251
|
Stock AK, Ness V, Beste C. Complex sensorimotor transformation processes required for response selection are facilitated by the striatum. Neuroimage 2015; 123:33-41. [PMID: 26311607 DOI: 10.1016/j.neuroimage.2015.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 07/23/2015] [Accepted: 08/15/2015] [Indexed: 01/29/2023] Open
Abstract
Both fronto-parietal networks and the basal ganglia play an important role in action cascading. It is well-known that cortical structures mediate sensorimotor transformation for this purpose. The striatum receives extensive input from those cortical structures and has been shown to be modulated by the predictability of cortical input. Until today, it has however remained unclear whether the processing of spatial codes or even sensorimotor transformation processes for the purpose of action cascading involve the striatum. We therefore examined this question by means of fMRI using a stop-change task that varied the predictability as well as the complexity of sensorimotor transformations required for correct responding in the context of action cascading. On the behavioral level, we found that the complexity of sensorimotor transformation processes only prolonged reaction times when the requirement for this transformation was predictable. fMRI results matched this effect showing enhanced activity of the caudate in case a complex sensorimotor transformation could be anticipated. Irrespective of the complexity of the required transformations, the putamen was furthermore involved in the prediction of imminent action cascading demands. Taken together, our findings give rise to a conceptual advance regarding basal ganglia function by showing that the anticipation and, more importantly, processing of complex sensorimotor transformation processes involves the striatum.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, D-01309 Dresden, Germany.
| | - Vanessa Ness
- Institute for Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, D-01309 Dresden, Germany
| |
Collapse
|
252
|
Oldenburg IA, Sabatini BL. Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways. Neuron 2015; 86:1174-81. [PMID: 26050037 DOI: 10.1016/j.neuron.2015.05.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/12/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
Motor cortex, basal ganglia (BG), and thalamus are arranged in a recurrent loop whose activity guides motor actions. In the dominant model of the function of the BG and their role in Parkinson's disease, direct (dSPNs) and indirect (iSPNs) striatal projection neurons are proposed to oppositely modulate cortical activity via BG outputs to thalamus. Here, we test this model by determining how striatal activity modulates primary motor cortex in awake head-restrained mice. We find that, within 200 ms, dSPN and iSPN activation exert robust and opposite effects on the majority of cortical neurons. However, these effects are heterogeneous, with certain cortical neurons biphasically modulated by iSPN stimulation. Moreover, these striatal effects are diminished when the animal performs a motor action. Thus, the effects of dSPN and iSPN activity on cortex are at times antagonistic, consistent with classic models, whereas in other contexts these effects can be occluded or coactive.
Collapse
Affiliation(s)
- Ian A Oldenburg
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
253
|
Willard AM, Bouchard RS, Gittis AH. Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice. Neuroscience 2015; 301:254-67. [PMID: 26067595 PMCID: PMC4527082 DOI: 10.1016/j.neuroscience.2015.05.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a movement disorder whose cardinal motor symptoms arise due to the progressive loss of dopamine. Although this dopamine loss typically progresses slowly over time, currently there are very few animal models that enable incremental dopamine depletion over time within the same animal. This type of gradual dopamine depletion model would be useful in studies aimed at the prodromal phase of PD, when dopamine levels are pathologically low but motor symptoms have not yet presented. Utilizing the highly characterized neurotoxin 6-hydroxydopamine (6-OHDA), we have developed a paradigm to gradually deplete dopamine levels in the striatum over a user-defined time course - spanning weeks to months - in C57BL/6 mice. Dopamine depletions were achieved by administration of five low-dose injections (0.75μg) of 6-OHDA through an implanted intracranial bilateral cannula targeting the medial forebrain bundle. Levels of dopamine within the striatum declined linearly with successive injections, quantified using tyrosine hydroxylase immunostaining and high-performance liquid chromatography. Behavioral testing was carried out at each time point to study the onset and progression of motor impairments as a function of dopamine loss over time. We found that spontaneous locomotion, measured in an open field, was robust until ∼70% of striatal dopamine was lost. Beyond this point, additional dopamine loss caused a sharp decline in motor performance, reaching a final level comparable to that of acutely depleted mice. Similarly, although rearing behavior was more sensitive to dopamine loss and declined linearly as a function of dopamine levels, it eventually declined to levels similar to those seen in acutely depleted mice. In contrast, motor coordination, measured on a vertical pole task, was only moderately impaired in gradually depleted mice, despite severe impairments observed in acutely depleted mice. These results demonstrate the importance of the temporal profile of dopamine loss on the magnitude and progression of behavioral impairments. Our gradual depletion model thus establishes a new paradigm with which to study how circuits respond and adapt to dopamine loss over time, information which could uncover important cellular events during the prodromal phase of PD that ultimately impact the presentation or treatability of behavioral symptoms.
Collapse
Affiliation(s)
- A M Willard
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - R S Bouchard
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - A H Gittis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
254
|
Girasole AE, Nelson AB. Probing striatal microcircuitry to understand the functional role of cholinergic interneurons. Mov Disord 2015; 30:1306-18. [PMID: 26227561 DOI: 10.1002/mds.26340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 12/23/2022] Open
Affiliation(s)
- Allison E Girasole
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| | - Alexandra B Nelson
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| |
Collapse
|
255
|
Deffains M, Bergman H. Striatal cholinergic interneurons and cortico-striatal synaptic plasticity in health and disease. Mov Disord 2015; 30:1014-25. [PMID: 26095280 DOI: 10.1002/mds.26300] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
Basal ganglia disorders such as Parkinson's disease, dystonia, and Huntington's disease are characterized by a dysregulation of the basal ganglia neuromodulators (dopamine, acetylcholine, and others), which impacts cortico-striatal transmission. Basal ganglia disorders are often associated with an imbalance between the midbrain dopaminergic and striatal cholinergic systems. In contrast to the extensive research and literature on the consequences of a malfunction of midbrain dopaminergic signaling on the plasticity of the cortico-striatal synapse, very little is known about the role of striatal cholinergic interneurons in normal and pathological control of cortico-striatal transmission. In this review, we address the functional role of striatal cholinergic interneurons, also known as tonically active neurons and attempt to understand how the alteration of their functional properties in basal ganglia disorders leads to abnormal cortico-striatal synaptic plasticity. Specifically, we suggest that striatal cholinergic interneurons provide a permissive signal, which enables long-term changes in the efficacy of the cortico-striatal synapse. We further discuss how modifications in the striatal cholinergic activity pattern alter or prohibit plastic changes of the cortico-striatal synapse. Long-term cortico-striatal synaptic plasticity is the cellular substrate of procedural learning and adaptive control behavior. Hence, abnormal changes in this plasticity may underlie the inability of patients with basal ganglia disorders to adjust their behavior to situational demands. Normalization of the cholinergic modulation of cortico-striatal synaptic plasticity may be considered as a critical feature in future treatments of basal ganglia disorders.
Collapse
Affiliation(s)
- Marc Deffains
- Department of Medical Neurobiology (Physiology), Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center (ELSC) for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center (ELSC) for Brain Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
256
|
Woolley S, Kao M. Variability in action: Contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control. Neuroscience 2015; 296:39-47. [DOI: 10.1016/j.neuroscience.2014.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
257
|
Mizumori SJY, Tryon VL. Integrative hippocampal and decision-making neurocircuitry during goal-relevant predictions and encoding. PROGRESS IN BRAIN RESEARCH 2015; 219:217-42. [PMID: 26072241 DOI: 10.1016/bs.pbr.2015.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has become clear that the hippocampus plays a critical role in the identification of new contexts and for the detection of changes in familiar contexts. The hippocampus accomplishes these goals through a continual process of comparing predicted features of a context or situation to those actually experienced. A mismatch between expected and experienced context expectations is thought to lead to the generation of a context prediction error (Mizumori, 2013) that functionally alerts connected brain areas to alter subsequent decision making and response selection. Little is understood about how hippocampal context analyses impact downstream decision processes. This issue is evaluated here first by comparing the nature of the information represented in hippocampus and decision-related midbrain-striatal structures, while rats perform a hippocampal-dependent spatial memory task in which rewards of different value are found at different locations. In contrast to place-specific and egocentric neural representations, neural representations of goal information are broadly distributed in hippocampal and decision neural circuitry, but they appear in different forms for different brain structures. It is suggested that further researching on how goal information processing occurs in hippocampus and decision neural circuitry may reveal insights into the nature of the interaction between memory and decision systems. The second part of this review describes neural pathways by which hippocampal context information might arrive within the decision circuit. The third section presents a hypothesis that the nature of the interactions between hippocampal and midbrain-striatal circuitry is regulated by the prefrontal cortex.
