251
|
Abstract
Congenital hypothyroidism is mainly due to structural defects of the thyroid gland, collectively known as thyroid dysgenesis. The two most prevalent forms of this condition are abnormal localization of differentiated thyroid tissue (thyroid ectopia) and total absence of the gland (athyreosis). The clinical picture of thyroid dysgenesis suggests that impaired specification, proliferation and survival of thyroid precursor cells and loss of concerted movement of these cells in a distinct spatiotemporal pattern are major causes of malformation. In normal development the thyroid primordium is first distinguished as a thickening of the anterior foregut endoderm at the base of the prospective tongue. Subsequently, this group of progenitors detaches from the endoderm, moves caudally and ultimately differentiates into hormone-producing units, the thyroid follicles, at a distant location from the site of specification. In higher vertebrates later stages of thyroid morphogenesis are characterized by shape remodeling into a bilobed organ and the integration of a second type of progenitors derived from the caudal-most pharyngeal pouches that will differentiate into C-cells. The present knowledge of thyroid developmental dynamics has emerged from embryonic studies mainly in chicken, mouse and more recently also in zebrafish. This review will highlight the key morphogenetic steps of thyroid organogenesis and pinpoint which crucial regulatory mechanisms are yet to be uncovered. Considering the co-incidence of thyroid dysgenesis and congenital heart malformations the possible interactions between thyroid and cardiovascular development will also be discussed.
Collapse
|
252
|
Abstract
Cellular and tissue regeneration in the gastrointestinal tract and liver depends on stem cells with properties of longevity, self-renewal and multipotency. Progress in stem cell research and the identification of potential esophageal, gastric, intestinal, colonic, hepatic and pancreatic stem cells provides hope for the use of stem cells in regenerative medicine and treatments for disease. Embryonic stem cells and induced pluripotent stem cells have the potential to give rise to any cell type in the human body, but their therapeutic application remains challenging. The use of adult or tissue-restricted stem cells is emerging as another possible approach for the treatment of gastrointestinal diseases. The same self-renewal properties that allow stem cells to remain immortal and generate any tissue can occasionally make their proliferation difficult to control and make them susceptible to malignant transformation. This Review provides an overview of the different types of stem cell, focusing on tissue-restricted adult stem cells in the fields of gastroenterology and hepatology and summarizing the potential benefits and risks of using stems cells to treat gastroenterological and liver disorders.
Collapse
|
253
|
Porazzi P, Calebiro D, Benato F, Tiso N, Persani L. Thyroid gland development and function in the zebrafish model. Mol Cell Endocrinol 2009; 312:14-23. [PMID: 19481582 DOI: 10.1016/j.mce.2009.05.011] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/20/2009] [Accepted: 05/20/2009] [Indexed: 02/05/2023]
Abstract
Thyroid development has been intensively studied in the mouse, where it closely recapitulates the human situation. Despite the lack of a compact thyroid gland, the zebrafish thyroid tissue originates from the pharyngeal endoderm and the main genes involved in its patterning and early development are conserved between zebrafish and mammals. In recent years, the zebrafish has become a powerful model not only for the developmental biology studies, but also for large-scale genetic analyses and drug screenings, mostly thanks to the ease with which its embryos can be manipulated and to its translucent body, which allows in vivo imaging. In this review we will provide an overview of the current knowledge of thyroid gland origin and differentiation in the zebrafish. Moreover, we will consider the action of thyroid hormones and some aspects related to endocrine disruptors.
Collapse
Affiliation(s)
- P Porazzi
- Dipartimento di Scienze Mediche, Università degli Studi di Milano & Lab of Experimental Endocrinology, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano, Milan, Italy.
| | | | | | | | | |
Collapse
|
254
|
Cai J, Yu C, Liu Y, Chen S, Guo Y, Yong J, Lu W, Ding M, Deng H. Generation of homogeneous PDX1(+) pancreatic progenitors from human ES cell-derived endoderm cells. J Mol Cell Biol 2009; 2:50-60. [PMID: 19910415 DOI: 10.1093/jmcb/mjp037] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One key step in producing insulin-secreting cells from human embryonic stem (hES) cells is the generation of pancreatic and duodenal homeobox gene 1 (PDX1)-expressing pancreatic progenitor cells. All-trans retinoic acid (RA) has important roles in pancreas development and is widely used to induce pancreatic differentiation of ES cells. When RA was added directly to the activin A-induced hES cells, <20% cells were positive for the pancreatic marker PDX1, whereas the other cells were mainly hepatic cells. We found that when the activin A-induced hES cells were replated and seeded at low cell densities, the addition of RA induced significant pancreatic differentiation and over 70% of cells in culture expressed PDX1. When the endodermal cells were isolated with the surface marker CXCR4 from the activin A-induced culture and further differentiated with RA, a homogeneous PDX1(+) cell population (over 95% pure) was generated. The PDX1(+) cells could further differentiate into cells that expressed pancreatic transcription factors and pancreatic endocrine or exocrine markers. We also found that RA inhibited the hepatic differentiation of endodermal cells that were seeded at low cell densities, and this inhibition may have been through the inhibition of Smad1/5/8 activity. Thus, we present a highly efficient and reproducible protocol for generating PDX1(+) pancreatic progenitor cells from hES cells.
Collapse
Affiliation(s)
- Jun Cai
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Seuntjens E, Umans L, Zwijsen A, Sampaolesi M, Verfaillie CM, Huylebroeck D. Transforming Growth Factor type beta and Smad family signaling in stem cell function. Cytokine Growth Factor Rev 2009; 20:449-58. [PMID: 19892581 DOI: 10.1016/j.cytogfr.2009.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligands of the Transforming Growth Factor type beta (TGFbeta) family exert multiple and sometimes opposite effects on most cell types in vivo depending on cellular context, which mainly includes the stage of the target cell, the local environment of this cell or niche, and the identity and the dosage of the ligand. Significant progress has been made in the molecular dissection of the regulation of the activity of the ligands and their intracellular signal transduction pathways, including via the canonical Smad pathway where Smads interact with many transcription factors. This knowledge together with results from functional studies within the embryology and stem cell research fields is giving us insight in the role of individual ligands and other components of this signaling system and where and how it regulates many properties of embryonic and adult stem/progenitor cells, which is anticipated to contribute to successful cell-based therapy in the future. We review and discuss recent progress on the effects of Nodal/Activin and Bone Morphogenetic Proteins (BMPs) and their canonical signaling in cells with stem cell properties. We focus on embryonic stem cells and their maintenance and pluripotency, and conversion into selected cell types of neuroectoderm, mesoderm and endoderm, on induced pluripotent cells and on neurogenic cells in the adult brain.
Collapse
Affiliation(s)
- Eve Seuntjens
- Laboratory of Molecular Biology (Celgen) of the Center for Human Genetics, University of Leuven, Flanders Institute of Biotechnology (VIB), Campus Gasthuisberg, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
256
|
Zhang YN, Lie PC, Wei X. Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton's jelly into hepatocyte-like cells. Cytotherapy 2009; 11:548-58. [PMID: 19657806 DOI: 10.1080/14653240903051533] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSC) isolated from bone marrow (BM), adipose tissue and umbilical cord blood can be induced to differentiate into hepatocyte-like cells. MSC can also be isolated from umbilical cord Wharton's jelly (UC MSC), which can be easily obtained. UC MSC are more primitive MSC than those isolated from other tissue sources and do not express the major histocompatibility complex (MHC) class II (HLA-DR) antigens. Previous studies have shown that UC MSC are still viable and not rejected 4 months after transplantation as xenografts, without the need for immune suppression, suggesting that they are a favorable cell source for transplantation. METHODS UC MSC were induced to differentiate into hepatocyte-like cells by a simple one-step protocol with hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. RESULTS UC MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers. They differentiated into osteoblast-, adipocyte- and chondrocyte-like cells, showing their multipotent differentiation potential. Immunocytochemistry, real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis demonstrated that UC MSC expressed the hepatocyte-specific markers albumin (ALB), human alpha-fetoprotein (AFP) and cytokeratin 18 (CK-18) following hepatocyte induction. Periodic acid-Schiff staining showed that differentiated UC MSC could store glycogen, and an low-density lipoprotein (LDL)-uptake assay showed that they could uptake LDL. CONCLUSIONS This study demonstrates that UC MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. UC MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease.
