons but was detected in glia similar to short incubation period strains. These results are inconsistent with the hypothesis that a decrease in conformational stability results in a corresponding increase in replication efficiency and suggest that glia mediated neurodegeneration results in longer survival times compared to direct replication of PrPSc in neurons. Prion diseases are a group of infectious fatal neurodegenerative diseases that affect animals including humans. This unique infectious agent is the result of a post-translational conformational change of the normal form of the prion protein, PrPC, to an infectious form of the prion protein, PrPSc. Different strains of the infectious agent result in characteristic incubation periods and neuropathological features within a single host species. These strain-specific differences in disease outcome are likely due to strain-specific conformations of PrPSc, though the mechanisms by which different conformation can affect prion strain properties are not understood. The aim of this study was to investigate the relationship between the biochemical properties of PrPSc to the corresponding neuropathological characteristics of eight hamster-adapted prion strains. Our findings indicate that PrPSc from short incubation period strains were more efficiently replicated, had a more stable conformation, and were observed to be more resistant to clearance from the soma of neurons compared to prion strains with a relatively long incubation period. These results suggest the progression of prion disease is influenced by the balance between replication and clearance of PrPSc in neurons.
Collapse
Affiliation(s)
- Jacob I. Ayers
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Charles R. Schutt
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Ronald A. Shikiya
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Anthony E. Kincaid
- Department of Physical Therapy, Creighton University, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
281
|
Padilla D, Béringue V, Espinosa JC, Andreoletti O, Jaumain E, Reine F, Herzog L, Gutierrez-Adan A, Pintado B, Laude H, Torres JM. Sheep and goat BSE propagate more efficiently than cattle BSE in human PrP transgenic mice. PLoS Pathog 2011; 7:e1001319. [PMID: 21445238 PMCID: PMC3060172 DOI: 10.1371/journal.ppat.1001319] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 02/15/2011] [Indexed: 11/29/2022] Open
Abstract
A new variant of Creutzfeldt Jacob Disease (vCJD) was identified in humans and linked to the consumption of Bovine Spongiform Encephalopathy (BSE)-infected meat products. Recycling of ruminant tissue in meat and bone meal (MBM) has been proposed as origin of the BSE epidemic. During this epidemic, sheep and goats have been exposed to BSE-contaminated MBM. It is well known that sheep can be experimentally infected with BSE and two field BSE-like cases have been reported in goats. In this work we evaluated the human susceptibility to small ruminants-passaged BSE prions by inoculating two different transgenic mouse lines expressing the methionine (Met) allele of human PrP at codon 129 (tg650 and tg340) with several sheep and goat BSE isolates and compared their transmission characteristics with those of cattle BSE. While the molecular and neuropathological transmission features were undistinguishable and similar to those obtained after transmission of vCJD in both transgenic mouse lines, sheep and goat BSE isolates showed higher transmission efficiency on serial passaging compared to cattle BSE. We found that this higher transmission efficiency was strongly influenced by the ovine PrP sequence, rather than by other host species-specific factors. Although extrapolation of results from prion transmission studies by using transgenic mice has to be done very carefully, especially when human susceptibility to prions is analyzed, our results clearly indicate that Met129 homozygous individuals might be susceptible to a sheep or goat BSE agent at a higher degree than to cattle BSE, and that these agents might transmit with molecular and neuropathological properties indistinguishable from those of vCJD. Our results suggest that the possibility of a small ruminant BSE prion as vCJD causal agent could not be ruled out, and that the risk for humans of a potential goat and/or sheep BSE agent should not be underestimated. Prion diseases, also referred as transmissible spongiform encephalopathies, are fatal neurodegenerative diseases caused by proteinaceous infectious particles denominated “prions.” Prion diseases acquired their first real public relevance with the outbreak of bovine spongiform encephalopathy (BSE) (“mad cow disease”) in the United Kingdom in the 80s and its link with the appearance of a new, variant form of Creutzfeldt-Jakob disease in humans. Recycling of ruminant tissues in meat and bone meal has been proposed as origin of the BSE epidemic. During this episode, sheep and goats have also been exposed to BSE-contaminated meal, so transmission to this species may have occurred. We analyzed the human susceptibility to sheep and goat passaged-BSE prions by using transgenic mice expressing human prion protein (PrP). When different sheep and goat BSE isolates were inoculated in these transgenic mice, higher susceptibility than that observed for cattle BSE was detected and the disease manifestation was similar to that observed in mice inoculated with the new variant of Creutzfeldt-Jakob disease. Our findings suggest that humans are at least equally, and might be even more, susceptible to a sheep or goat BSE agent compared to a cattle BSE one.