Collapse
Affiliation(s)
| | - Valerie L Tryon
- Psychology Department, University of Washington, Seattle, WA, USA
| |
Collapse
|
258
|
Downs ME, Buch A, Sierra C, Karakatsani ME, Chen S, Konofagou EE, Ferrera VP. Long-Term Safety of Repeated Blood-Brain Barrier Opening via Focused Ultrasound with Microbubbles in Non-Human Primates Performing a Cognitive Task. PLoS One 2015; 10:e0125911. [PMID: 25945493 PMCID: PMC4422704 DOI: 10.1371/journal.pone.0125911] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/23/2015] [Indexed: 01/11/2023] Open
Abstract
Focused Ultrasound (FUS) coupled with intravenous administration of microbubbles (MB) is a non-invasive technique that has been shown to reliably open (increase the permeability of) the blood-brain barrier (BBB) in multiple in vivo models including non-human primates (NHP). This procedure has shown promise for clinical and basic science applications, yet the safety and potential neurological effects of long term application in NHP requires further investigation under parameters shown to be efficacious in that species (500kHz, 200–400 kPa, 4–5μm MB, 2 minute sonication). In this study, we repeatedly opened the BBB in the caudate and putamen regions of the basal ganglia of 4 NHP using FUS with systemically-administered MB over 4–20 months. We assessed the safety of the FUS with MB procedure using MRI to detect edema or hemorrhaging in the brain. Contrast enhanced T1-weighted MRI sequences showed a 98% success rate for openings in the targeted regions. T2-weighted and SWI sequences indicated a lack edema in the majority of the cases. We investigated potential neurological effects of the FUS with MB procedure through quantitative cognitive testing of’ visual, cognitive, motivational, and motor function using a random dot motion task with reward magnitude bias presented on a touchpanel display. Reaction times during the task significantly increased on the day of the FUS with MB procedure. This increase returned to baseline within 4–5 days after the procedure. Visual motion discrimination thresholds were unaffected. Our results indicate FUS with MB can be a safe method for repeated opening of the BBB at the basal ganglia in NHP for up to 20 months without any long-term negative physiological or neurological effects with the parameters used.
Collapse
Affiliation(s)
- Matthew E. Downs
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Amanda Buch
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Carlos Sierra
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Maria Eleni Karakatsani
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Shangshang Chen
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- Department of Radiology, Columbia University, New York, New York, United States of America
| | - Vincent P. Ferrera
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| |
Collapse
|
259
|
Kawai R, Markman T, Poddar R, Ko R, Fantana AL, Dhawale AK, Kampff AR, Ölveczky BP. Motor cortex is required for learning but not for executing a motor skill. Neuron 2015; 86:800-12. [PMID: 25892304 DOI: 10.1016/j.neuron.2015.03.024] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/15/2014] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
Abstract
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning.
Collapse
Affiliation(s)
- Risa Kawai
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Timothy Markman
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Rajesh Poddar
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
| | - Raymond Ko
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Antoniu L Fantana
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ashesh K Dhawale
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam R Kampff
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Bence P Ölveczky
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
260
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
261
|
Guo Q, Wang D, He X, Feng Q, Lin R, Xu F, Fu L, Luo M. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS One 2015; 10:e0123381. [PMID: 25830919 PMCID: PMC4382118 DOI: 10.1371/journal.pone.0123381] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits.
Collapse
Affiliation(s)
- Qingchun Guo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Daqing Wang
- National Institute of Biological Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaobin He
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Qiru Feng
- National Institute of Biological Sciences, Beijing, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing, China
| | - Fuqiang Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
262
|
Human subthalamic nucleus in movement error detection and its evaluation during visuomotor adaptation. J Neurosci 2015; 34:16744-54. [PMID: 25505327 DOI: 10.1523/jneurosci.3414-14.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses.
Collapse
|
263
|
Gulberti A, Hamel W, Buhmann C, Boelmans K, Zittel S, Gerloff C, Westphal M, Engel A, Schneider T, Moll C. Subthalamic deep brain stimulation improves auditory sensory gating deficit in Parkinson’s disease. Clin Neurophysiol 2015; 126:565-74. [DOI: 10.1016/j.clinph.2014.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/18/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
|
264
|
Context-dependent urgency influences speed-accuracy trade-offs in decision-making and movement execution. J Neurosci 2015; 34:16442-54. [PMID: 25471582 DOI: 10.1523/jneurosci.0162-14.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Speed-accuracy tradeoffs (SATs) exist in both decision-making and movement control, and are generally studied separately. However, in natural behavior animals are free to adjust the time invested in deciding and moving so as to maximize their reward rate. Here, we investigate whether shared mechanisms exist for SAT adjustment in both decisions and actions. Two monkeys performed a reach decision task in which they watched 15 tokens jump, one every 200 ms, from a central circle to one of two peripheral targets, and had to guess which target would ultimately receive the majority of tokens. The monkeys could decide at any time, and once a target was reached, the remaining token movements accelerated to either 50 ms ("fast" block) or 150 ms ("slow" block). Decisions were generally earlier and less accurate in fast than slow blocks, and in both blocks, the criterion of accuracy decreased over time within each trial. This could be explained by a simple model in which sensory information is combined with a linearly growing urgency signal. Remarkably, the duration of the reaching movements produced after the decision decreased over time in a similar block-dependent manner as the criterion of accuracy estimated by the model. This suggests that SATs for deciding and acting are influenced by a shared urgency/vigor signal. Consistent with this, we observed that the vigor of saccades performed during the decision process was higher in fast than in slow blocks, suggesting the influence of a context-dependent global arousal.
Collapse
|
265
|
Southwell AL, Franciosi S, Villanueva EB, Xie Y, Winter LA, Veeraraghavan J, Jonason A, Felczak B, Zhang W, Kovalik V, Waltl S, Hall G, Pouladi MA, Smith ES, Bowers WJ, Zauderer M, Hayden MR. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol Dis 2015; 76:46-56. [PMID: 25662335 DOI: 10.1016/j.nbd.2015.01.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 12/15/2014] [Accepted: 01/25/2015] [Indexed: 11/18/2022] Open
Abstract
Huntington disease (HD) is an inherited, fatal neurodegenerative disease with no disease-modifying therapy currently available. In addition to characteristic motor deficits and atrophy of the caudate nucleus, signature hallmarks of HD include behavioral abnormalities, immune activation, and cortical and white matter loss. The identification and validation of novel therapeutic targets that contribute to these degenerative cellular processes may lead to new interventions that slow or even halt the course of this insidious disease. Semaphorin 4D (SEMA4D) is a transmembrane signaling molecule that modulates a variety of processes central to neuroinflammation and neurodegeneration including glial cell activation, neuronal growth cone collapse and apoptosis of neural precursors, as well as inhibition of oligodendrocyte migration, differentiation and process formation. Therefore, inhibition of SEMA4D signaling could reduce CNS inflammation, increase neuronal outgrowth and enhance oligodendrocyte maturation, which may be of therapeutic benefit in the treatment of several neurodegenerative diseases, including HD. To that end, we evaluated the preclinical therapeutic efficacy of an anti-SEMA4D monoclonal antibody, which prevents the interaction between SEMA4D and its receptors, in the YAC128 transgenic HD mouse model. Anti-SEMA4D treatment ameliorated neuropathological signatures, including striatal atrophy, cortical atrophy, and corpus callosum atrophy and prevented testicular degeneration in YAC128 mice. In parallel, a subset of behavioral symptoms was improved in anti-SEMA4D treated YAC128 mice, including reduced anxiety-like behavior and rescue of cognitive deficits. There was, however, no discernible effect on motor deficits. The preservation of brain gray and white matter and improvement in behavioral measures in YAC128 mice treated with anti-SEMA4D suggest that this approach could represent a viable therapeutic strategy for the treatment of HD. Importantly, this work provides in vivo demonstration that inhibition of pathways initiated by SEMA4D constitutes a novel approach to moderation of neurodegeneration.