Collapse
Affiliation(s)
- Ying-Nan Zhang
- Multidisciplinary Research Center, Shantou University, Guangdong, China
| | | | | |
Collapse
|
257
|
Abstract
There is significant overlap in the genes and pathways that control liver development and those that regulate liver regeneration, hepatic progenitor cell expansion, response to injury, and cancer. Additionally, defects in liver development may underlie some congenital and perinatal liver diseases. Thus, studying hepatogenesis is important for understanding not only how the liver forms, but also how it functions. Elegant work in mice has uncovered a host of transcription factors and signaling molecules that govern the early steps of hepatic specification; however, the inherent difficulty of studying embryogenesis in utero has driven developmental biologists to seek new systems. The rapidly developing vertebrate zebrafish is a favorite model for embryology. The power of forward genetic screens combined with live real-time imaging of development in transparent zebrafish embryos has highlighted conserved processes essential for hepatogenesis and has uncovered some exciting new players. This review presents the advantages of zebrafish for studying liver development, underscoring how studies in zebrafish and mice complement each other. In addition to their value for studying development, zebrafish models of hepatic and biliary diseases are expanding, and using these small, inexpensive embryos for drug screening has become de rigueur. Zebrafish provide a shared platform for developmental biology and translational research, offering innovative methods for studying liver development and disease. The story of hepatogenesis has something for everyone. It involves transcriptional regulation, cell-cell interaction, signaling pathways, control of cell proliferation and apoptosis, plus morphogenic processes that sculpt vasculature, parenchymal cells, and mesenchyme to form the multifaceted liver. Decades of research on liver development in mice and other vertebrates offer valuable lessons in how the multipotent endoderm is programmed to form a functional liver. Of equal importance are insights that have illuminated the mechanisms by which hepatic progenitors are activated in a damaged liver, how the adult liver regenerates, and, possibly, the basis for engineering liver cells in vitro for cell transplantation to sustain patients with liver failure. Moreover, processes that are key to liver development are often co-opted during pathogenesis. Therefore, reviewing hepatogenesis is informative for both basic and translational researchers. In this review, we bring to light the many advantages offered by the tropical freshwater vertebrate zebrafish (Danio rerio) in studying hepatogenesis. By comparing zebrafish and mice, we highlight how work in each system complements the other and emphasize novel paradigms that have been uncovered using zebrafish. Finally, we highlight exciting efforts using zebrafish to model hepatobiliary diseases.
Collapse
Affiliation(s)
- Jaime Chu
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
258
|
Roszell B, Mondrinos MJ, Seaton A, Simons DM, Koutzaki SH, Fong GH, Lelkes PI, Finck CM. Efficient derivation of alveolar type II cells from embryonic stem cells for in vivo application. Tissue Eng Part A 2009; 15:3351-65. [PMID: 19388834 PMCID: PMC2811058 DOI: 10.1089/ten.tea.2008.0664] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 04/23/2009] [Indexed: 11/12/2022] Open
Abstract
In the present study, mouse embryonic stem cells (ESCs) were differentiated into alveolar epithelial type II (AEII) cells for endotracheal injection. These enriched lung-like populations expressed lung epithelial markers SP-A, SP-B, SP-C, and CC10. First we show that rapid differentiation of ESCs requires a dissociated seeding method instead of an embryoid body culture method. We then investigated a two-step differentiation of ESCs into definitive endoderm by activin or A549-conditioned medium as a precursor to lung epithelial cells. When conditioned medium from A549 cells was used to derive endoderm, yield was increased above that of activin alone. Further studies showed that Wnt3a may be one of the secreted factors produced by A549 cells and promotes definitive endoderm differentiation, in part, through suppression of primitive endoderm. Activin and Wnt3a together at appropriate doses with dissociated cell seeding promoted greater endoderm yield than activin alone. Next, fibroblast growth factor 2 was shown to induce a dose-dependent expression of SPC, and these cells contained lamellar bodies characteristic of mature AEII cells from ESC-derived endoderm. Finally, ES-derived lung cells were endotracheally injected into preterm mice with evidence of AEII distribution within the lung parenchyma. This study concludes that a recapitulation of development may enhance derivation of an enriched population of lung-like cells for use in cell-based therapy.
Collapse
Affiliation(s)
- Blair Roszell
- School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania
- University of Connecticut Health Center, Farmington, Connecticut
| | - Mark J. Mondrinos
- School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Ariel Seaton
- University of Connecticut Health Center, Farmington, Connecticut
| | - Donald M. Simons
- School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Sirma H. Koutzaki
- School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Guo-Hua Fong
- University of Connecticut Health Center, Farmington, Connecticut
| | - Peter I. Lelkes
- School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Christine M. Finck
- University of Connecticut Health Center, Farmington, Connecticut
- Connecticut Children's Medical Center, Hartford, Connecticut
| |
Collapse
|
259
|
Zuba-Surma EK, Kucia M, Rui L, Shin DM, Wojakowski W, Ratajczak J, Ratajczak MZ. Fetal liver very small embryonic/epiblast like stem cells follow developmental migratory pathway of hematopoietic stem cells. Ann N Y Acad Sci 2009; 1176:205-18. [PMID: 19796249 DOI: 10.1111/j.1749-6632.2009.04562.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fetal liver (FL) has been described as a source of both hematopoietic and nonhematopoietic stem cells. Recently we have purified from murine adult bone marrow (BM) a population of CXCR4(+)Oct-4(+)SSEA-1(+)Sca-1(+)Lin(-)CD45(-) very small embryonic/epiblast-like stem cells (VSELs). By employing several complementary imaging and molecular strategies, we report in this study that VSELs, like hematopoietic stem cells (HSCs), are highly enriched in murine FL during the second trimester of gestation. Subsequently, at the beginning of the third trimester of gestation their number decreases, which corresponds to the time when HSCs egress FL and follow the stromal derived factor-1 (SDF-1) gradient in order to colonize developing BM. Thus, our data support the hypothesis that VSELs are a mobile pool of primitive stem cells that respond to similar chemotactic gradients as HSCs and follow their developmental migratory route.
Collapse
Affiliation(s)
- Ewa K Zuba-Surma
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
260
|
Zhao Q, Ren H, Li X, Chen Z, Zhang X, Gong W, Liu Y, Pang T, Han ZC. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy 2009; 11:414-26. [PMID: 19513901 DOI: 10.1080/14653240902849754] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSC) isolated from several human tissues have been known to differentiate into the hepatic lineage in vitro, but the immunogenicity of the differentiated hepatocyte-like cells (DHC) has not been reported. Umbilical cord (UC) MSC are thought to be an attractive cell source for cell therapy because of their young age and low infection rate compared with adult tissue MSC. METHODS Hepatic differentiation of UC-MSC was induced with a 2-step protocol. The expressions of hepatic markers were detected by RT-PCR and immunofluorescence staining. Albumin production and urea secretion were measured by ELISA and colorimetric assay respectively. The immunosuppressive properties of DHC was detected by mixed lymphocyte culture. RESULTS After incubation with specific growth factors, including hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), UC MSC exhibited a high hepatic differentiation ability in an adherent culture condition. The differentiated UC MSC showed hepatocyte-like morphology and expressed several liver-specific markers at gene and protein levels. Furthermore, the DHC exhibited hepatocyte-specific functions, including albumin secretion, low-density lipoprotein uptake and urea production. More importantly, DHC did not express major histocompatibility complex (MHC) II antigen and were not able to induce lymphocyte proliferation in mixed lymphocyte culture, as undifferentiated UC MSC did. CONCLUSIONS Our results indicate that UC MSC are able to differentiate into functional hepatocyte-like cells that still retain their low immunogenicity in vitro. More importantly, DHC incorporated into the parenchyma of liver when transplanted into mice with CCl(4)-induced liver injury. Therefore, DHC may be an ideal source for cell therapy of liver diseases.