Collapse
Affiliation(s)
- Danielle Padilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Vincent Béringue
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Olivier Andreoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Emilie Jaumain
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laetitia Herzog
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Belen Pintado
- Departamento de Reproducción Animal-INIA, Madrid, Spain
| | - Hubert Laude
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
- * E-mail:
| |
Collapse
|
282
|
Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 2011; 470:540-2. [PMID: 21350487 DOI: 10.1038/nature09768] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 12/17/2010] [Indexed: 12/22/2022]
Abstract
Mammalian prions cause fatal neurodegenerative conditions including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. Prion infections are typically associated with remarkably prolonged but highly consistent incubation periods followed by a rapid clinical phase. The relationship between prion propagation, generation of neurotoxic species and clinical onset has remained obscure. Prion incubation periods in experimental animals are known to vary inversely with expression level of cellular prion protein. Here we demonstrate that prion propagation in brain proceeds via two distinct phases: a clinically silent exponential phase not rate-limited by prion protein concentration which rapidly reaches a maximal prion titre, followed by a distinct switch to a plateau phase. The latter determines time to clinical onset in a manner inversely proportional to prion protein concentration. These findings demonstrate an uncoupling of infectivity and toxicity. We suggest that prions themselves are not neurotoxic but catalyse the formation of such species from PrP(C). Production of neurotoxic species is triggered when prion propagation saturates, leading to a switch from autocatalytic production of infectivity (phase 1) to a toxic (phase 2) pathway.
Collapse
Affiliation(s)
- Malin K Sandberg
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | |
Collapse
|
283
|
Wadsworth JDF, Asante EA, Collinge J. Review: contribution of transgenic models to understanding human prion disease. Neuropathol Appl Neurobiol 2011; 36:576-97. [PMID: 20880036 PMCID: PMC3017745 DOI: 10.1111/j.1365-2990.2010.01129.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transgenic mice expressing human prion protein in the absence of endogenous mouse prion protein faithfully replicate human prions. These models reproduce all of the key features of human disease, including long clinically silent incubation periods prior to fatal neurodegeneration with neuropathological phenotypes that mirror human prion strain diversity. Critical contributions to our understanding of human prion disease pathogenesis and aetiology have only been possible through the use of transgenic mice. These models have provided the basis for the conformational selection model of prion transmission barriers and have causally linked bovine spongiform encephalopathy with variant Creutzfeldt-Jakob disease. In the future these models will be essential for evaluating newly identified potentially zoonotic prion strains, for validating effective methods of prion decontamination and for developing effective therapeutic treatments for human prion disease.
Collapse
Affiliation(s)
- J D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, National Hospital for Neurology and Neurosurgery, London, UK.
| | | | | |
Collapse
|
284
|
Stevens JC, Fisher EMC, Mead S. How does the genetic assassin select its neuronal target? Mamm Genome 2011; 22:139-47. [PMID: 21373885 DOI: 10.1007/s00335-011-9319-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/23/2011] [Indexed: 12/12/2022]
Abstract
Through many different routes of analysis, including human familial studies and animal models, we are identifying an increasing number of genes that are causative for human neurodegenerative disease and are now in a position for many such disorders to dissect the molecular pathology that gives rise to neuronal death. Yet a paradox remains: The majority of the genes identified cause neurodegeneration in specific neuronal subtypes, but the genes themselves are ubiquitously expressed. Furthermore, the different mutations in the same gene may cause quite different types of neurodegeneration. Something in our understanding of neurodegenerative disease is clearly missing, and we refer to this as the phenomenon of "neuronal targeting." Here we discuss possible explanations for neuronal targeting, why specific neuronal subtypes are vulnerable to specific mutations in ubiquitously expressed genes.