Collapse
Affiliation(s)
- Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Sonia Franciosi
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Erika B Villanueva
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Yuanyun Xie
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | | | | | - Boguslaw Felczak
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Weining Zhang
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Vlad Kovalik
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Sabine Waltl
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - George Hall
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, 138648, Singapore; Department of Medicine, National University of Singapore, Singapore
| | | | | | | | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
266
|
Dieset I, Haukvik UK, Melle I, Røssberg JI, Ueland T, Hope S, Dale AM, Djurovic S, Aukrust P, Agartz I, Andreassen OA. Association between altered brain morphology and elevated peripheral endothelial markers--implications for psychotic disorders. Schizophr Res 2015; 161:222-8. [PMID: 25433965 DOI: 10.1016/j.schres.2014.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 07/02/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Increased inflammation, endothelial dysfunction, and structural brain abnormalities have been reported in both schizophrenia and bipolar disorder, but the relationships between these factors are unknown. We aimed to identify associations between markers of inflammatory and endothelial activation and structural brain variation in psychotic disorders. METHODS We measured von Willebrand factor (vWf) as a marker of endothelial cell activation and six inflammatory markers (tumor necrosis factor-receptor 1, osteoprotegerin, interleukin-1-receptor antagonist, interleukin-6, C-reactive protein, CD40 ligand) in plasma and 16 brain structures obtained from MRI scans of 356 individuals (schizophrenia spectrum; n=121, affective spectrum; n=95, healthy control subjects; n=140). The relationship between the inflammatory and endothelial markers and brain measurements were investigated across groups. RESULTS There was a positive association (p=2.5×10(-4)) between plasma levels of vWf and total volume of the basal ganglia which remained significant after correction for multiple testing. Treatment with first generation antipsychotics was associated with basal ganglia volume only (p=0.009). After adjusting for diagnosis and antipsychotic medication, vWf remained significantly associated with increased basal ganglia volume (p=0.008), in particular the right globus pallidus (p=3.7×10(-4)). The relationship between vWf and basal ganglia volume was linear in all groups, but the intercept was significantly higher in the schizophrenia group (df=2, F=8.2, p=3.4×10(-4)). CONCLUSION Our results show a strong positive correlation between vWf levels and basal ganglia volume, in particular globus pallidus, independent of diagnosis. vWf levels were significantly higher in schizophrenia, which could indicate a link between endothelial cell activation and basal ganglia morphology in schizophrenia patients.
Collapse
Affiliation(s)
- Ingrid Dieset
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Unn Kristin Haukvik
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Melle
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jan Ivar Røssberg
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sigrun Hope
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, USA; Department of Neuroscience, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital Ullevål, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Norway
| | - Ingrid Agartz
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
267
|
Pidoux M, Bollu T, Riccelli T, Goldberg JH. Origins of basal ganglia output signals in singing juvenile birds. J Neurophysiol 2015; 113:843-55. [PMID: 25392171 DOI: 10.1152/jn.00635.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Across species, complex circuits inside the basal ganglia (BG) converge on pallidal output neurons that exhibit movement-locked firing patterns. Yet the origins of these firing patterns remain poorly understood. In songbirds during vocal babbling, BG output neurons homologous to those found in the primate internal pallidal segment are uniformly activated in the tens of milliseconds prior to syllable onsets. To test the origins of this remarkably homogenous BG output signal, we recorded from diverse upstream BG cell types during babbling. Prior to syllable onsets, at the same time that internal pallidal segment-like neurons were activated, putative medium spiny neurons, fast spiking and tonically active interneurons also exhibited transient rate increases. In contrast, pallidal neurons homologous to those found in primate external pallidal segment exhibited transient rate decreases. To test origins of these signals, we performed recordings following lesion of corticostriatal inputs from premotor nucleus HVC. HVC lesions largely abolished these syllable-locked signals. Altogether, these findings indicate a striking homogeneity of syllable timing signals in the songbird BG during babbling and are consistent with a role for the indirect and hyperdirect pathways in transforming cortical inputs into BG outputs during an exploratory behavior.
Collapse
Affiliation(s)
- Morgane Pidoux
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Tejapratap Bollu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Tori Riccelli
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
268
|
Wu YW, Kim JI, Tawfik VL, Lalchandani RR, Scherrer G, Ding JB. Input- and cell-type-specific endocannabinoid-dependent LTD in the striatum. Cell Rep 2014; 10:75-87. [PMID: 25543142 DOI: 10.1016/j.celrep.2014.12.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 11/11/2014] [Accepted: 12/02/2014] [Indexed: 11/26/2022] Open
Abstract
Changes in basal ganglia plasticity at the corticostriatal and thalamostriatal levels are required for motor learning. Endocannabinoid-dependent long-term depression (eCB-LTD) is known to be a dominant form of synaptic plasticity expressed at these glutamatergic inputs; however, whether eCB-LTD can be induced at all inputs on all striatal neurons is still debatable. Using region-specific Cre mouse lines combined with optogenetic techniques, we directly investigated and distinguished between corticostriatal and thalamostriatal projections. We found that eCB-LTD was successfully induced at corticostriatal synapses, independent of postsynaptic striatal spiny projection neuron (SPN) subtype. Conversely, eCB-LTD was only nominally present at thalamostriatal synapses. This dichotomy was attributable to the minimal expression of cannabinoid type 1 (CB1) receptors on thalamostriatal terminals. Furthermore, coactivation of dopamine receptors on SPNs during LTD induction re-established SPN-subtype-dependent eCB-LTD. Altogether, our findings lay the groundwork for understanding corticostriatal and thalamostriatal synaptic plasticity and for striatal eCB-LTD in motor learning.
Collapse
Affiliation(s)
- Yu-Wei Wu
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jae-Ick Kim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Rupa R Lalchandani
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Grégory Scherrer
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
269
|
Laricchiuta D, Petrosini L. Individual differences in response to positive and negative stimuli: endocannabinoid-based insight on approach and avoidance behaviors. Front Syst Neurosci 2014; 8:238. [PMID: 25565991 PMCID: PMC4273613 DOI: 10.3389/fnsys.2014.00238] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023] Open
Abstract
Approach and avoidance behaviors-the primary responses to the environmental stimuli of danger, novelty and reward-are associated with the brain structures that mediate cognitive functionality, reward sensitivity and emotional expression. Individual differences in approach and avoidance behaviors are modulated by the functioning of amygdaloid-hypothalamic-striatal and striatal-cerebellar networks implicated in action and reaction to salient stimuli. The nodes of these networks are strongly interconnected and by acting on them the endocannabinoid and dopaminergic systems increase the intensity of appetitive or defensive motivation. This review analyzes the approach and avoidance behaviors in humans and rodents, addresses neurobiological and neurochemical aspects of these behaviors, and proposes a possible synaptic plasticity mechanism, related to endocannabinoid-dependent long-term potentiation (LTP) and depression that allows responding to salient positive and negative stimuli.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Dynamic and Clinical Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| |
Collapse
|
270
|
Quartarone A, Rizzo V, Terranova C, Milardi D, Bruschetta D, Ghilardi MF, Girlanda P. Sensory abnormalities in focal hand dystonia and non-invasive brain stimulation. Front Hum Neurosci 2014; 8:956. [PMID: 25538594 PMCID: PMC4257013 DOI: 10.3389/fnhum.2014.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 11/29/2022] Open
Abstract
It has been proposed that synchronous and convergent afferent input arising from repetitive motor tasks may play an important role in driving the maladaptive cortical plasticity seen in focal hand dystonia (FHD). This hypothesis receives support from several sources. First, it has been reported that in subjects with FHD, paired associative stimulation produces an abnormal increase in corticospinal excitability, which was not confined to stimulated muscles. These findings provide support for the role of excessive plasticity in FHD. Second, the genetic contribution to the dystonias is increasingly recognized indicating that repetitive, stereotyped afferent inputs may lead to late-onset dystonia, such as FHD, more rapidly in genetically susceptible individuals. It can be postulated, according to the two factor hypothesis that dystonia is triggered and maintained by the concurrence of environmental factors such as repetitive training and subtle abnormal mechanisms of plasticity within somatosensory loop. In the present review, we examine the contribution of sensory-motor integration in the pathophysiology of primary dystonia. In addition, we will discuss the role of non-invasive brain stimulation as therapeutic approach in FHD.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Neurosciences, Psychiatry and Anaesthesiological Sciences, University of Messina , Messina , Italy ; Department of Physiology, Pharmacology and Neuroscience, City University of New York (CUNY) Medical School , New York, NY , USA
| | - Vincenzo Rizzo
- Department of Neurosciences, Psychiatry and Anaesthesiological Sciences, University of Messina , Messina , Italy
| | - Carmen Terranova
- Department of Neurosciences, Psychiatry and Anaesthesiological Sciences, University of Messina , Messina , Italy
| | - Demetrio Milardi
- IRCCS Centro Neurolesi Bonino-Pulejo , Messina , Italy ; Department of Biomedical Science and Morphological and Functional Images, University of Messina , Messina , Italy
| | - Daniele Bruschetta
- Department of Biomedical Science and Morphological and Functional Images, University of Messina , Messina , Italy
| | - Maria Felice Ghilardi
- Department of Physiology, Pharmacology and Neuroscience, City University of New York (CUNY) Medical School , New York, NY , USA
| | - Paolo Girlanda
- Department of Neurosciences, Psychiatry and Anaesthesiological Sciences, University of Messina , Messina , Italy
| |
Collapse
|
271
|
Martinez AA, Morgese MG, Pisanu A, Macheda T, Paquette MA, Seillier A, Cassano T, Carta AR, Giuffrida A. Activation of PPAR gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Neurobiol Dis 2014; 74:295-304. [PMID: 25486547 DOI: 10.1016/j.nbd.2014.11.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/18/2014] [Accepted: 11/26/2014] [Indexed: 01/31/2023] Open
Abstract
Long-term administration of l-3,4-dihydroxyphenylalanine (levodopa), the mainstay treatment for Parkinson's disease (PD), is accompanied by fluctuations in its duration of action and motor complications (dyskinesia) that dramatically affect the quality of life of patients. Levodopa-induced dyskinesias (LID) can be modeled in rats with unilateral 6-OHDA lesions via chronic administration of levodopa, which causes increasingly severe axial, limb, and orofacial abnormal involuntary movements (AIMs) over time. In previous studies, we showed that the direct activation of CB1 cannabinoid receptors alleviated rat AIMs. Interestingly, elevation of the endocannabinoid anandamide by URB597 (URB), an inhibitor of endocannabinoid catabolism, produced an anti-dyskinetic response that was only partially mediated via CB1 receptors and required the concomitant blockade of transient receptor potential vanilloid type-1 (TRPV1) channels by capsazepine (CPZ) (Morgese et al., 2007). In this study, we showed that the stimulation of peroxisome proliferator-activated receptors (PPAR), a family of transcription factors activated by anandamide, contributes to the anti-dyskinetic effects of URB+CPZ, and that the direct activation of the PPARγ subtype by rosiglitazone (RGZ) alleviates levodopa-induced AIMs in 6-OHDA rats. AIM reduction was associated with an attenuation of levodopa-induced increase of dynorphin, zif-268, and of ERK phosphorylation in the denervated striatum. RGZ treatment did not decrease striatal levodopa and dopamine bioavailability, nor did it affect levodopa anti-parkinsonian activity. Collectively, these data indicate that PPARγ may represent a new pharmacological target for the treatment of LID.