Collapse
Affiliation(s)
- Qinjun Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Lin Y, Yan L, Cheng N. Application of bone marrow cells: A novel therapy for bile leak? Med Hypotheses 2009; 73:374-6. [DOI: 10.1016/j.mehy.2009.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 12/28/2022]
|
262
|
Chivu M, Dima SO, Stancu CI, Dobrea C, Uscatescu V, Necula LG, Bleotu C, Tanase C, Albulescu R, Ardeleanu C, Popescu I. In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors. Transl Res 2009; 154:122-132. [PMID: 19665688 DOI: 10.1016/j.trsl.2009.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/06/2009] [Accepted: 05/29/2009] [Indexed: 02/07/2023]
Abstract
Recent findings demonstrated that stem cells could be harvested from a patient and used to repair his or her own damaged liver. Additionally, stem cells may be manipulated in vitro to induce hepatic differentiation. The current study aims to determine the differentiation efficacy of various liver-specific factors (hepatocyte growth factor, Insulin-Transferrin-Selenium, dexamethasone, and nicotinamide) used for stem cell differentiation into hepatocyte-like cells. Human mesenchymal stem cells were exposed to different media containing these compounds added individually or in various combinations. Hepatic differentiation was assessed via quantitative reverse transcription-polymerase chain reaction and immunocytochemical staining for stemness or liver-specific genes and proteins, including albumin, cytokeratins 18 and 19, HepPar-1, alpha-fetoprotein, and nestin. In addition, functional tests for glycogen storage, urea production, glucose, and albumin synthesis were also performed. The expression profiles of albumin, alpha-fetoprotein, and cytokeratin 19 demonstrated that when hepatocyte growth factor, nicotinamide, or dexamethasone were added individually, incomplete hepatocyte differentiation was achieved; the obtained cell populations contained progenitors that expressed both hepatic (albumin) and biliary (cytokeratin 19) markers, as well as alpha-fetoprotein. Hepatocyte growth factor and nicotinamide were the factors with the most hepatogenic potential. When all factors were added to the culture, cells exhibited features that closely resembled human adult hepatocytes as determined by their gene expression patterns (albumin, HepPar-1, and alpha-fetoprotein, but not cytokeratin 19) and functional testing. These cells with hepatic function may become important tools for liver transplant procedures, liver development studies, and pharmacologic research.
Collapse
Affiliation(s)
- Mihaela Chivu
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Liu T, Wang Y, Tai G, Zhang S. Could co-transplantation of iPS cells derived hepatocytes and MSCs cure end-stage liver disease? Cell Biol Int 2009; 33:1180-3. [PMID: 19716896 DOI: 10.1016/j.cellbi.2009.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/27/2009] [Accepted: 08/17/2009] [Indexed: 11/29/2022]
Abstract
Orthotopic liver transplantation is, to date, the only proven effective treatment for end-stage liver disease. However, it suffers from lack of donors and immunorejection. Here, we speculate that co-transplantation of induced pluripotent stem (iPS) cells derived hepatocytes and mesenchymal stem cells (MSCs) may offer an alternative way to treat patients with end-stage liver disease. Recently, progress on iPS cells, homogeneous differentiation of hepatocyte-like cells from embryonic stem cells (ESCs), and paracrine effects by MSCs highlight the possibility. Safe, efficient and rapid generation of iPS cells has been reliably produced by several experimental laboratories. Methods for highly efficient and homogeneous differentiation of ESCs into functional hepatocytes have been established as well. Moreover, paracrine effects by MSCs have been proven to play an important role in liver regeneration and repair, and the effects can be used as an enhancer for engraftment. All of these remarkable developments lead to this hypothesis which may offer a novel therapeutic strategy for treatment of patients with end-stage liver disease, though some issues about safety and efficacy need to be further guaranteed.
Collapse
Affiliation(s)
- Tao Liu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | |
Collapse
|
264
|
Liver development in zebrafish (Danio rerio). J Genet Genomics 2009; 36:325-34. [PMID: 19539242 DOI: 10.1016/s1673-8527(08)60121-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/17/2009] [Accepted: 04/17/2009] [Indexed: 12/17/2022]
Abstract
Liver is one of the largest internal organs in the body and its importance for metabolism, detoxification and homeostasis has been well established. In this review, we summarized recent progresses in studying liver initiation and development during embryogenesis using zebrafish as a model system. We mainly focused on topics related to the specification of hepatoblasts from endoderm, the formation and growth of liver bud, the differentiation of hepatocytes and bile duct cells from hepatoblasts, and finally the role of mesodermal signals in controlling liver development in zebrafish.
Collapse
|
265
|
Huppert SS, Magnuson MA. New complexity in differentiating stem cells toward hepatic and pancreatic fates. Sci Signal 2009; 2:pe50. [PMID: 19671927 DOI: 10.1126/scisignal.283pe50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The differentiation of hepatic and pancreatic progenitor cells during embryogenesis is determined by inductive factors secreted by neighboring cells. These factors stimulate and repress the expression of key regulatory genes in progenitor cells, thereby establishing unique genetic programs that determine cell fate. The signaling network that controls liver and pancreas development is highly dynamic with respect to both concentration and timing of exposure to several key inductive factors. Not only do large changes occur within short time frames, multiple signaling pathways also converge on the same target genes. Given the intense effort under way to generate certain differentiated cell types from both embryonic and induced pluripotent stem cells, greater understanding of how different inductive signals interact with each other may be essential for the eventual success of such efforts.
Collapse
Affiliation(s)
- Stacey S Huppert
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
266
|
Souza BSDF, Nogueira RC, de Oliveira SA, de Freitas LAR, Lyra LGC, Ribeiro dos Santos R, Lyra AC, Soares MBP. Current status of stem cell therapy for liver diseases. Cell Transplant 2009; 18:1261-79. [PMID: 19660179 DOI: 10.3727/096368909x470522] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver failure is one of the main causes of death worldwide and is a growing health problem. Since the discovery of stem cell populations capable of differentiating into specialized cell types, including hepatocytes, the possibility of their utilization in the regeneration of the damaged liver has been a focus of intense investigation. A variety of cell types were tested both in vitro and in vivo, but the definition of a more suitable cell preparation for therapeutic use in each type of liver lesions is yet to be determined. Here we review the protocols described for differentiation of stem cells into hepatocytes, the results of cell therapy in animal models of liver diseases, as well as the available data of the clinical trials in patients with advanced chronic liver disease.
Collapse
|
267
|
Bonora-Centelles A, Jover R, Mirabet V, Lahoz A, Carbonell F, Castell JV, Gómez-Lechón MJ. Sequential hepatogenic transdifferentiation of adipose tissue-derived stem cells: relevance of different extracellular signaling molecules, transcription factors involved, and expression of new key marker genes. Cell Transplant 2009; 18:1319-40. [PMID: 19660180 DOI: 10.3727/096368909x12483162197321] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue contains a mesenchymal stem cell (MSC) population known as adipose-derived stem cells (ASCs) capable of differentiating into different cell types. Our aim was to induce hepatic transdifferentiation of ASCs by sequential exposure to several combinations of cytokines, growth factors, and hormones. The most efficient hepatogenic protocol includes fibroblastic growth factors (FGF) 2 and 4 and epidermal growth factor (EGF) (step 1), hepatocyte growth factor (HGF), FGF2, FGF4, and nicotinamide (Nic) (step 2), and oncostatin M (OSM), dexamethasone (Dex), and insulin-tranferrin-selenium (step 3). This protocol activated transcription factors [GATA6, Hex, CCAAT/enhancer binding protein alpha and beta (CEBPalpha and beta), peroxisome proliferator-activated receptor-gamma, coactivator 1 alpha (PGC1alpha), and hepatocyte nuclear factor 4 alpha (HNF4alpha)], which promoted a characteristic hepatic phenotype, as assessed by new informative markers for the step-by-step hepatic transdifferentiation of hMSC [early markers: albumin (ALB), alpha-2-macroglobuline (alpha2M), complement protein C3 (C3), and selenoprotein P1 (SEPP1); late markers: cytochrome P450 3A4 (CYP3A4), apolipoprotein E (APOE), acyl-CoA synthetase long-chain family member 1 (ACSL1), and angiotensin II receptor, type 1 (AGTR1)]. The loss of adipose adult stem cell phenotype was detected by losing expression of Thy1 and inhibitor of DNA binding 3 (Id3). The reexpression of phosphoenolpyruvate corboxykinase (PEPCK), apolipoprotein C3 (APOCIII), aldolase B (ALDOB), and cytochrome P450 1A2 (CYP1A2) was achieved by transduction with a recombinant adenovirus for HNF4alpha and finally hepatic functionality was also assessed by analyzing specific biochemical markers. We conclude that ASCs could represent an alternative tool in clinical therapy for liver dysfunction and regenerative medicine.