Collapse
Affiliation(s)
- James C Stevens
- Department of Neurodegenerative Disease, University College London, Queen Square, London, WC1N 3BG, UK
| | | | | |
Collapse
|
285
|
Miyazawa K, Emmerling K, Manuelidis L. Proliferative arrest of neural cells induces prion protein synthesis, nanotube formation, and cell-to-cell contacts. J Cell Biochem 2011; 111:239-47. [PMID: 20518071 DOI: 10.1002/jcb.22723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Host prion protein (PrP) is most abundant in neurons where its functions are unclear. PrP mRNA transcripts accumulate at key developmental times linked to cell division arrest and terminal differentiation. We sought to find if proliferative arrest was sufficient to cause an increase in PrP in developing neurons. Rat neuronal precursor cells transduced with the temperature sensitive SV-40 T antigen just before terminal differentiation (permissive at 33 degrees C but not at 37.5 degrees C) were analyzed. By 2 days, T antigen was decreased in all cells at 37.5 degrees C, with few DNA synthesizing (BrdU+) cells. Proliferative arrest induced by 37.5 degrees C yielded a fourfold PrP increase. When combined with reduced serum, a sevenfold increase was found. Within 2 days additional neuritic processes with abundant plasma membrane PrP connected many cells. PrP also concentrated between apposed stationary cells, and on extending growth cones and their filopodia. Stationary cells were maintained for 30 days in their original plate, and they reverted to a proliferating low PrP state at 33 degrees C. Ultrastructural studies confirmed increased nanotubes and adherent junctions between high PrP cells. Additionally, some cells shared cytoplasm and these apparently open regions are likely conduits for the exchange of organelles and viruses that have been observed in living cells. Thus PrP is associated with dynamic recognition and contact functions, and may be involved in the transient formation of neural syncytia at key times in embryogenesis. This system can be used to identify drugs that inhibit the transport and spread of infectious CJD particles through the nervous system.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Yale Medical School, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
286
|
Singh PP, Banerji A. Case for an RNA-prion world: a hypothesis based on conformational diversity. J Biol Phys 2011; 37:185-8. [PMID: 22379228 DOI: 10.1007/s10867-011-9219-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 01/13/2011] [Indexed: 11/28/2022] Open
Abstract
Prions and other misfolded proteins can impart their structure and functions to normal molecules. Based upon a thorough structural assessment of RNA, prions and misfolded proteins, especially from the perspective of conformational diversity, we propose a case for co-existence of these in the pre-biotic world. Analyzing the evolution of physical aspects of biochemical structures, we put forward a case for an RNA-prion pre-biotic world, instead of, merely, the "RNA World".
Collapse
|
287
|
Thackray AM, Hopkins L, Lockey R, Spiropoulos J, Bujdoso R. Emergence of multiple prion strains from single isolates of ovine scrapie. J Gen Virol 2011; 92:1482-1491. [PMID: 21270287 DOI: 10.1099/vir.0.028886-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The infectious agent associated with prion diseases such as ovine scrapie shows strain diversity. Ovine prion strains have typically been identified by their transmission properties in wild-type mice. However, strain typing of ovine scrapie isolates in wild-type mice may not reveal properties of the infectious prion agent as they exist in the original host. This could be circumvented if ovine scrapie isolates are passaged in ovine prion protein (PrP)-transgenic mice. This study used incubation time, lesion profile, immunohistochemistry of the disease-associated PrP (PrP(Sc)) and molecular profile to compare the range of ovine prion strains that emerged from sheep scrapie isolates following serial passage in wild-type and ovine PrP transgenic mice. It was found that a diverse range of ovine prion strains emerged from homozygous ARQ and VRQ scrapie isolates passaged in wild-type and ovine PrP transgenic mice. However, strain-specific PrP(Sc) deposition and PrP27-30 molecular profile patterns were identified in ovine PrP transgenic mice that were not detected in wild-type mice. Significantly, it was established that the individual mouse brain selected for transmission during prion strain typing had a significant influence on strain definition. Serial passage of short- and long-incubation-time animals from the same group of scrapie-inoculated mice revealed different prion strain phenotypes. These observations are consistent with the possibility that some scrapie isolates contain more than one prion strain.