Collapse
Affiliation(s)
- A A Martinez
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - M G Morgese
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto 1, Foggia 71100, Italy
| | - A Pisanu
- Institute of Neuroscience, National Research Council of Italy (CNR), Cagliari, Italy
| | - T Macheda
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - M A Paquette
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - A Seillier
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - T Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto 1, Foggia 71100, Italy
| | - A R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - A Giuffrida
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
272
|
De Picker LJ, Cornelis C, Hulstijn W, Dumont G, Fransen E, Timmers M, Janssens L, Morrens M, Sabbe BGC. Stable schizophrenia patients learn equally well as age-matched controls and better than elderly controls in two sensorimotor rotary pursuit tasks. Front Psychiatry 2014; 5:165. [PMID: 25505425 PMCID: PMC4241745 DOI: 10.3389/fpsyt.2014.00165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/06/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To compare sensorimotor performance and learning in stable schizophrenia patients, healthy age- and sex-matched controls and elderly controls on two variations of the rotary pursuit: circle pursuit (true motor learning) and figure pursuit (motor and sequence learning). METHOD In the circle pursuit, a target circle, rotating with increasing speed along a predictable circular path on the computer screen, must be followed by a cursor controlled by a pen on a writing tablet. In the eight-trial figure pursuit, subjects learn to draw a complex figure by pursuing the target circle that moves along an invisible trajectory between and around several goals. Tasks were administered thrice (day 1, day 2, day 7) to 30 patients with stable schizophrenia (S), 30 healthy age- and sex-matched controls (C), and 30 elderly participants (>65 years; E) and recorded with a digitizing tablet and pressure-sensitive pen. The outcome measure accuracy (% of time that cursor is within the target) was used to assess performance. RESULTS We observed significant group differences in accuracy, both in circle and figure pursuit tasks (E < S < C, p < 0.01). Strong learning effects were found in each group. Learning curves were similar in circle pursuit but differed between groups in figure pursuit. When corrected for group differences in starting level, the learning gains over the three sessions of schizophrenia patients and age-matched controls were equal and both were larger than those of the elderly controls. CONCLUSION Despite the reduced sensorimotor performance that was found in the schizophrenia patients, their sensorimotor learning seems to be preserved. The relevance of this finding for the evaluation of procedural learning in schizophrenia is discussed. The better performance and learning rate of the patients compared to the elderly controls was unexpected and deserves further study.
Collapse
Affiliation(s)
- Livia J. De Picker
- Collaborative Antwerp Psychiatric Research Initiative (CAPRI), University of Antwerp, Antwerp, Belgium
- University Psychiatric Hospital St. Norbertushuis, Duffel, Belgium
| | - Claudia Cornelis
- Collaborative Antwerp Psychiatric Research Initiative (CAPRI), University of Antwerp, Antwerp, Belgium
- University Psychiatric Hospital St. Norbertushuis, Duffel, Belgium
| | - Wouter Hulstijn
- Collaborative Antwerp Psychiatric Research Initiative (CAPRI), University of Antwerp, Antwerp, Belgium
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Glenn Dumont
- Collaborative Antwerp Psychiatric Research Initiative (CAPRI), University of Antwerp, Antwerp, Belgium
- University Psychiatric Hospital St. Norbertushuis, Duffel, Belgium
| | | | - Maarten Timmers
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Luc Janssens
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Initiative (CAPRI), University of Antwerp, Antwerp, Belgium
| | - Bernard G. C. Sabbe
- Collaborative Antwerp Psychiatric Research Initiative (CAPRI), University of Antwerp, Antwerp, Belgium
- University Psychiatric Hospital St. Norbertushuis, Duffel, Belgium
| |
Collapse
|
273
|
Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 2014; 124:1-27. [PMID: 25447802 DOI: 10.1016/j.pneurobio.2014.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 01/11/2023]
Abstract
Cigarette smoking is currently the leading cause of preventable deaths and disability throughout the world, being responsible for about five million premature deaths/year. Unfortunately, fewer than 10% of tobacco users who try to stop smoking actually manage to do so. The main addictive agent delivered by cigarette smoke is nicotine, which induces psychostimulation and reward, and reduces stress and anxiety. The use of new technologies (including optogenetics) and the development of mouse models characterised by cell-specific deletions of receptor subtype genes or the expression of gain-of-function nAChR subunits has greatly increased our understanding of the molecular mechanisms and neural substrates of nicotine addiction first revealed by classic electrophysiological, neurochemical and behavioural approaches. It is now becoming clear that various aspects of nicotine dependence are mediated by close interactions of the glutamatergic, dopaminergic and γ-aminobutyric acidergic systems in the mesocorticolimbic system. This review is divided into two parts. The first provides an updated overview of the circuitry of the ventral tegmental area, ventral striatum and prefrontal cortex, the neurotransmitter receptor subtypes expressed in these areas, and their physiological role in the mesocorticolimbic system. The second will focus on the molecular, functional and behavioural mechanisms involved in the acute and chronic effects of nicotine on the mesocorticolimbic system.
Collapse
Affiliation(s)
- Francesco Pistillo
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Francesco Clementi
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Section of Physiology and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy.
| |
Collapse
|
274
|
Sharma P, Pienaar IS. Pharmacogenetic and optical dissection for mechanistic understanding of Parkinson's disease: Potential utilities revealed through behavioural assessment. Neurosci Biobehav Rev 2014; 47:87-100. [DOI: 10.1016/j.neubiorev.2014.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/04/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023]
|
275
|
Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng PY, Klyachko VA, Nerbonne JM, Yoo AS. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 2014; 84:311-23. [PMID: 25374357 DOI: 10.1016/j.neuron.2014.10.016] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
Abstract
The promise of using reprogrammed human neurons for disease modeling and regenerative medicine relies on the ability to induce patient-derived neurons with high efficiency and subtype specificity. We have previously shown that ectopic expression of brain-enriched microRNAs (miRNAs), miR-9/9* and miR-124 (miR-9/9*-124), promoted direct conversion of human fibroblasts into neurons. Here we show that coexpression of miR-9/9*-124 with transcription factors enriched in the developing striatum, BCL11B (also known as CTIP2), DLX1, DLX2, and MYT1L, can guide the conversion of human postnatal and adult fibroblasts into an enriched population of neurons analogous to striatal medium spiny neurons (MSNs). When transplanted in the mouse brain, the reprogrammed human cells persisted in situ for over 6 months, exhibited membrane properties equivalent to native MSNs, and extended projections to the anatomical targets of MSNs. These findings highlight the potential of exploiting the synergism between miR-9/9*-124 and transcription factors to generate specific neuronal subtypes.