Collapse
Affiliation(s)
- A Bonora-Centelles
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
268
|
Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 2009; 137:62-79. [PMID: 19328801 DOI: 10.1053/j.gastro.2009.03.035] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/15/2009] [Accepted: 03/18/2009] [Indexed: 12/12/2022]
Abstract
The study of liver development has significantly contributed to developmental concepts about morphogenesis and differentiation of other organs. Knowledge of the mechanisms that regulate hepatic epithelial cell differentiation has been essential in creating efficient cell culture protocols for programmed differentiation of stem cells to hepatocytes as well as developing cell transplantation therapies. Such knowledge also provides a basis for the understanding of human congenital diseases. Importantly, much of our understanding of organ development has arisen from analyses of patients with liver deficiencies. We review how the liver develops in the embryo and discuss the concepts that operate during this process. We focus on the mechanisms that control the differentiation and organization of the hepatocytes and cholangiocytes and refer to other reviews for the development of nonepithelial tissue in the liver. Much progress in the characterization of liver development has been the result of genetic studies of human diseases; gaining a better understanding of these mechanisms could lead to new therapeutic approaches for patients with liver disorders.
Collapse
|
269
|
Kakinuma S, Ohta H, Kamiya A, Yamazaki Y, Oikawa T, Okada K, Nakauchi H. Analyses of cell surface molecules on hepatic stem/progenitor cells in mouse fetal liver. J Hepatol 2009; 51:127-38. [PMID: 19439389 DOI: 10.1016/j.jhep.2009.02.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/10/2009] [Accepted: 02/18/2009] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hepatic stem/progenitor cells possess active proliferative ability and the capacity for differentiation into hepatic and cholangiocytic lineages. Our group and others have shown that a prospectively defined population in mid-gestational fetal liver contains hepatic stem/progenitor cells. However, the phenotypes of such cells are incompletely elucidated. We analyzed the profile of cell-surface molecules on primary hepatic stem/progenitor cells. METHODS Expression of cell surface molecules on primary hepatic stem/progenitor cells in mouse mid-gestational fetal liver was analyzed using flow cytometric multicolor analyses and colony-formation assays. The potential of the cells for liver repopulation was examined by transplantation assay. RESULTS We found that CD13 (aminopeptidase N) was detected on the cells of the previously reported (Dlk/Pref-1(+)) hepatic stem/progenitor fraction. Colony-formation assays revealed that the CD13(+) fraction, compared with the Dlk(+) fraction, of non-hematopoietic cells in fetal liver was enriched in hepatic stem/progenitor cells. Transplantation assay showed the former fraction exhibited repopulating potential in regenerating liver. Moreover, flow cytometric analysis for over 90 antigens demonstrated enrichment of hepatic stem/progenitor cells using several positive selection markers, including (hitherto unknown) CD13, CD73, CD106, and CD133. CONCLUSIONS Our data indicated that CD13 is a positive selection marker for hepatic stem/progenitor cells in mid-gestational fetal liver.
Collapse
Affiliation(s)
- Sei Kakinuma
- Division of Stem Cell Therapy, Center for Stem Cell and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 1088639, Japan
| | | | | | | | | | | | | |
Collapse
|
270
|
Abstract
The liver is an organ with vital functions, including the processing and storage of nutrients, maintenance of serum composition, detoxification and bile production. Over the last 10 years, there have been major advances in our understanding of the molecular and cellular mechanisms underlying liver development. These advances have been achieved through the use of knockout mice as well as through forward-genetics studies employing mutant fish. The examination of many such murine and piscine mutants with defects in liver formation and/or function have pinpointed numerous factors crucial for hepatic cell differentiation and growth. In addition, these studies have permitted the identification of several important liver-specific markers that allow the contributions of variouscell types to hepatogenesis to be monitored. This review summarizes our current state of knowledge of the shared molecular mechanisms that underlie liver development in species as diverse as fish and mice. A better molecular understanding of liver formation may provide new insights into both normal liver biology and liver disease.
Collapse
Affiliation(s)
- Takashi Nakamura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
271
|
Wandzioch E, Zaret KS. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science 2009; 324:1707-10. [PMID: 19556507 PMCID: PMC2771431 DOI: 10.1126/science.1174497] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studies of the formation of pancreas and liver progenitors have focused on individual inductive signals and cellular responses. Here, we investigated how bone morphogenetic protein, transforming growth factor-beta (TGFbeta), and fibroblast growth factor signaling pathways converge on the earliest genes that elicit pancreas and liver induction in mouse embryos. The inductive network was found to be dynamic; it changed within hours. Different signals functioned in parallel to induce different early genes, and two permutations of signals induced liver progenitor domains, which revealed flexibility in cell programming. Also, the specification of pancreas and liver progenitors was restricted by the TGFbeta pathway. These findings may enhance progenitor cell specification from stem cells for biomedical purposes and can help explain incomplete programming in stem cell differentiation protocols.
Collapse
Affiliation(s)
- Ewa Wandzioch
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
272
|
Kan NG, Junghans D, Izpisua Belmonte JCI. Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. FASEB J 2009; 23:3516-25. [PMID: 19546304 DOI: 10.1096/fj.09-131730] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, we describe the zebrafish (Danio rerio) as a vertebrate model system to study liver regeneration with the added benefit of its powerful genetics and screening possibilities to uncover the molecular pathways underlying liver regeneration. We developed a partial hepatectomy (PH) protocol in zebrafish and investigated in detail the cellular and morphological changes during the process of liver regeneration. We show that the type of regenerative response is dependent on the size of the injury sustained by the zebrafish liver. Furthermore, we demonstrate for the first time that the mechanisms of liver regeneration in zebrafish after PH are strikingly similar to those of rodents and humans, with 100% recovery of the liver mass after 6-7 d postsurgery. This occurs via compensatory growth mediated by proliferation of hepatocytes throughout the entire liver remnant. By analyzing transgenic fish expressing dominant-negative forms of either bone morphogenetic protein (BMP) receptor or fibroblast growth factor (FGF) receptor 1, we demonstrate that the BMP and FGF signaling pathways are crucial regulators of the early events during liver regeneration after PH. Our study demonstrates that the mechanisms of liver regeneration in zebrafish are highly similar to the processes ongoing during mammalian liver regeneration and make the adult zebrafish a suitable model system to study the mechanisms of liver regeneration.
Collapse
Affiliation(s)
- Natalia G Kan
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | |
Collapse
|
273
|
Tanaka M, Okabe M, Suzuki K, Kamiya Y, Tsukahara Y, Saito S, Miyajima A. Mouse hepatoblasts at distinct developmental stages are characterized by expression of EpCAM and DLK1: drastic change of EpCAM expression during liver development. Mech Dev 2009; 126:665-76. [PMID: 19527784 DOI: 10.1016/j.mod.2009.06.939] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 05/29/2009] [Accepted: 06/06/2009] [Indexed: 12/15/2022]
Abstract
Hepatoblasts are hepatic progenitor cells that expand and give rise to either hepatocyte or cholangiocytes during liver development. We previously reported that delta-like 1 homolog (DLK1) is expressed in the mouse liver primordium at embryonic day (E) 10.5 and that DLK1(+) cells in E14.5 liver contain high proliferative and bipotential hepatoblasts. While the expression of epithelial cell adhesion molecule (EpCAM) in hepatic stem/progenitor cells has been reported, its expression profile at an early stage of liver development remains unknown. In this study, we show that EpCAM is expressed in mouse liver bud at E9.5 and that EpCAM(+)DLK1(+) hepatoblasts form hepatic cords at the early stage of hepatogenesis. DLK1(+) cells of E11.5 liver were fractionated into EpCAM(+) and EpCAM(-) cells; one forth of EpCAM(+)DLK1(+) cells formed a colony in vitro whereas EpCAM(-)DLK1(+) cells rarely did it. Moreover, EpCAM(+)DLK1(+) cells contained cells capable of forming a large colony, indicating that EpCAM(+)DLK1(+) cells in E11.5 liver contain early hepatoblasts with high proliferation potential. Interestingly, EpCAM expression in hepatoblasts was dramatically reduced along with liver development and the colony-forming capacities of both EpCAM(+)DLK1(+) and EpCAM(-)DLK1(+) cells were comparable in E14.5 liver. It strongly suggested that most of mouse hepatoblasts are losing EpCAM expression at this stage. Moreover, we provide evidence that EpCAM(+)DLK1(+) cells in E11.5 liver contain extrahepatic bile duct cells as well as hepatoblasts, while EpCAM(-)DLK1(+) cells contain mesothelial cell precursors. Thus, the expression of EpCAM and DLK1 suggests the developmental pathways of mouse liver progenitors.