Collapse
Affiliation(s)
- Alana M Thackray
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK
| | - Lee Hopkins
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK
| | - Richard Lockey
- Veterinary Laboratories Agency, Department of Pathology and Host Susceptibility, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - John Spiropoulos
- Veterinary Laboratories Agency, Department of Pathology and Host Susceptibility, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Raymond Bujdoso
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
288
|
Joint Scientific Opinion on any possible epidemiological or molecular association between TSEs in animals and humans. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1945] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
289
|
Wadsworth JDF, Collinge J. Molecular pathology of human prion disease. Acta Neuropathol 2011; 121:69-77. [PMID: 20694796 PMCID: PMC3015177 DOI: 10.1007/s00401-010-0735-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/28/2022]
Abstract
Human prion diseases are associated with a range of clinical presentations and are classified by both clinicopathological syndrome and aetiology with sub-classification according to molecular criteria. Considerable experimental evidence suggests that phenotypic diversity in human prion disease relates in significant part to the existence of distinct human prion strains encoded by abnormal PrP isoforms with differing physicochemical properties. To date, however, the conformational repertoire of pathological isoforms of wild-type human PrP and the various forms of mutant human PrP has not been fully defined. Efforts to produce a unified international classification of human prion disease are still ongoing. The ability of genetic background to influence prion strain selection together with knowledge of numerous other factors that may influence clinical and neuropathological presentation strongly emphasises the requirement to identify distinct human prion strains in appropriate transgenic models, where host genetic variability and other modifiers of phenotype are removed. Defining how many human prion strains exist allied with transgenic modelling of potentially zoonotic prion strains will inform on how many human infections may have an animal origin. Understanding these relationships will have direct translation to protecting public health.
Collapse
Affiliation(s)
- Jonathan D. F. Wadsworth
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
290
|
Abstract
Here we review the known strain profiles of various prion diseases of animals and humans, and how transgenic mouse models are being used to elucidate basic molecular mechanisms of prion propagation and strain variation and for assessing the zoonotic potential of various animal prion strains.
Collapse
Affiliation(s)
- Glenn C Telling
- Sanders Brown Center on Aging, University of Kentucky Medical Center, Lexington, KY 40506, USA.
| |
Collapse
|
291
|
Gambetti P, Cali I, Notari S, Kong Q, Zou WQ, Surewicz WK. Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta Neuropathol 2011; 121:79-90. [PMID: 21058033 PMCID: PMC3077936 DOI: 10.1007/s00401-010-0761-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/28/2010] [Accepted: 10/11/2010] [Indexed: 01/12/2023]
Abstract
Prion diseases are believed to propagate by the mechanism involving self-perpetuating conformational conversion of the normal form of the prion protein, PrP(C), to the misfolded, pathogenic state, PrP(Sc). One of the most intriguing aspects of these disorders is the phenomenon of prion strains. It is believed that strain properties are fully encoded in distinct conformations of PrP(Sc). Strains are of practical relevance to human prion diseases as their diversity may explain the unusual heterogeneity of these disorders. The first insight into the molecular mechanisms underlying heterogeneity of human prion diseases was provided by the observation that two distinct disease phenotypes and their associated PrP(Sc) conformers co-distribute with distinct PrP genotypes as determined by the methionine/valine polymorphism at codon 129 of the PrP gene. Subsequent studies identified six possible combinations of the three genotypes (determined by the polymorphic codon 129) and two common PrP(Sc) conformers (named types 1 and 2) as the major determinants of the phenotype in sporadic human prion diseases. This scenario implies that each 129 genotype-PrP(Sc) type combination would be associated with a distinct disease phenotype and prion strain. However, notable exceptions have been found. For example, two genotype-PrP(Sc) type combinations are linked to the same phenotype, and conversely, the same combination was found to be associated with two distinct phenotypes. Furthermore, in some cases, PrP(Sc) conformers naturally associated with distinct phenotypes appear, upon transmission, to lose their phenotype-determining strain characteristics. Currently it seems safe to assume that typical sporadic prion diseases are associated with at least six distinct prion strains. However, the intrinsic characteristics that distinguish at least four of these strains remain to be identified.