Collapse
Affiliation(s)
- Matheus B Victor
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michelle Richner
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tracey O Hermanstyne
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Ransdell
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Courtney Sobieski
- Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Pan-Yue Deng
- Departments of Biomedical Engineering and Cell Biology and Physiology, CIMED, Washington University, Saint Louis, MO 63110, USA
| | - Vitaly A Klyachko
- Departments of Biomedical Engineering and Cell Biology and Physiology, CIMED, Washington University, Saint Louis, MO 63110, USA
| | - Jeanne M Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
276
|
Effect of the Body Weight Support Associated to Treadmill Approach in Parkinson Disease. TOPICS IN GERIATRIC REHABILITATION 2014. [DOI: 10.1097/tgr.0000000000000038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
277
|
Burke MJ, Ghaffar O, Staines WR, Downar J, Feinstein A. Functional neuroimaging of conversion disorder: the role of ancillary activation. NEUROIMAGE-CLINICAL 2014; 6:333-9. [PMID: 25379447 PMCID: PMC4215400 DOI: 10.1016/j.nicl.2014.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 11/26/2022]
Abstract
Background Previous functional neuroimaging studies investigating the neuroanatomy of conversion disorder have yielded inconsistent results that may be attributed to small sample sizes and disparate methodologies. The objective of this study was to better define the functional neuroanatomical correlates of conversion disorder. Methods Ten subjects meeting clinical criteria for unilateral sensory conversion disorder underwent fMRI during which a vibrotactile stimulus was applied to anesthetic and sensate areas. A block design was used with 4 s of stimulation followed by 26 s of rest, the pattern repeated 10 times. Event-related group averages of the BOLD response were compared between conditions. Results All subjects were right-handed females, with a mean age of 41. Group analyses revealed 10 areas that had significantly greater activation (p < .05) when stimulation was applied to the anesthetic body part compared to the contralateral sensate mirror region. They included right paralimbic cortices (anterior cingulate cortex and insula), right temporoparietal junction (angular gyrus and inferior parietal lobule), bilateral dorsolateral prefrontal cortex (middle frontal gyri), right orbital frontal cortex (superior frontal gyrus), right caudate, right ventral-anterior thalamus and left angular gyrus. There was a trend for activation of the somatosensory cortex contralateral to the anesthetic region to be decreased relative to the sensate side. Conclusions Sensory conversion symptoms are associated with a pattern of abnormal cerebral activation comprising neural networks implicated in emotional processing and sensory integration. Further study of the roles and potential interplay of these networks may provide a basis for an underlying psychobiological mechanism of conversion disorder. fMRI was used to study subjects with unilateral sensory conversion disorder. Sensory stimulation of anesthetic body part compared to sensate mirror region 10 brain regions, including right limbic cortices and TPJ, were abnormally active. Implicated neural networks may provide a mechanism for conversion disorder.
Collapse
Affiliation(s)
- Matthew J Burke
- Department of Neurology, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Omar Ghaffar
- Department of Psychiatry, University of Toronto, Toronto, Ontario M4N 3M5, Canada ; Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room FG16, Toronto, Ontario M4N 3M5, Canada
| | - W Richard Staines
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, Ontario M4N 3M5, Canada ; Toronto Western Hospital, 399 Bathurst Street, Room 7M-415, Toronto, Ontario M5T 2S8, Canada
| | - Anthony Feinstein
- Department of Psychiatry, University of Toronto, Toronto, Ontario M4N 3M5, Canada ; Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room FG16, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
278
|
Nijhout HF, Best J, Reed MC. Escape from homeostasis. Math Biosci 2014; 257:104-10. [PMID: 25242608 DOI: 10.1016/j.mbs.2014.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022]
Abstract
Many physiological systems, from gene networks to biochemistry to whole organism physiology, exhibit homeostatic mechanisms that keep certain variables within a fairly narrow range. Because homeostatic mechanisms buffer traits against environmental and genetic variation they allow the accumulation of cryptic genetic variation. Homeostatic mechanisms are never perfect and can be destabilized by mutations in genes that alter the kinetics of the underlying mechanism. We use mathematical models to study five diverse mechanisms of homeostasis: thermoregulation; maintenance of homocysteine concentration; neural control by a feed forward circuit; the myogenic response in the kidney; and regulation of extracellular dopamine levels in the brain. In all these cases there are homeostatic regions where the trait is relatively insensitive to genetic or environmental variation, flanked by regions where it is sensitive. Moreover, mutations or environmental changes can place an individual closer to the edge of the homeostatic region, thus predisposing that individual to deleterious effects caused by additional mutations or environmental changes. Mutations and environmental variables can also reduce the size of the homeostatic region, thus releasing potentially deleterious cryptic genetic variation. These considerations of mutations, environment, homeostasis, and escape from homeostasis help to explain why the etiology of so many diseases is complex.
Collapse
Affiliation(s)
| | - Janet Best
- Department of Mathematics, Duke University, Durham, NC 27705, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27705, USA
| |
Collapse
|
279
|
Krauzlis RJ, Bollimunta A, Arcizet F, Wang L. Attention as an effect not a cause. Trends Cogn Sci 2014; 18:457-64. [PMID: 24953964 PMCID: PMC4186707 DOI: 10.1016/j.tics.2014.05.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022]
Abstract
Attention is commonly thought to be important for managing the limited resources available in sensory areas of the neocortex. Here we present an alternative view that attention arises as a byproduct of circuits centered on the basal ganglia involved in value-based decision making. The central idea is that decision making depends on properly estimating the current state of the animal and its environment and that the weighted inputs to the currently prevailing estimate give rise to the filter-like properties of attention. After outlining this new framework, we describe findings from physiological, anatomical, computational, and clinical work that support this point of view. We conclude that the brain mechanisms responsible for attention employ a conserved circuit motif that predates the emergence of the neocortex.
Collapse
Affiliation(s)
- Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA.
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA
| | - Fabrice Arcizet
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA
| | - Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA
| |
Collapse
|
280
|
Khibnik LA, Tritsch NX, Sabatini BL. A direct projection from mouse primary visual cortex to dorsomedial striatum. PLoS One 2014; 9:e104501. [PMID: 25141172 PMCID: PMC4139305 DOI: 10.1371/journal.pone.0104501] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/11/2014] [Indexed: 01/23/2023] Open
Abstract
The mammalian striatum receives inputs from many cortical areas, but the existence of a direct axonal projection from the primary visual cortex (V1) is controversial. In this study we use anterograde and retrograde tracing techniques to demonstrate that V1 directly innervates a topographically defined longitudinal strip of dorsomedial striatum in mice. We find that this projection forms functional excitatory synapses with direct and indirect pathway striatal projection neurons (SPNs) and engages feed-forward inhibition onto these cells. Importantly, stimulation of V1 afferents is sufficient to evoke phasic firing in SPNs. These findings therefore identify a striatal region that is functionally innervated by V1 and suggest that early visual processing may play an important role in striatal-based behaviors.
Collapse
Affiliation(s)
- Lena A. Khibnik
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicolas X. Tritsch
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
281
|
Atallah HE, McCool AD, Howe MW, Graybiel AM. Neurons in the ventral striatum exhibit cell-type-specific representations of outcome during learning. Neuron 2014; 82:1145-56. [PMID: 24908491 DOI: 10.1016/j.neuron.2014.04.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2014] [Indexed: 02/04/2023]
Abstract
The ventromedial striatum (VMS) is a node in circuits underpinning both affect and reinforcement learning. The cellular bases of these functions and especially their potential linkages have been unclear. VMS cholinergic interneurons, however, have been singled out as being related both to affect and to reinforcement-based conditioning, raising the possibility that unique aspects of their signaling could account for these functions. Here we show that VMS tonically active neurons (TANs), including putative cholinergic interneurons, generate unique bidirectional outcome responses during reward-based learning, reporting both positive (reward) and negative (reward omission) outcomes when behavioral change is prompted by switches in reinforcement contingencies. VMS output neurons (SPNs), by contrast, are nearly insensitive to switches in reinforcement contingencies, gradually losing outcome signaling while maintaining responses at trial initiation and goal approach. Thus, TANs and SPNs in the VMS provide distinct signals optimized for different aspects of the learning process.