Collapse
Affiliation(s)
- Minoru Tanaka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan.
| | | | | | | | | | | | | |
Collapse
|
274
|
In vitro transdifferentiation of human hepatoma cells into pancreatic-like cells. Methods Mol Biol 2009. [PMID: 19504247 DOI: 10.1007/978-1-59745-448-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Transdifferentiation is defined as an irreversible switch in postnatal life of one differentiated cell to another. Transdifferentiation from different cellular origins into pancreatic-like beta-cells is of clinical significance since this approach may offer a potential cure for diabetes. In order to achieve this goal, the liver is considered as a suitable candidate due to its close developmental relationship to the pancreas, its large size and a well-documented regenerative capacity that could provide enough original tissues to initiate the transdifferentiation procedure. In this chapter, we describe a protocol to overexpress Pdx1, a master regulator essential for pancreas development in the cultured human liver cell line, HepG2.
Collapse
|
275
|
Stimulating effects of fibroblast growth factors on hepatic function of fetal liver cells synergistically with oncostatin M in three-dimensional culture. J Biosci Bioeng 2009; 107:307-11. [PMID: 19269598 DOI: 10.1016/j.jbiosc.2008.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 11/24/2022]
Abstract
Fetal liver cells (FLCs) are regarded as a feasible cell source of bioartificial liver (BAL), because the FLCs have proliferating ability even in vitro. However, the cellular functions of FLCs are considerably lower compared with mature hepatocytes. Thus, maturation of cultured FLCs is essential for enhancing the performance of the BAL using the FLCs. In the present study, the effects of fibroblast growth factors (FGF-1, FGF-2, and FGF-4) on cell growth and the liver-specific functions of mouse FLCs were investigated in the presence or absence of oncostatin M (OSM), under both three-dimensional (3-D) and monolayer culture conditions. When FGF-2 was used, no stimulating effects on the albumin secretion activities of the FLCs were observed either in the 3-D or monolayer cultures, although cell growth was improved in these cultures. In the cases of FGF-1 and FGF-4, these factors also had no effect on the albumin secretion activities in the absence of OSM. However, in the presence of OSM, FGF-1 and FGF-4 significantly enhanced the activities of the FLCs but only in the 3-D cultures. From scanning electron microscopic observation, the 3-D culture FLCs formed big cell aggregates on the surface of a porous scaffold. In conclusion, it was clarified that FGF-1 and FGF-4 facilitate the maturation of 3-D culture FLCs synergistically with OSM.
Collapse
|
276
|
Momose Y, Matsunaga T, Murai K, Takezawa T, Ohmori S. Differentiation of monkey embryonic stem cells into hepatocytes and mRNA expression of cytochrome p450 enzymes responsible for drug metabolism: comparison of embryoid body formation conditions and matrices. Biol Pharm Bull 2009; 32:619-26. [PMID: 19336894 DOI: 10.1248/bpb.32.619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of embryoid body (EB) forming conditions on the expression of hepatocyte marker genes such as alpha-fetoprotein, albumin and CYP7A1 in cells cultured on Matrigel-coated plates for 15 d. The expression levels of hepatocyte marker genes in the cells cultured for 2 d for EB formation from cynomolgus monkey embryonic stem (cmES) cells was higher than those in cells cultured for 5 d. However, the fragment-size of cmES colonies did not markedly affect the expression levels. The expression levels of hepatocyte marker genes, and CYP1A1 and CYP2C43 in cells cultured on Matrigel were considerably higher than those on Matrigel reduced and collagen I. CYP1A1 and CYP3A8 mRNAs were significantly induced by 3-methylcholanthrene and rifampicin, respectively. However, CYP2C43 and CYP2D17 were not induced by these compounds. These results suggested that the differentiation into hepatocytes is affected by the incubation period for EB formation, and that Matrigel successfully promoted in vitro differentiation of cmES cells to hepatocytes.
Collapse
|
277
|
Abstract
Use of human hepatocytes for therapeutic and drug discovery applications is hampered by limited tissue source and the inability of hepatocytes to proliferate and maintain function long-term in vitro. Human embryonic stem (hES) cells are immortal and pluripotent and may provide a cell source for functional human hepatocytes (1) Here we have outlined some of the protocols currently in use for the generation of hepatocytes from hES cells.
Collapse
Affiliation(s)
- Niloufar Safinia
- Stem Cell Biology Laboratory, Wolfson Centre for Age-Related Diseases Kings College London, London, UK
| | | |
Collapse
|
278
|
Sumitran-Holgersson S, Nowak G, Thowfeequ S, Begum S, Joshi M, Jaksch M, Kjaeldgaard A, Jorns C, Ericzon BG, Tosh D. Generation of Hepatocyte-Like Cells from in Vitro Transdifferentiated Human Fetal Pancreas. Cell Transplant 2009; 18:183-93. [DOI: 10.3727/096368909788341333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although the appearance of hepatic foci in the pancreas has been described in animal experiments and in human pathology, evidence for the conversion of human pancreatic cells to liver cells is still lacking. We therefore investigated the developmental plasticity between human embryonic pancreatic cells and liver cells. Cells were isolated and expanded from 7–8-week-old human fetal pancreata (HFP) and were characterized for the absence and presence of pancreatic and hepatic markers. In vitro expanded HFP were treated with fibroblast growth factor 2 (FGF2) and dexamethasone (DX) to induce a liver phenotye in the cells. These treated cells in various passages were further studied for their capacity to be functional in hepatic parenchyma following retrorsine-induced injury in nude C57 black mice. Amylase- and EPCAM-positive-enriched cells isolated from HFP and treated with FGF2 and DX lost expression of pancreatic markers and gained a liver phenotype. Hepatic differentiation was based on the expression (both at the mRNA and protein level) of liver markers albumin and cytokeratin 19. When transplanted in vivo into nude mice treated with retrorsine, both cell types successfully engrafted and functionally differentiated into hepatic cells expressing human albumin, glycogen, dipeptidyl peptidase, and γ-glutamyltranspeptidase. These data indicate that human fetal pancreatic cells have a capacity to alter their gene expression profile in response to exogenous treatment with FGF2 and DX. It may be possible to generate an unlimited supply of hepatocytes in vitro for cell therapy.
Collapse
Affiliation(s)
- Suchitra Sumitran-Holgersson
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Greg Nowak
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Shifaan Thowfeequ
- Centre for Regenerative Medicine, Department of Biology & Biochemistry, University of Bath, Bath, UK
| | - Setara Begum
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Meghnad Joshi
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marie Jaksch
- The Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Anders Kjaeldgaard
- Division of Obstetrics and Gynecology, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Göran Ericzon
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - David Tosh
- Centre for Regenerative Medicine, Department of Biology & Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
279
|
Kamada Y, Yoshida Y, Saji Y, Fukushima J, Tamura S, Kiso S, Hayashi N. Transplantation of basic fibroblast growth factor-pretreated adipose tissue-derived stromal cells enhances regression of liver fibrosis in mice. Am J Physiol Gastrointest Liver Physiol 2009; 296:G157-67. [PMID: 19056764 DOI: 10.1152/ajpgi.90463.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adipose tissue-derived stromal cells (ADSC) potentially differentiate into various cell types similar to bone marrow-derived mesenchymal stromal cells (BMSC). Unlike BMSC, ADSC can be harvested easily and repeatedly. However, the advantages of ADSC for cell transplantation in liver disease remain unclear. To investigate this, we developed a novel culture system for ADSC, as well as effective methods for transplantation of ADSC into mice liver. ADSC were isolated from subcutaneous adipose tissues of male C57BL6/J mice and cultured on plastic dishes with or without basic fibroblast growth factor (bFGF). In the in vivo study, ADSC isolated from green fluorescent protein-transgenic mice were transplanted into carbon tetrachloride-injured C57BL6/J mice liver. bFGF-treated ADSC expressed several liver-specific marker genes and demonstrated liver-related functions such as albumin secretion, glycogen synthesis, urea production, and low-density lipoprotein uptake. Importantly, pretreatment of ADSC with bFGF for 1 wk enhanced the repopulation rate of ADSC in mice liver, attenuated liver fibrosis, and restored normal serum alanine aminotransferase and albumin levels. The results indicate that basic FGF facilitates transdifferentiation of ADSC into hepatic lineage cells in vitro and that transplantation of bFGF-pretreated ADSC reduced hepatic fibrosis in mice. ADSC are a potentially valuable source of cells for transplantation therapy.