Collapse
Affiliation(s)
- Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, 44106, USA.
| | | | | | | | | | | |
Collapse
|
292
|
Abstract
The discovery of infectious proteins, denoted prions, was unexpected. After much debate over the chemical basis of heredity, resolution of this issue began with the discovery that DNA, not protein, from pneumococcus was capable of genetically transforming bacteria (Avery et al. 1944). Four decades later, the discovery that a protein could mimic viral and bacterial pathogens with respect to the transmission of some nervous system diseases (Prusiner 1982) met with great resistance. Overwhelming evidence now shows that Creutzfeldt-Jakob disease (CJD) and related disorders are caused by prions. The prion diseases are characterized by neurodegeneration and lethality. In mammals, prions reproduce by recruiting the normal, cellular isoform of the prion protein (PrP(C)) and stimulating its conversion into the disease-causing isoform (PrP(Sc)). PrP(C) and PrP(Sc) have distinct conformations: PrP(C) is rich in α-helical content and has little β-sheet structure, whereas PrP(Sc) has less α-helical content and is rich in β-sheet structure (Pan et al. 1993). The conformational conversion of PrP(C) to PrP(Sc) is the fundamental event underlying prion diseases. In this article, we provide an introduction to prions and the diseases they cause.
Collapse
Affiliation(s)
- David W Colby
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
293
|
Wallace R. Structure and dynamics of the ‘protein folding code’ inferred using Tlusty's topological rate distortion approach. Biosystems 2011; 103:18-26. [DOI: 10.1016/j.biosystems.2010.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/31/2010] [Accepted: 09/11/2010] [Indexed: 12/11/2022]
|
294
|
Han E, Ding L, Jin S, Ju H. Electrochemiluminescent biosensing of carbohydrate-functionalized CdS nanocomposites for in situ label-free analysis of cell surface carbohydrate. Biosens Bioelectron 2011; 26:2500-5. [DOI: 10.1016/j.bios.2010.10.044] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 10/12/2010] [Accepted: 10/25/2010] [Indexed: 12/28/2022]
|
295
|
Prion protein and its conformational conversion: a structural perspective. Top Curr Chem (Cham) 2011; 305:135-67. [PMID: 21630136 DOI: 10.1007/128_2011_165] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The key molecular event in the pathogenesis of prion diseases is the conformational conversion of a cellular prion protein, PrP(C), into a misfolded form, PrP(Sc). In contrast to PrP(C) that is monomeric and α-helical, PrP(Sc) is oligomeric in nature and rich in β-sheet structure. According to the "protein-only" model, PrP(Sc) itself represents the infectious prion agent responsible for transmissibility of prion disorders. While this model is supported by rapidly growing experimental data, detailed mechanistic and structural aspects of prion protein conversion remain enigmatic. In this chapter we describe recent advances in understanding biophysical and biochemical aspects of prion diseases, with a special focus on structural underpinnings of prion protein conversion, the structural basis of prion strains, and generation of prion infectivity in vitro from bacterially-expressed recombinant PrP.