Collapse
Affiliation(s)
- Hisham E Atallah
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew D McCool
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark W Howe
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
282
|
Klenowski P, Morgan M, Bartlett SE. The role of δ-opioid receptors in learning and memory underlying the development of addiction. Br J Pharmacol 2014; 172:297-310. [PMID: 24641428 DOI: 10.1111/bph.12618] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/10/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Paul Klenowski
- Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | |
Collapse
|
283
|
Shaw P, De Rossi P, Watson B, Wharton A, Greenstein D, Raznahan A, Sharp W, Lerch JP, Chakravarty MM. Mapping the development of the basal ganglia in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2014; 53:780-9.e11. [PMID: 24954827 PMCID: PMC10461726 DOI: 10.1016/j.jaac.2014.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2014] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The basal ganglia are implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD), but little is known of their development in the disorder. Here, we mapped basal ganglia development from childhood into late adolescence using methods that define surface morphology with an exquisite level of spatial resolution. METHOD Surface morphology of the basal ganglia was defined from neuroanatomic magnetic resonance images acquired in 270 youth with DSM-IV-defined ADHD and 270 age- and sex-matched typically developing controls; 220 individuals were scanned at least twice. Using linear mixed model regression, we mapped developmental trajectories from age 4 through 19 years at approximately 7,500 surface vertices in the striatum and globus pallidus. RESULTS In the ventral striatal surfaces, there was a diagnostic difference in developmental trajectories (t = 5.6, p < .0001). Here, the typically developing group showed surface area expansion with age (estimated rate of increase of 0.54 mm(2) per year, standard error [SE] 0.29 mm(2) per year), whereas the ADHD group showed progressive contraction (decrease of 1.75 mm(2) per year, SE 0.28 mm(2) per year). The ADHD group also showed significant, fixed surface area reductions in dorsal striatal regions, which were detected in childhood at study entry and persisted into adolescence. There was no significant association between history of psychostimulant treatment and developmental trajectories. CONCLUSIONS Progressive, atypical contraction of the ventral striatal surfaces characterizes ADHD, localizing to regions pivotal in reward processing. This contrasts with fixed, nonprogressive contraction of dorsal striatal surfaces in regions that support executive function and motor planning.
Collapse
Affiliation(s)
- Philip Shaw
- Behavioral Research Branch, National Human Genome Research Institute (NHGRI), and with the Intramural Program of the National Institute of Mental Health (NIMH).
| | - Pietro De Rossi
- School of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Bethany Watson
- Behavioral Research Branch, National Human Genome Research Institute (NHGRI), and with the Intramural Program of the National Institute of Mental Health (NIMH)
| | - Amy Wharton
- Behavioral Research Branch, National Human Genome Research Institute (NHGRI), and with the Intramural Program of the National Institute of Mental Health (NIMH)
| | | | | | - Wendy Sharp
- Behavioral Research Branch at NHGRI and the Intramural Program and Child Psychiatry Branch of NIMH
| | - Jason P Lerch
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - M Mallar Chakravarty
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
284
|
Differences in the emergent coding properties of cortical and striatal ensembles. Nat Neurosci 2014; 17:1100-6. [PMID: 24974796 PMCID: PMC4978541 DOI: 10.1038/nn.3753] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/04/2014] [Indexed: 11/16/2022]
Abstract
The function of a given brain region is often defined by the coding properties of its individual neurons, yet how this information is combined at the ensemble level is an equally important consideration. In the present study, multiple neurons from the anterior cingulate cortex (ACC) and the dorsal striatum (DS) were recorded simultaneously as rats performed different sequences of the same three actions. Sequence and lever decoding was remarkably similar on a per-neuron basis in the two regions. At the ensemble level, sequence-specific representations in the DS appeared synchronously but transiently along with the representation of lever location, while these two streams of information appeared independently and asynchronously in the ACC. As a result the ACC achieved superior ensemble decoding accuracy overall. Thus, the manner in which information was combined across neurons in an ensemble determined the functional separation of the ACC and DS on this task.
Collapse
|
285
|
Mizumori SJY, Jo YS. Homeostatic regulation of memory systems and adaptive decisions. Hippocampus 2014; 23:1103-24. [PMID: 23929788 PMCID: PMC4165303 DOI: 10.1002/hipo.22176] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 11/07/2022]
Abstract
While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The “multiple memory systems of the brain” have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sheri J Y Mizumori
- This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. Psychology Department, University of Washington, Seattle, Washington
| | | |
Collapse
|
286
|
Cyclic AMP and afferent activity govern bidirectional synaptic plasticity in striatopallidal neurons. J Neurosci 2014; 34:6692-9. [PMID: 24806695 DOI: 10.1523/jneurosci.3906-13.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent experimental evidence suggests that the low dopamine conditions in Parkinson's disease (PD) cause motor impairment through aberrant motor learning. Those data, along with computational models, suggest that this aberrant learning results from maladaptive corticostriatal plasticity and learned motor inhibition. Dopaminergic modulation of both corticostriatal long-term depression (LTD) and long-term potentiation (LTP) is proposed to be critical for these processes; however, the regulatory mechanisms underlying bidirectional corticostriatal plasticity are not fully understood. Previously, we demonstrated a key role for cAMP signaling in corticostriatal LTD. In this study, mouse brain slices were used to perform a parametric experiment that tested the impact of varying both intracellular cAMP levels and the strength of excitatory inputs on corticostriatal plasticity. Using slice electrophysiology in the dorsolateral striatum, we demonstrate that both LTP and LTD can be sequentially induced in the same D2-expressing neuron and that LTP was strongest with high intracellular cAMP and LFS, whereas LTD required low intracellular cAMP and high-frequency stimulation. Our results provide a molecular and cellular basis for regulating bidirectional corticostriatal synaptic plasticity and may help to identify novel therapeutic targets for blocking or reversing the aberrant synaptic plasticity that likely contributes to motor deficits in PD.
Collapse
|
287
|
Abstract
The corticostriatal axis is the main input stage of the basal ganglia and is crucial for their role in motor behavior. Synchronized oscillations might mediate interactions between cortex and striatum during behavior, yet direct evidence remains sparse. Here, we show that, during motor behavior, low- and high-frequency oscillations jointly couple cortex and striatum via cross-frequency interactions. We investigated neuronal oscillations along the corticostriatal axis in rats during rest and treadmill running. We found prominent theta and gamma oscillations in cortex and striatum, the peak frequencies of which scaled with motor demand. Theta and gamma oscillations were functionally coupled through phase-amplitude coupling. Furthermore, theta oscillations were phase coupled between structures. Together, local phase-amplitude coupling and corticostriatal theta phase coupling mediated the temporal correlation of gamma bursts between the cortex and striatum. The coordination of fast oscillations through coherent phase-amplitude coupling may be a general mechanism to regulate neuronal interactions along the corticostriatal axis and beyond.
Collapse
|
288
|
Separation anxiety disorder in adult patients with obsessive-compulsive disorder: prevalence and clinical correlates. Eur Psychiatry 2014; 30:145-51. [PMID: 24908152 DOI: 10.1016/j.eurpsy.2014.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/13/2014] [Accepted: 04/21/2014] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Individuals with obsessive-compulsive disorder (OCD) and separation anxiety disorder (SAD) tend to present higher morbidity than do those with OCD alone. However, the relationship between OCD and SAD has yet to be fully explored. METHOD This was a cross-sectional study using multiple logistic regression to identify differences between OCD patients with SAD (OCD+SAD, n=260) and without SAD (OCD, n=695), in terms of clinical and socio-demographic variables. Data were extracted from those collected between 2005 and 2009 via the Brazilian Research Consortium on Obsessive-Compulsive Spectrum Disorders project. RESULTS SAD was currently present in only 42 (4.4%) of the patients, although 260 (27.2%) had a lifetime diagnosis of the disorder. In comparison with the OCD group patients, patients with SAD+OCD showed higher chance to present sensory phenomena, to undergo psychotherapy, and to have more psychiatric comorbidities, mainly bulimia. CONCLUSION In patients with primary OCD, comorbid SAD might be related to greater personal dysfunction and a poorer response to treatment, since sensory phenomena may be a confounding aspect on diagnosis and therapeutics. Patients with OCD+SAD might be more prone to developing specific psychiatric comorbidities, especially bulimia. Our results suggest that SAD symptom assessment should be included in the management and prognostic evaluation of OCD, although the psychobiological role that such symptoms play in OCD merits further investigation.
Collapse
|
289
|
Woolley SC, Rajan R, Joshua M, Doupe AJ. Emergence of context-dependent variability across a basal ganglia network. Neuron 2014; 82:208-23. [PMID: 24698276 DOI: 10.1016/j.neuron.2014.01.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Context dependence is a key feature of cortical-basal ganglia circuit activity, and in songbirds the cortical outflow of a basal ganglia circuit specialized for song, LMAN, shows striking increases in trial-by-trial variability and bursting when birds sing alone rather than to females. To reveal where this variability and its social regulation emerge, we recorded stepwise from corticostriatal (HVC) neurons and their target spiny and pallidal neurons in Area X. We find that corticostriatal and spiny neurons both show precise singing-related firing across both social settings. Pallidal neurons, in contrast, exhibit markedly increased trial-by-trial variation when birds sing alone, created by highly variable pauses in firing. This variability persists even when recurrent inputs from LMAN are ablated. These data indicate that variability and its context sensitivity emerge within the basal ganglia network, suggest a network mechanism for this emergence, and highlight variability generation and regulation as basal ganglia functions.
