251
|
Ursinus A, van den Ent F, Brechtel S, de Pedro M, Höltje JV, Löwe J, Vollmer W. Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J Bacteriol 2004; 186:6728-37. [PMID: 15466024 PMCID: PMC522186 DOI: 10.1128/jb.186.20.6728-6737.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of the essential cell division protein FtsN of Escherichia coli to the murein (peptidoglycan) sacculus was studied. Soluble truncated variants of FtsN, including the complete periplasmic part of the protein as well as a variant containing only the C-terminal 77 amino acids, did bind to purified murein sacculi isolated from wild-type cells. FtsN variants lacking this C-terminal region showed reduced or no binding to murein. Binding of FtsN was severely reduced when tested against sacculi isolated either from filamentous cells with blocked cell division or from chain-forming cells of a triple amidase mutant. Binding experiments with radioactively labeled murein digestion products revealed that the longer murein glycan strands (>25 disaccharide units) showed a specific affinity to FtsN, but neither muropeptides, peptides, nor short glycan fragments bound to FtsN. In vivo FtsN could be cross-linked to murein with the soluble disulfide bridge containing cross-linker DTSSP. Less FtsN, but similar amounts of OmpA, was cross-linked to murein of filamentous or of chain-forming cells compared to levels in wild-type cells. Expression of truncated FtsN variants in cells depleted in full-length FtsN revealed that the presence of the C-terminal murein-binding domain was not required for cell division under laboratory conditions. FtsN was present in 3,000 to 6,000 copies per cell in exponentially growing wild-type E. coli MC1061. We discuss the possibilities that the binding of FtsN to murein during cell division might either stabilize the septal region or might have a function unrelated to cell division.
Collapse
Affiliation(s)
- Astrid Ursinus
- Universität Tübingen, Fakultät für Biologie, Lehrbereich Mikrobielle Genetik, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
252
|
Shiba Y, Yokoyama Y, Aono Y, Kiuchi T, Kusaka J, Matsumoto K, Hara H. Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J Bacteriol 2004; 186:6526-35. [PMID: 15375134 PMCID: PMC516613 DOI: 10.1128/jb.186.19.6526-6535.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lethal effect of an Escherichia coli pgsA null mutation, which causes a complete lack of the major acidic phospholipids, phosphatidylglycerol and cardiolipin, is alleviated by a lack of the major outer membrane lipoprotein encoded by the lpp gene, but an lpp pgsA strain shows a thermosensitive growth defect. Using transposon mutagenesis, we found that this thermosensitivity was suppressed by disruption of the rcsC, rcsF, and yojN genes, which code for a sensor kinase, accessory positive factor, and phosphotransmitter, respectively, of the Rcs phosphorelay signal transduction system initially identified as regulating the capsular polysaccharide synthesis (cps) genes. Disruption of the rcsB gene coding for the response regulator of the system also suppressed the thermosensitivity, whereas disruption of cpsE did not. By monitoring the expression of a cpsB'-lac fusion, we showed that the Rcs system is activated in the pgsA mutant and is reverted to a wild-type level by the rcs mutations. These results indicate that envelope stress due to an acidic phospholipid deficiency activates the Rcs phosphorelay system and thereby causes the thermosensitive growth defect independent of the activation of capsule synthesis.