Collapse
|
296
|
Isolation of proteinase K-sensitive prions using pronase E and phosphotungstic acid. PLoS One 2010; 5:e15679. [PMID: 21187933 PMCID: PMC3004958 DOI: 10.1371/journal.pone.0015679] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/21/2010] [Indexed: 11/25/2022] Open
Abstract
Disease-related prion protein, PrPSc, is classically distinguished from its normal cellular precursor, PrPC, by its detergent insolubility and partial resistance to proteolysis. Molecular diagnosis of prion disease typically relies upon detection of protease-resistant fragments of PrPSc using proteinase K, however it is now apparent that the majority of disease-related PrP and indeed prion infectivity may be destroyed by this treatment. Here we report that digestion of RML prion-infected mouse brain with pronase E, followed by precipitation with sodium phosphotungstic acid, eliminates the large majority of brain proteins, including PrPC, while preserving >70% of infectious prion titre. This procedure now allows characterization of proteinase K-sensitive prions and investigation of their clinical relevance in human and animal prion disease without being confounded by contaminating PrPC.
Collapse
|
297
|
Transfer of a prion strain to different hosts leads to emergence of strain variants. Proc Natl Acad Sci U S A 2010; 107:22653-8. [PMID: 21156827 DOI: 10.1073/pnas.1013014108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Prions consist mainly of PrP(Sc), a pathogenic conformer of host-encoded PrP(C). Prion populations with distinct phenotypes but associated with PrP(Sc), having the same amino acid sequence, constitute distinct strains. Strain identity is thought to be encoded by the conformation of PrP(Sc) and to be maintained by seeded conversion. Prion strains can be distinguished by the cell panel assay, which measures their ability to infect distinct cell lines. Brain-derived 22L prions characteristically are able to infect R33 cells (i.e., are "R33 competent"), as well as PK1 cells in the presence of the inhibitor swainsonine (i.e. are "swa resistant"). Here we report that 22L prions retained their characteristic cell tropism and swa resistance when transferred from brain to R33 cells. However, when transferred from the R33 cells to PK1 cells, they gradually became R33 incompetent and swa sensitive, unless the transfer was in the presence of swa, in which case swa resistance and R33 competence were retained. PrP(Sc) associated with swa-resistant/R33-competent and swa-sensitive/R33-incompetent prions had different conformational stabilities. When cloned R33-incompetent/swa-sensitive prions were again propagated in brain, their properties gradually reverted to those of the original brain-derived 22L prions. Our results support the view that 22L prion populations are heterogeneous and that distinct prion variants are selected in different cellular environments.
Collapse
|
298
|
Wadsworth JDF, Dalmau-Mena I, Joiner S, Linehan JM, O'Malley C, Powell C, Brandner S, Asante EA, Ironside JW, Hilton DA, Collinge J. Effect of fixation on brain and lymphoreticular vCJD prions and bioassay of key positive specimens from a retrospective vCJD prevalence study. J Pathol 2010; 223:511-8. [PMID: 21294124 DOI: 10.1002/path.2821] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/21/2010] [Accepted: 11/06/2010] [Indexed: 11/11/2022]
Abstract
Anonymous screening of lymphoreticular tissues removed during routine surgery has been applied to estimate the UK population prevalence of asymptomatic vCJD prion infection. The retrospective study of Hilton et al (J Pathol 2004; 203: 733-739) found accumulation of abnormal prion protein in three formalin-fixed appendix specimens. This led to an estimated UK prevalence of vCJD infection of ∼1 in 4000, which remains the key evidence supporting current risk reduction measures to reduce iatrogenic transmission of vCJD prions in the UK. Confirmatory testing of these positives has been hampered by the inability to perform immunoblotting of formalin-fixed tissue. Animal transmission studies offer the potential for 'gold standard' confirmatory testing but are limited by both transmission barrier effects and known effects of fixation on scrapie prion titre in experimental models. Here we report the effects of fixation on brain and lymphoreticular human vCJD prions and comparative bioassay of two of the three prevalence study formalin-fixed, paraffin-embedded (FFPE) appendix specimens using transgenic mice expressing human prion protein (PrP). While transgenic mice expressing human PrP 129M readily reported vCJD prion infection after inoculation with frozen vCJD brain or appendix, and also FFPE vCJD brain, no infectivity was detected in FFPE vCJD spleen. No prion transmission was observed from either of the FFPE appendix specimens. The absence of detectable infectivity in fixed, known positive vCJD lymphoreticular tissue precludes interpreting negative transmissions from vCJD prevalence study appendix specimens. In this context, the Hilton et al study should continue to inform risk assessment pending the outcome of larger-scale studies on discarded surgical tissues and autopsy samples.