Collapse
Affiliation(s)
- Sarah C Woolley
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Raghav Rajan
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Indian Institute of Science Education and Research, Pashan Road, Pune 411008, Maharashra, India
| | - Mati Joshua
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Allison J Doupe
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
290
|
Chuhma N, Mingote S, Moore H, Rayport S. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron 2014; 81:901-12. [PMID: 24559678 DOI: 10.1016/j.neuron.2013.12.027] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
Midbrain dopamine neurons fire in bursts conveying salient information. Bursts are associated with pauses in tonic firing of striatal cholinergic interneurons. Although the reciprocal balance of dopamine and acetylcholine in the striatum is well known, how dopamine neurons control cholinergic neurons has not been elucidated. Here, we show that dopamine neurons make direct fast dopaminergic and glutamatergic connections with cholinergic interneurons, with regional heterogeneity. Dopamine neurons drive a burst-pause firing sequence in cholinergic interneurons in the medial shell of the nucleus accumbens, mixed actions in the accumbens core, and a pause in the dorsal striatum. This heterogeneity is due mainly to regional variation in dopamine-neuron glutamate cotransmission. A single dose of amphetamine attenuates dopamine neuron connections to cholinergic interneurons with dose-dependent regional specificity. Overall, the present data indicate that dopamine neurons control striatal circuit function via discrete, plastic connections with cholinergic interneurons.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY 10032, USA.
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY 10032, USA
| | - Holly Moore
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Integrative Neuroscience, NYS Psychiatric Institute, New York, NY 10032, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
291
|
Weiss D, Lam JM, Breit S, Gharabaghi A, Krüger R, Luft AR, Wächter T. The subthalamic nucleus modulates the early phase of probabilistic classification learning. Exp Brain Res 2014; 232:2255-62. [PMID: 24718493 DOI: 10.1007/s00221-014-3916-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/11/2014] [Indexed: 11/25/2022]
Abstract
Previous models proposed that the subthalamic nucleus (STN) is critical in the early phase of skill acquisition. We hypothesized that subthalamic deep brain stimulation modulates the learning curve in early classification learning. Thirteen idiopathic Parkinson's disease patients (iPD) with subthalamic deep brain stimulation (STN-DBS), 9 medically treated iPD, and 21 age-matched healthy controls were tested with a probabilistic classification task. STN-DBS patients were tested with stimulation OFF and ON, and medically treated patients with medication OFF and ON, respectively. Performance and reaction time were analyzed on the first 100 consecutive trials as early learning phase. Moreover, data were separated for low and high-probability patterns, and more differentiated strategy analyses were used. The major finding was a significant modulation of the learning curve in DBS patients with stimulation ON: although overall learning was similar to healthy controls, only the stimulation ON group showed a transient significant performance dip from trials '41-60' that rapidly recovered. Further analysis indicated that this might be paralleled by a modulation of the learning strategy, particularly on the high-probability patterns. The reaction time was unchanged during the dip. Our study supports that the STN serves as a relay in early classification learning and directs attention toward unacquainted content. The STN might play a role in balancing the short-term success against strategy optimization for improved long-term outcome.
Collapse
Affiliation(s)
- Daniel Weiss
- German Centre of Neurodegenerative Diseases, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
292
|
Kalkhoven C, Sennef C, Peeters A, van den Bos R. Risk-taking and pathological gambling behavior in Huntington's disease. Front Behav Neurosci 2014; 8:103. [PMID: 24765067 PMCID: PMC3980094 DOI: 10.3389/fnbeh.2014.00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/12/2014] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a genetic, neurodegenerative disorder, which specifically affects striatal neurons of the indirect pathway, resulting in a progressive decline in muscle coordination and loss of emotional and cognitive control. Interestingly, predisposition to pathological gambling and other addictions involves disturbances in the same cortico-striatal circuits that are affected in HD, and display similar disinhibition-related symptoms, including changed sensitivity to punishments and rewards, impulsivity, and inability to consider long-term advantages over short-term rewards. Both HD patients and pathological gamblers also show similar performance deficits on risky decision-making tasks, such as the Iowa Gambling Task (IGT). These similarities suggest that HD patients are a likely risk group for gambling problems. However, such problems have only incidentally been observed in HD patients. In this review, we aim to characterize the risk of pathological gambling in HD, as well as the underlying neurobiological mechanisms. Especially with the current rise of easily accessible Internet gambling opportunities, it is important to understand these risks and provide appropriate patient support accordingly. Based on neuropathological and behavioral findings, we propose that HD patients may not have an increased tendency to seek risks and start gambling, but that they do have an increased chance of developing an addiction once they engage in gambling activities. Therefore, current and future developments of Internet gambling possibilities and related addictions should be regarded with care, especially for vulnerable groups like HD patients.
Collapse
Affiliation(s)
| | | | | | - Ruud van den Bos
- Department of Organismal Animal Physiology, Faculty of Science, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
293
|
Semrau JA, Perlmutter JS, Thoroughman KA. Visuomotor adaptation in Parkinson's disease: effects of perturbation type and medication state. J Neurophysiol 2014; 111:2675-87. [PMID: 24694937 DOI: 10.1152/jn.00095.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To perform simple everyday tasks, we use visual feedback from our external environment to generate and guide movements. However, tasks like reaching for a cup may become extremely difficult in movement disorders such as Parkinson's disease (PD), and it is unknown whether PD patients use visual information to compensate for motor deficiencies. We tested adaptation to changes in visual feedback of the hand in three subject groups, PD patients on daily levodopa (l-dopa) therapy (PD ON), PD patients off l-dopa (PD OFF), and age-matched control subjects, to determine the effects of PD on the visual control of movement. Subjects were tested on two classes of visual perturbations, one that altered visual direction of movement and one that altered visual extent of movement, allowing us to test adaptive sensitivity to changes in both movement direction (visual rotations) and extent (visual gain). The PD OFF group displayed more complete adaptation to visuomotor rotations compared with control subjects but initial, transient difficulty with adaptation to visual gain perturbations. The PD ON group displayed feedback control more sensitive to visual error compared with control subjects but compared with the PD OFF group had mild impairments during adaptation to changes in visual extent. We conclude that PD subjects can adapt to changes in visual information but that l-dopa may impair visual-based motor adaptation.
Collapse
Affiliation(s)
- Jennifer A Semrau
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Joel S Perlmutter
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri; Department of Radiology, Washington University School of Medicine, St. Louis, Missouri; Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri; and Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri
| | - Kurt A Thoroughman
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
294
|
Oude Ophuis RJA, Boender AJ, van Rozen AJ, Adan RAH. Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum. Front Neuroanat 2014; 8:14. [PMID: 24723856 PMCID: PMC3972466 DOI: 10.3389/fnana.2014.00014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/10/2014] [Indexed: 01/28/2023] Open
Abstract
The striatum harbors two neuronal populations that enable action selection. One population represents the striatonigral pathway, expresses the dopamine receptor D1 (DRD1) and promotes the execution of motor programs, while the other population represents the striatopallidal pathway, expresses the dopamine receptor D2 (DRD2) and suppresses voluntary activity. The two populations integrate distinct sensorimotor, cognitive, and emotional information streams and their combined activity enables the selection of adaptive behaviors. Characterization of these populations is critical to the understanding of their role in action selection, because it aids the identification of the molecular mechanisms that separate them. To that end, we used fluorescent in situ hybridization to quantify the percentage of striatal cells that (co)express dopaminergic receptors and receptors of the cannabinoid, melanocortin or opioid neurotransmitters systems. Our main findings are that the cannabinoid 1 receptor is equally expressed on both populations with a gradient from dorsal to ventral striatum, that the opioid receptors have a preference for expression with either the DRD1 or DRD2 and that the melanocortin 4 receptor (MC4R) is predominantly expressed in ventral parts of the striatum. In addition, we find that the level of MC4R expression determines its localization to either the DRD1 or the DRD2 population. Thereby, we provide insight into the sensitivity of the two dopaminoceptive populations to these neurotransmitters and progress the understanding of the mechanisms that enable action selection.