Collapse
Affiliation(s)
- Yoshihiro Kamada
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
280
|
|
281
|
Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, Shetty K, Johnson L, Reddy EP. Liver stem cells and hepatocellular carcinoma. HEPATOLOGY (BALTIMORE, MD.) 2009. [PMID: 19111019 DOI: 10.1002/hep.22704.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the existence of cancer stem cells (CSCs) was first proposed over 40 years ago, only in the past decade have these cells been identified in hematological malignancies, and more recently in solid tumors that include liver, breast, prostate, brain, and colon. Constant proliferation of stem cells is a vital component in liver tissues. In these renewing tissues, mutations will most likely result in expansion of the altered stem cells, perpetuating and increasing the chances of additional mutations and tumor progression. However, many details about hepatocellular cancer stem cells that are important for early detection remain poorly understood, including the precise cell(s) of origin, molecular genetics, and the mechanisms responsible for the highly aggressive clinical picture of hepatocellular carcinoma (HCC). Exploration of the difference between CSCs from normal stem cells is crucial not only for the understanding of tumor biology but also for the development of specific therapies that effectively target these cells in patients. These ideas have drawn attention to control of stem cell proliferation by the transforming growth factor beta (TGF-beta), Notch, Wnt, and Hedgehog pathways. Recent evidence also suggests a key role for the TGF-beta signaling pathway in both hepatocellular cancer suppression and endoderm formation, suggesting a dual role for this pathway in tumor suppression as well as progression of differentiation from a stem or progenitor stage. This review provides a rationale for detecting and analyzing tumor stem cells as one of the most effective ways to treat cancers such as HCC.
Collapse
Affiliation(s)
- Lopa Mishra
- Laboratory of Cancer Genetics, Digestive Diseases, and Developmental Molecular Biology, Department of Surgery, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Huang H, Ruan H, Aw MY, Hussain A, Guo L, Gao C, Qian F, Leung T, Song H, Kimelman D, Wen Z, Peng J. Mypt1-mediated spatial positioning of Bmp2-producing cells is essential for liver organogenesis. Development 2009; 135:3209-18. [PMID: 18776143 DOI: 10.1242/dev.024406] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesodermal tissues produce various inductive signals essential for morphogenesis of endodermal organs. However, little is known about how the spatial relationship between the mesodermal signal-producing cells and their target endodermal organs is established during morphogenesis. Here, we report that a mutation in the zebrafish myosin phosphatase targeting subunit 1 (mypt1) gene causes abnormal bundling of actin filaments and disorganization of lateral plate mesoderm (LPM) and endoderm cells. As a result, the coordination between mesoderm and endoderm cell movements is disrupted. Consequently, the two stripes of Bmp2a-expressing cells in the LPM fail to align in a V-shaped pocket sandwiching the liver primordium. Mispositioning Bmp2a-producing cells with respect to the liver primordium leads to a reduction in hepatoblast proliferation and final abortion of hepatoblasts by apoptosis, causing the liverless phenotype. Our results demonstrate that Mypt1 mediates coordination between mesoderm and endoderm cell movements in order to carefully position the liver primordium such that it receives a Bmp signal that is essential for liver formation in zebrafish.
Collapse
Affiliation(s)
- Honghui Huang
- Laboratory of Functional Genomics, Institute of Molecular and Cell Biology, Proteos, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Abstract
The endoderm germ layer contributes to the respiratory and gastrointestinal tracts and to all of their associated organs. Over the past decade, studies in vertebrate model organisms, including frog, fish, chick, and mouse, have greatly enhanced our understanding of the molecular basis of endoderm organ development. We review this progress with a focus on early stages of endoderm organogenesis including endoderm formation, gut tube morphogenesis and patterning, and organ specification. Lastly, we discuss how developmental mechanisms that regulate endoderm organogenesis are used to direct differentiation of embryonic stem cells into specific adult cell types, which function to alleviate disease symptoms in animal models.
Collapse
Affiliation(s)
- Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229
| |
Collapse
|
284
|
Abstract
Although endodermal organs including the liver, pancreas, and intestine are of significant therapeutic interest, the mechanism by which the endoderm is divided into organ domains during embryogenesis is not well understood. To better understand this process, global gene expression profiling was performed on early endodermal organ domains. This global analysis was followed up by dynamic immunofluorescence analysis of key transcription factors, uncovering novel expression patterns as well as cell surface proteins that allow prospective isolation of specific endodermal organ domains. Additionally, a repressive interaction between Cdx2 and Sox2 was found to occur at the prospective stomach-intestine border, with the hepatic and pancreatic domains forming at this boundary, and Hlxb9 was revealed to have graded expression along the dorsal-ventral axis. These results contribute to understanding the mechanism of endodermal organogenesis and should assist efforts to replicate this process using pluripotent stem cells.
Collapse
Affiliation(s)
- Richard I Sherwood
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
285
|
|
286
|
Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, Shetty K, Johnson L, Reddy EP. Liver stem cells and hepatocellular carcinoma. Hepatology 2009; 49:318-29. [PMID: 19111019 PMCID: PMC2726720 DOI: 10.1002/hep.22704] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the existence of cancer stem cells (CSCs) was first proposed over 40 years ago, only in the past decade have these cells been identified in hematological malignancies, and more recently in solid tumors that include liver, breast, prostate, brain, and colon. Constant proliferation of stem cells is a vital component in liver tissues. In these renewing tissues, mutations will most likely result in expansion of the altered stem cells, perpetuating and increasing the chances of additional mutations and tumor progression. However, many details about hepatocellular cancer stem cells that are important for early detection remain poorly understood, including the precise cell(s) of origin, molecular genetics, and the mechanisms responsible for the highly aggressive clinical picture of hepatocellular carcinoma (HCC). Exploration of the difference between CSCs from normal stem cells is crucial not only for the understanding of tumor biology but also for the development of specific therapies that effectively target these cells in patients. These ideas have drawn attention to control of stem cell proliferation by the transforming growth factor beta (TGF-beta), Notch, Wnt, and Hedgehog pathways. Recent evidence also suggests a key role for the TGF-beta signaling pathway in both hepatocellular cancer suppression and endoderm formation, suggesting a dual role for this pathway in tumor suppression as well as progression of differentiation from a stem or progenitor stage. This review provides a rationale for detecting and analyzing tumor stem cells as one of the most effective ways to treat cancers such as HCC.
Collapse
Affiliation(s)
- Lopa Mishra
- Laboratory of Cancer Genetics, Digestive Diseases, and Developmental Molecular Biology, Department of Surgery, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Abstract
Liver and pancreas progenitors develop from endoderm cells in the embryonic foregut. Shortly after their specification, liver and pancreas progenitors rapidly acquire markedly different cellular functions and regenerative capacities. These changes are elicited by inductive signals and genetic regulatory factors that are highly conserved among vertebrates. Interest in the development and regeneration of the organs has been fueled by the intense need for hepatocytes and pancreatic beta cells in the therapeutic treatment of liver failure and type I diabetes. Studies in diverse model organisms have revealed evolutionarily conserved inductive signals and transcription factor networks that elicit the differentiation of liver and pancreatic cells and provide guidance for how to promote hepatocyte and beta cell differentiation from diverse stem and progenitor cell types.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Epigenetics and Progenitor Cells Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
288
|
Zaret KS, Watts J, Xu J, Wandzioch E, Smale ST, Sekiya T. Pioneer factors, genetic competence, and inductive signaling: programming liver and pancreas progenitors from the endoderm. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 73:119-26. [PMID: 19028990 PMCID: PMC2773436 DOI: 10.1101/sqb.2008.73.040] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endoderm is a multipotent progenitor cell population in the embryo that gives rise to the liver, pancreas, and other cell types and provides paradigms for understanding cell-type specification. Studies of isolated embryo tissue cells and genetic approaches in vivo have defined fibroblast growth factor/mitogen-activated protein kinase (FGF/MAPK) and bone morphogenetic protein (BMP) signaling pathways that induce liver and pancreatic fates in the endoderm. In undifferentiated endoderm cells, the FoxA and GATA transcription factors are among the first to engage silent genes, helping to endow competence for cell-type specification. FoxA proteins can bind their target sites in highly compacted chromatin and open up the local region for other factors to bind; hence, they have been termed "pioneer factors." We recently found that FoxA proteins remain bound to chromatin in mitosis, as an epigenetic mark. In embryonic stem cells, which lack FoxA, FoxA target sites can be occupied by FoxD3, which in turn helps to maintain a local demethylation of chromatin. By these means, a cascade of Fox factors helps to endow progenitor cells with the competence to activate genes in response to tissue-inductive signals. Understanding such epigenetic mechanisms for transcriptional competence coupled with knowledge of the relevant signals for cell-type specification should greatly facilitate efforts to predictably differentiate stem cells to liver and pancreatic fates.