Collapse
Affiliation(s)
- Jonathan D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Silva JL, Vieira TCRG, Gomes MPB, Rangel LP, Scapin SMN, Cordeiro Y. Experimental approaches to the interaction of the prion protein with nucleic acids and glycosaminoglycans: Modulators of the pathogenic conversion. Methods 2010; 53:306-17. [PMID: 21145399 DOI: 10.1016/j.ymeth.2010.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/02/2010] [Indexed: 11/17/2022] Open
Abstract
The concept that transmissible spongiform encephalopathies (TSEs) are caused only by proteins has changed the traditional paradigm that disease transmission is due solely to an agent that carries genetic information. The central hypothesis for prion diseases proposes that the conversion of a cellular prion protein (PrP(C)) into a misfolded, β-sheet-rich isoform (PrP(Sc)) accounts for the development of (TSE). There is substantial evidence that the infectious material consists chiefly of a protein, PrP(Sc), with no genomic coding material, unlike a virus particle, which has both. However, prions seem to have other partners that chaperone their activities in converting the PrP(C) into the disease-causing isoform. Nucleic acids (NAs) and glycosaminoglycans (GAGs) are the most probable accomplices of prion conversion. Here, we review the recent experimental approaches that have been employed to characterize the interaction of prion proteins with nucleic acids and glycosaminoglycans. A PrP recognizes many nucleic acids and GAGs with high affinities, and this seems to be related to a pathophysiological role for this interaction. A PrP binds nucleic acids and GAGs with structural selectivity, and some PrP:NA complexes can become proteinase K-resistant, undergoing amyloid oligomerization and conversion to a β-sheet-rich structure. These results are consistent with the hypothesis that endogenous polyanions (such as NAs and GAGs) may accelerate the rate of prion disease progression by acting as scaffolds or lattices that mediate the interaction between PrP(C) and PrP(Sc) molecules. In addition to a still-possible hypothesis that nucleic acids and GAGs, especially those from the host, may modulate the conversion, the recent structural characterization of the complexes has raised the possibility of developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jerson L Silva
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.
| | | | | | | | | | | |
Collapse
|
300
|
Manuelidis L. Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD. J Neurovirol 2010; 17:131-45. [PMID: 21165784 DOI: 10.1007/s13365-010-0007-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 11/29/2022]
Abstract
In transmissible encephalopathies (TSEs), it is commonly believed that the host prion protein transforms itself into an infectious form that encodes the many distinct TSE agent strains without any nucleic acid. Using a Ф29 polymerase and chromatography strategy, highly infectious culture and brain preparations of three different geographic TSE agents all contained novel circular DNAs. Two circular "Sphinx" sequences, of 1.8 and 2.4 kb, copurified with infectious particles in sucrose gradients and, as many protected viruses, resisted nuclease digestion. Each contained a replicase ORF related to microviridae that infect commensal Acinetobacter. Infectious gradient fractions also contained nuclease-resistant 16 kb mitochondrial DNAs and analysis of >4,000 nt demonstrated a 100% identity with their species-specific sequences. This confirmed the fidelity of the newly identified sequences detailed here. Conserved replicase regions within the two Sphinx DNAs were ultimately detected by PCR in cytoplasmic preparations from normal cells and brain but were 2,500-fold less than in parallel-infected samples. No trace of the two Sphinx replicases was found in enzymes, detergents, or other preparative materials using exhaustive PCR cycles. The Sphinx sequences uncovered here could have a role in TSE infections despite their apparently symbiotic, low-level persistence in normal cells and tissues. These, as well as other cryptic circular DNAs, may cause or contribute to neurodegeneration and infection-associated tumor transformation. The current results also raise the intriguing possibility that mammals may incorporate more of the prokaryotic world in their cytoplasm than previously recognized.
Collapse
Affiliation(s)
- Laura Manuelidis
- Yale University Medical School, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|