Collapse
Affiliation(s)
- Ralph J A Oude Ophuis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands ; Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht Utrecht, Netherlands
| | - Arjen J Boender
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Andrea J van Rozen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
295
|
Berthet P, Lansner A. Optogenetic stimulation in a computational model of the basal ganglia biases action selection and reward prediction error. PLoS One 2014; 9:e90578. [PMID: 24614169 PMCID: PMC3948624 DOI: 10.1371/journal.pone.0090578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/03/2014] [Indexed: 11/30/2022] Open
Abstract
Optogenetic stimulation of specific types of medium spiny neurons (MSNs) in the striatum has been shown to bias the selection of mice in a two choices task. This shift is dependent on the localisation and on the intensity of the stimulation but also on the recent reward history. We have implemented a way to simulate this increased activity produced by the optical flash in our computational model of the basal ganglia (BG). This abstract model features the direct and indirect pathways commonly described in biology, and a reward prediction pathway (RP). The framework is similar to Actor-Critic methods and to the ventral/dorsal distinction in the striatum. We thus investigated the impact on the selection caused by an added stimulation in each of the three pathways. We were able to reproduce in our model the bias in action selection observed in mice. Our results also showed that biasing the reward prediction is sufficient to create a modification in the action selection. However, we had to increase the percentage of trials with stimulation relative to that in experiments in order to impact the selection. We found that increasing only the reward prediction had a different effect if the stimulation in RP was action dependent (only for a specific action) or not. We further looked at the evolution of the change in the weights depending on the stage of learning within a block. A bias in RP impacts the plasticity differently depending on that stage but also on the outcome. It remains to experimentally test how the dopaminergic neurons are affected by specific stimulations of neurons in the striatum and to relate data to predictions of our model.
Collapse
Affiliation(s)
- Pierre Berthet
- Numerical Analysis and Computer Science, Stockholm University, Stockholm, Sweden
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- Stockholm Brain Institute, Karolinska Institute, Stockholm, Sweden
| | - Anders Lansner
- Numerical Analysis and Computer Science, Stockholm University, Stockholm, Sweden
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- Stockholm Brain Institute, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
296
|
Acupuncture Enhances Effective Connectivity between Cerebellum and Primary Sensorimotor Cortex in Patients with Stable Recovery Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:603909. [PMID: 24734108 PMCID: PMC3966489 DOI: 10.1155/2014/603909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 01/29/2023]
Abstract
Recent neuroimaging studies have demonstrated that stimulation of acupuncture at motor-implicated acupoints modulates activities of brain areas relevant to the processing of motor functions. This study aims to investigate acupuncture-induced changes in effective connectivity among motor areas in hemiparetic stroke patients by using the multivariate Granger causal analysis. A total of 9 stable recovery stroke patients and 8 healthy controls were recruited and underwent three runs of fMRI scan: passive finger movements and resting state before and after manual acupuncture stimuli. Stroke patients showed significantly attenuated effective connectivity between cortical and subcortical areas during passive motor task, which indicates inefficient information transmissions between cortical and subcortical motor-related regions. Acupuncture at motor-implicated acupoints showed specific modulations of motor-related network in stroke patients relative to healthy control subjects. This specific modulation enhanced bidirectionally effective connectivity between the cerebellum and primary sensorimotor cortex in stroke patients, which may compensate for the attenuated effective connectivity between cortical and subcortical areas during passive motor task and, consequently, contribute to improvement of movement coordination and motor learning in subacute stroke patients. Our results suggested that further efficacy studies of acupuncture in motor recovery can focus on the improvement of movement coordination and motor learning during motor rehabilitation.
Collapse
|
297
|
Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology 2014; 39:831-40. [PMID: 24096295 PMCID: PMC3924518 DOI: 10.1038/npp.2013.274] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorders (ASD) are defined by behavioral deficits in social interaction and communication, repetitive stereotyped behaviors, and restricted interests/cognitive rigidity. Recent studies in humans and animal-models suggest that dysfunction of the cholinergic system may underlie autism-related behavioral symptoms. Here we tested the hypothesis that augmentation of acetylcholine (ACh) in the synaptic cleft by inhibiting acetylcholinesterase may ameliorate autistic phenotypes. We first administered the acetylcholinesterase inhibitor (AChEI) Donepezil systemically by intraperitoneal (i.p.) injections. Second, the drug was injected directly into the rodent homolog of the caudate nucleus, the dorsomedial striatum (DMS), of the inbred mouse strain BTBR T+tf/J (BTBR), a commonly-used model presenting all core autism-related phenotypes and expressing low brain ACh levels. We found that i.p. injection of AChEI to BTBR mice significantly relieved autism-relevant phenotypes, including decreasing cognitive rigidity, improving social preference, and enhancing social interaction, in a dose-dependent manner. Microinjection of the drug directly into the DMS, but not into the ventromedial striatum, led to significant amelioration of the cognitive-rigidity and social-deficiency phenotypes. Taken together, these findings provide evidence of the key role of the cholinergic system and the DMS in the etiology of ASD, and suggest that elevated cognitive flexibility may result in enhanced social attention. The potential therapeutic effect of AChEIs in ASD patients is discussed.
Collapse
|
298
|
Ullsperger M, Danielmeier C, Jocham G. Neurophysiology of performance monitoring and adaptive behavior. Physiol Rev 2014; 94:35-79. [PMID: 24382883 DOI: 10.1152/physrev.00041.2012] [Citation(s) in RCA: 410] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Successful goal-directed behavior requires not only correct action selection, planning, and execution but also the ability to flexibly adapt behavior when performance problems occur or the environment changes. A prerequisite for determining the necessity, type, and magnitude of adjustments is to continuously monitor the course and outcome of one's actions. Feedback-control loops correcting deviations from intended states constitute a basic functional principle of adaptation at all levels of the nervous system. Here, we review the neurophysiology of evaluating action course and outcome with respect to their valence, i.e., reward and punishment, and initiating short- and long-term adaptations, learning, and decisions. Based on studies in humans and other mammals, we outline the physiological principles of performance monitoring and subsequent cognitive, motivational, autonomic, and behavioral adaptation and link them to the underlying neuroanatomy, neurochemistry, psychological theories, and computational models. We provide an overview of invasive and noninvasive systemic measures, such as electrophysiological, neuroimaging, and lesion data. We describe how a wide network of brain areas encompassing frontal cortices, basal ganglia, thalamus, and monoaminergic brain stem nuclei detects and evaluates deviations of actual from predicted states indicating changed action costs or outcomes. This information is used to learn and update stimulus and action values, guide action selection, and recruit adaptive mechanisms that compensate errors and optimize goal achievement.
Collapse
|
299
|
Fee MS. The role of efference copy in striatal learning. Curr Opin Neurobiol 2014; 25:194-200. [PMID: 24566242 DOI: 10.1016/j.conb.2014.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/30/2022]
Abstract
Reinforcement learning requires the convergence of signals representing context, action, and reward. While models of basal ganglia function have well-founded hypotheses about the neural origin of signals representing context and reward, the function and origin of signals representing action are less clear. Recent findings suggest that exploratory or variable behaviors are initiated by a wide array of 'action-generating' circuits in the midbrain, brainstem, and cortex. Thus, in order to learn, the striatum must incorporate an efference copy of action decisions made in these action-generating circuits. Here we review several recent neural models of reinforcement learning that emphasize the role of efference copy signals. Also described are ideas about how these signals might be integrated with inputs signaling context and reward.
Collapse
Affiliation(s)
- Michale S Fee
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
300
|
Filoteo JV, Maddox WT. Procedural-based category learning in patients with Parkinson's disease: impact of category number and category continuity. Front Syst Neurosci 2014; 8:14. [PMID: 24600355 PMCID: PMC3928591 DOI: 10.3389/fnsys.2014.00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/20/2014] [Indexed: 11/17/2022] Open
Abstract
Previously we found that Parkinson's disease (PD) patients are impaired in procedural-based category learning when category membership is defined by a nonlinear relationship between stimulus dimensions, but these same patients are normal when the rule is defined by a linear relationship (Maddox and Filoteo, 2001; Filoteo et al., 2005a,b). We suggested that PD patients' impairment was due to a deficit in recruiting “striatal units” to represent complex nonlinear rules. In the present study, we further examined the nature of PD patients' procedural-based deficit in two experiments designed to examine the impact of (1) the number of categories, and (2) category discontinuity on learning. Results indicated that PD patients were impaired only under discontinuous category conditions but were normal when the number of categories was increased from two to four. The lack of impairment in the four-category condition suggests normal integrity of striatal medium spiny cells involved in procedural-based category learning. In contrast, and consistent with our previous observation of a nonlinear deficit, the finding that PD patients were impaired in the discontinuous condition suggests that these patients are impaired when they have to associate perceptually distinct exemplars with the same category. Theoretically, this deficit might be related to dysfunctional communication among medium spiny neurons within the striatum, particularly given that these are cholinergic neurons and a cholinergic deficiency could underlie some of PD patients' cognitive impairment.
Collapse
Affiliation(s)
- J Vincent Filoteo
- Veterans Administration San Diego Healthcare System San Diego, CA, USA ; Department of Psychiatry, University of California San Diego, CA, USA
| | - W Todd Maddox
- Department of Psychology, University of Texas Austin, TX, USA ; Institute for Neuroscience, University of Texas Austin, TX, USA
| |
Collapse
|