Collapse
Affiliation(s)
- K S Zaret
- Epigenetics and Progenitor Cells Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
289
|
Zhang L, Theise N, Chua M, Reid LM. The stem cell niche of human livers: symmetry between development and regeneration. Hepatology 2008; 48:1598-1607. [PMID: 18972441 DOI: 10.1002/hep.22516] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human livers contain two pluripotent progenitors: hepatic stem cells and hepatoblasts. The hepatic stem cells uniquely express the combination of epithelial cell adhesion molecule (EpCAM), neural cell adhesion molecule (NCAM), cytokeratin (CK) 19, albumin +/-, and are negative for alpha-fetoprotein (AFP). They are precursors to hepatoblasts, which differ from hepatic stem cells in size, morphology, and in expressing the combination of EpCAM, intercellular cell adhesion molecule (ICAM-1), CK19, albumin++, and AFP++. The hepatic stem cells are located in vivo in stem cell niches: the ductal plates in fetal and neonatal livers and canals of Hering in pediatric and adult livers. The hepatoblasts are contiguous to the niches, decline in numbers with age, wax and wane in numbers with injury responses, and are proposed to be the liver's transit-amplifying cells. In adult livers, intermediates between hepatic stem cells and hepatoblasts and between hepatoblasts and adult parenchyma are observed. Amplification of one or both pluripotent cell subpopulations can occur in diseases; for example, hepatic stem cell amplification occurs in mild forms of liver failure, and hepatoblast amplification occurs in forms of cirrhosis. Liver is, therefore, similar to other tissues in that regenerative processes in postnatal tissues parallel those occurring in development and involve populations of stem cells and progenitor cells that can be identified by anatomic, antigenic, and biochemical profiles.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
290
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
291
|
Ding YN, Pan XH, Ma D, Zhu XQ, Pang RQ, Yang RH. Progress in treatment of liver fibrosis by stem cells. Shijie Huaren Xiaohua Zazhi 2008; 16:3299-3302. [DOI: 10.11569/wcjd.v16.i29.3299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Latest studies from home and abroad indicate that stem cells exist in different adult tissues and various stages of individual development. There are stem cells not only derived from liver, but also from other tissues, such as bone marrow and pancreas in liver, which can differentiate into mature hepatocyte-like cells finally. Therefore, stem cell replacement therapy offers a new way for the clinical treatment of hepatic fibrosis in patients with end-stage liver diseases. This paper summarizes the progress in treating liver fibrosis by stem cells in recent years.
Collapse
|
292
|
Expression of fascin-1, an actin-bundling protein, in migrating hepatoblasts during rat liver development. Cell Tissue Res 2008; 334:219-26. [PMID: 18855019 DOI: 10.1007/s00441-008-0683-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 08/20/2008] [Indexed: 01/21/2023]
Abstract
Fascin-1 is an actin-bundling protein localized at the core actin bundles within microvillar projections and filopodial extensions in migrating cells. It is expressed at a low level in normal epithelial cells, but at a high level in tumor cells, indicating its importance in the invasion and motility of tumor cells. In addition, fascin-1 is expressed in human and murine embryos, occurring at high levels especially in developing nervous tissues. In this study, we have investigated the expression patterns of fascin-1 immunohistochemically during the early stages of rat hepatogenesis. A high expression of fascin-1 was detected in the liver bud and hepatoblasts at embryonic day (ED) 10.5, ED11.5, and ED12.5. Expression fell by ED13.5 and was not detectable at ED14.5. These observations demonstrate that the expression of fascin-1 is correlated with the migration activity of hepatoblasts during the early stages of liver development in rats.
Collapse
|
293
|
Yanai M, Tatsumi N, Hasunuma N, Katsu K, Endo F, Yokouchi Y. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev Dyn 2008; 237:1268-83. [PMID: 18393311 DOI: 10.1002/dvdy.21520] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intrahepatic bile ducts (IHBDs) are indispensable for transporting bile secreted from hepatocytes to the hepatic duct. The biliary epithelial cells (BECs) of the IHBD arise from bipotent hepatoblasts around the portal vein, suggesting the portal mesenchyme is essential for their development. However, except for Notch or Activin/TGF-beta signaling molecules, it is not known which molecules regulate IHBD development. Here, we found that FGF receptors and BMP4 are specifically expressed in the developing IHBD and the hepatic mesenchyme, respectively. Using a mesenchyme-free culture of liver bud, we showed that bFGF and FGF7 induce the hepatoblasts to differentiate into BECs, and that BMP4 enhances bFGF-induced BEC differentiation. The extracellular matrix (ECM) components in the hepatic mesenchyme induced BEC differentiation. Forced expression of a constitutively active form of the FGF receptor partially induced BEC differentiation markers in vivo. These data strongly suggest that bFGF and FGF7 promote BEC differentiation cooperatively with BMP4 and ECMs in vivo.
Collapse
Affiliation(s)
- Masaaki Yanai
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
294
|
Xu CX, Jin H, Lim HT, Kim JE, Shin JY, Lee ES, Chung YS, Lee YS, Beck G, Lee KH, Cho MH. High dietary inorganic phosphate enhances cap-dependent protein translation, cell-cycle progression, and angiogenesis in the livers of young mice. Am J Physiol Gastrointest Liver Physiol 2008; 295:G654-63. [PMID: 18703640 PMCID: PMC2575911 DOI: 10.1152/ajpgi.90213.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inorganic phosphate (P(i)) plays a key role in diverse physiological functions. Recent studies have indicated that P(i) affects Akt signaling through the sodium-dependent phosphate cotransporter. Akt signaling, in turn, plays an important role in liver development; however, the effects of high dietary P(i) on the liver have not been investigated. Here, we examined the effects of high dietary phosphate on the liver in developing mice. We found that high dietary P(i) increased liver mass through enhancing Akt-related cap-dependent protein translation, cell cycle progression, and angiogenesis. Thus careful regulation of P(i) consumption may be important in maintaining normal development of the liver.
Collapse
Affiliation(s)
- Cheng-Xiong Xu
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Hwang-Tae Lim
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Ji-Young Shin
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Eun-Sun Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Youn-Sun Chung
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Yeon-Sook Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - George Beck
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Kee Ho Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| |
Collapse
|
295
|
Jung YJ, Ryu KH, Cho KA, Woo SY, Seoh JY, Cho SJ, Joo SY, Yoo K, Ho-Seoung H. In vitro hepatic differentiation of human umbilical cord blood and bone marrow cells. Pediatr Hematol Oncol 2008; 25:481-91. [PMID: 18728967 DOI: 10.1080/08880010802234614] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The purpose of the present study was to investigate whether human umbilical cord blood (UCB) as well as bone marrow (BM) can generate hepatocyte lineage cells in a simple culture condition. Mononuclear cells (MNCs) separated from UCB and BM were cultured in the presence of fibroblast growth factor (FGF)-1, FGF-2, stem cell factor (SCF), and hepatocyte growth factor (HGF). The cultured cells were analyzed for morphology and for the expression of mRNAs and/or proteins of hepatocyte lineage markers. Both the UCB and BM MNCs grown in the given culture condition yielded large, round cells that were adherent to the culture dishes. RT-PCR analysis showed that mRNAs of albumin (ALB), cytokeratin (CK)-18, and alpha-fetoprotein were expressed from day 7 in both the UCB- and BM-derived cells. Immunofluorescent staining showed that the large, round cells expressed not only ALB and CK-19 but also proliferating cell nuclear antigen, implying the proliferative potential of hepatocyte lineage cells. Therefore, UCB as well as BM can give rise to hepatocyte lineage cells in the simple culture condition with HGF, SCF, FGF-1, and FGF-2. These cells may be one of the potential candidates of cell sources for the cytotherapy of hepatic disease, although it remains to be determined if the hepatocyte lineage cells are derived from plastic hematopoietic stem cells or from liver stem cells that reside in UCB or BM.
Collapse
Affiliation(s)
- Yun-Jae Jung
- Department of Microbiology, Gachon Medical School, Incheon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
296
|
He WY, Liu SX, Jiang HQ. Rat bone marrow mesenchymal stem cells differentiate into hepatocyte-like cells in vitro. Shijie Huaren Xiaohua Zazhi 2008; 16:2464-2469. [DOI: 10.11569/wcjd.v16.i22.2464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate differentiation of rat bone marrow mesenchymal stem cells (MSCs) into hepatocyte-like cells.
METHODS: A total of 24 Wistar rats were randomly divided into 3 groups: normal group, hepatic fibrosis model group and Chinese medicine treatment group. The model of liver fibrosis was induced by subcutaneous injection of CCl4. After the model was successfully developed, and the rats in Chinese medicine treatment group were fed with Danjin Shugan capsule. At the end of treatment, the rats were killed and the livers were obtained. Histopathological changes were evaluated by hematoxylin and eosin staining. MSCs were isolated by gradient density centrifugation and plastic adherence and then purified. The purified MSCs in each group were cultured with hepatocyte growth factor (HGF) and fibroblast growth factor-4 (FGF-4). The levels of alpha-fetoprotein (AFP) and albumin (Alb) in the supernatant were determined by radioimmunoassay on days 15, 21 and 27. On day 27, the cells were collected for glycogen staining and CK-18 immunocytochemical analysis.
RESULTS: Compared with those in the non-induced MSCs among the three groups, the levels of AFP in the induced-MSCs were higher on days 15, 21, and 27, and reached to the peak value on day 21 (hepatic fibrosis model group: 48.94 ± 0.08 vs 9.90 ± 0.09; Chinese medicine treatment group: 49.86 ± 0.29 vs 8.69 ± 0.62; normal group: 38.65 ± 0.33 vs 9.04 ± 0.11; all P< 0.01). There were significant differences in Alb levels on days 21 and 27 between the induced and non-induced MSCs (1.11 ± 0.08 vs 0.32 ± 0.00, 1.25 ± 0.04 vs 0.32 ± 0.00, 1.06 ± 0.03 vs 0.33 ± 0.00; 1.52 ± 0.02 vs 0.33 ± 0.00, 1.79 ± 0.01 vs 0.31 ± 0.03, 1.63 ± 0.04 vs 0.32 ± 0.01; all P < 0.01), but not on day 15; the peak level of Alb was on day 27. Both glycogen and CK-18 were positive on day 27 in the induced MSCs. According to AFP and Alb levels, the induced effects of Chinese medicine group were superior to those of the other two groups.
CONCLUSION: MSCs can differentiate into hepatocyte-like cells with hepatic phenotype and function in the presence of HGF and FGF-4, which may be used as a kind of cell resources to treat severe hepatic disease. Chinese medicine may optimize the induction of MSCs differentiation in vitro.
Collapse
|
297
|
Maezawa K, Miyazato K, Matsunaga T, Momose Y, Imamura T, Johkura K, Sasaki K, Ohmori S. Expression of cytochrome P450 and transcription factors during in vitro differentiation of mouse embryonic stem cells into hepatocytes. Drug Metab Pharmacokinet 2008; 23:188-95. [PMID: 18574323 DOI: 10.2133/dmpk.23.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatocyte differentiation markers were expressed in the cells differentiated from mouse embryonic stem (ES) cells. In the differentiating ES cells, Cyp1a1 mRNA was highly expressed during the early to middle stage; Cyp2c29, Cyp2e1, Cyp3a11 and Cyp7a1 mRNAs were expressed only at the late stage; Cyp7b1 mRNA was expressed throughout all stages. Alpha-fetoprotein and albumin were co-expressed with Cyp3a and Cyp1a, respectively. Aryl hydrocarbon receptor, aryl hydrocarbon receptor nuclear translocator and glucocorticoid receptor mRNAs were detected in differentiating ES cells throughout the culture period. Pregnane X receptor mRNA was detected only in cells cultured for more than 24 days. The expression levels of Cyp2c29, Cyp3a11 and Cyp7a1 and G6p mRNAs were increased in embryoid bodies that were cultured with culture medium containing acid fibroblast growth factor, hepatocyte growth factor (HGF) and oncostatin M for 12 or 18 days, then the medium was replaced by that without HGF. These findings suggested that the expression levels of Cyp genes in hepatocytes differentiated from ES cells were markedly changed in individual enzymes during the course of differentiation, and that the duration of incubation with the addition of HGF affected the expression of Cyps and hepatocytes marker proteins.
Collapse
Affiliation(s)
- Kayoko Maezawa
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Zhu DY, Du Y, Huang X, Guo MY, Ma KF, Yu YP, Lou YJ. MAPEG Expression in Mouse Embryonic Stem Cell-Derived Hepatic Tissue System. Stem Cells Dev 2008; 17:775-83. [DOI: 10.1089/scd.2007.0241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dan-Yan Zhu
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Yue Du
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Xin Huang
- Cancer Institute, College of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Mei-Yuan Guo
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Kui-Fen Ma
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Yong-Ping Yu
- Institute of Material Medica, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Jia Lou
- Institute of Pharmacology-Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
299
|
Ishii K, Yoshida Y, Akechi Y, Sakabe T, Nishio R, Ikeda R, Terabayashi K, Matsumi Y, Gonda K, Okamoto H, Takubo K, Tajima F, Tsuchiya H, Hoshikawa Y, Kurimasa A, Umezawa A, Shiota G. Hepatic differentiation of human bone marrow-derived mesenchymal stem cells by tetracycline-regulated hepatocyte nuclear factor 3beta. Hepatology 2008; 48:597-606. [PMID: 18666263 DOI: 10.1002/hep.22362] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Human bone marrow-derived mesenchymal stem cells (BM-MSCs) are expected to be a potential source of cells for transplantation. Although recent reports have shown that isolated MSCs can differentiate into hepatocytes, the efficiency of differentiation is insufficient for therapeutic application. To circumvent this problem, it is necessary to understand the mechanisms of hepatic differentiation of human BM-MSCs. Hepatocyte nuclear factor 3beta (HNF3beta), a forkhead/winged helix transcription factor, is essential for liver development. In the present study, we established a tetracycline (Tet)-regulated expression system for HNF3beta in UE7T-13 BM-MSCs. HNF3beta expression significantly enhanced expression of albumin, alpha-fetoprotein (AFP), tyrosine amino transferase (TAT) and epithelial cell adhesion molecule (EpCAM) genes. The differentiated cells showed hepatocyte-specific functions including glycogen production and urea secretion. During treatment with the Tet-on system for 8 days, over 80% of UE7T-13 cells turned out to express albumin. Furthermore, the combination of Tet with basic fibroblast growth factor (bFGF) efficiently induced the genes such as albumin and TAT, which are associated with maturity of hepatocytes; however, it suppressed genes such as AFP and EpCAM, which are associated with immaturity of hepatocytes, suggesting that Tet-induced HNF3beta expression sensitizes BM-MSCs to bFGF signals. Finally, the results of the present study suggest that down-regulation of Wnt/beta-catenin signals caused by translocation of beta-catenin to cytoplasmic membrane is associated with hepatic differentiation of human BM-MSCs. CONCLUSION HNF3beta expression induced efficient differentiation of UE7T-13 human BM-MSCs.
Collapse
Affiliation(s)
- Kyoko Ishii
- Department of Genetic Medicine and Regenerative Therapeutics, Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Haworth KE, Kotecha S, Mohun TJ, Latinkic BV. GATA4 and GATA5 are essential for heart and liver development in Xenopus embryos. BMC DEVELOPMENTAL BIOLOGY 2008; 8:74. [PMID: 18662378 PMCID: PMC2526999 DOI: 10.1186/1471-213x-8-74] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 07/28/2008] [Indexed: 01/12/2023]
Abstract
BACKGROUND GATA factors 4/5/6 have been implicated in the development of the heart and endodermal derivatives in vertebrates. Work in zebrafish has indicated that GATA5 is required for normal development earlier than GATA4/6. However, the GATA5 knockout mouse has no apparent embryonic phenotype, thereby questioning the importance of the gene for vertebrate development. RESULTS In this study we show that in Xenopus embryos GATA5 is essential for early development of heart and liver precursors. In addition, we have found that in Xenopus embryos GATA4 is important for development of heart and liver primordia following their specification, and that in this role it might interact with GATA6. CONCLUSION Our results suggest that GATA5 acts earlier than GATA4 to regulate development of heart and liver precursors, and indicate that one early direct target of GATA5 is homeobox gene Hex.
Collapse
Affiliation(s)
- Kim E Haworth
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3US, Wales, UK
| | - Surendra Kotecha
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Timothy J Mohun
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Branko V Latinkic
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3US, Wales, UK
| |
Collapse
|