Collapse
Affiliation(s)
- Yasuhiro Shiba
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
253
|
Piette A, Fraipont C, Den Blaauwen T, Aarsman MEG, Pastoret S, Nguyen-Distèche M. Structural determinants required to target penicillin-binding protein 3 to the septum of Escherichia coli. J Bacteriol 2004; 186:6110-7. [PMID: 15342580 PMCID: PMC515155 DOI: 10.1128/jb.186.18.6110-6117.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, cell division is mediated by the concerted action of about 12 proteins that assemble at the division site to presumably form a complex called the divisome. Among these essential division proteins, the multimodular class B penicillin-binding protein 3 (PBP3), which is specifically involved in septal peptidoglycan synthesis, consists of a short intracellular M1-R23 peptide fused to a F24-L39 membrane anchor that is linked via a G40-S70 peptide to an R71-I236 noncatalytic module itself linked to a D237-V577 catalytic penicillin-binding module. On the basis of localization analyses of PBP3 mutants fused to green fluorescent protein by fluorescence microscopy, it appears that the first 56 amino acid residues of PBP3 containing the membrane anchor and the G40-E56 peptide contain the structural determinants required to target the protein to the cell division site and that none of the putative protein interaction sites present in the noncatalytic module are essential for the positioning of the protein to the division site. Based on the effects of increasing production of FtsQ or FtsW on the division of cells expressing PBP3 mutants, it is suggested that these proteins could interact. We postulate that FtsQ could play a role in regulating the assembly of these division proteins at the division site and the activity of the peptidoglycan assembly machineries within the divisome.
Collapse
Affiliation(s)
- André Piette
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie, B6a, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
254
|
Chung KM, Hsu HH, Govindan S, Chang BY. Transcription regulation of ezrA and its effect on cell division of Bacillus subtilis. J Bacteriol 2004; 186:5926-32. [PMID: 15317798 PMCID: PMC516839 DOI: 10.1128/jb.186.17.5926-5932.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EzrA protein of Bacillus subtilis is a negative regulator for FtsZ (Z)-ring formation. It is able to modulate the frequency and position of Z-ring formation during cell division. The loss of this protein results in cells with multiple Z rings located at polar as well as medial sites; it also lowers the critical concentration of FtsZ required for ring formation (P. A. Levin, I. G. Kurster, and A. D. Grossman, Proc. Natl. Acad. Sci. USA 96:9642-9647, 1999). We have studied the regulation of ezrA expression during the growth of B. subtilis and its effects on the intracellular level of EzrA as well as the cell length of B. subtilis. With the aid of promoter probing, primer extension, in vitro transcription, and Western blotting analyses, two overlapping sigmaA-type promoters, P1 and P2, located about 100 bp upstream of the initiation codon of ezrA, have been identified. P1, supposed to be an extended -10 promoter, was responsible for most of the ezrA expression during the growth of B. subtilis. Disruption of this promoter reduced the intracellular level of EzrA very significantly compared with disruption of P2. Moreover, deletion of both promoters completely abolished EzrA in B. subtilis. More importantly, the cell length and percentage of filamentous cells of B. subtilis were significantly increased by disruption of the promoter(s). Thus, EzrA is required for efficient cell division during the growth of B. subtilis, despite serving as a negative regulator for Z-ring formation.
Collapse
Affiliation(s)
- Kuei-Min Chung
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | |
Collapse
|
255
|
Haeusser DP, Schwartz RL, Smith AM, Oates ME, Levin PA. EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. Mol Microbiol 2004; 52:801-14. [PMID: 15101985 PMCID: PMC5517308 DOI: 10.1111/j.1365-2958.2004.04016.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In response to a cell cycle signal, the cytoskeletal protein FtsZ assembles into a ring structure that establishes the location of the division site and serves as a framework for assembly of the division machinery. A battery of factors control FtsZ assembly to ensure that the ring forms in the correct position and at the precise time. EzrA, a negative regulator of FtsZ ring formation, is important for ensuring that the ring forms only once per cell cycle and that cytokinesis is restricted to mid-cell. EzrA is distributed throughout the plasma membrane and localizes to the ring in an FtsZ-dependent manner, suggesting that it interacts directly with FtsZ to modulate assembly. We have performed a series of experiments examining the interaction between EzrA and FtsZ. As little as twofold overexpression of EzrA blocks FtsZ ring formation in a sensitized genetic background, consistent with its predicted function. A purified EzrA fusion protein interacts directly with FtsZ to block assembly in vitro. Although EzrA is able to inhibit FtsZ assembly, it is unable to disassemble preformed polymers. These data support a model in which EzrA interacts directly with FtsZ at the plasma membrane to prevent polymerization and aberrant FtsZ ring formation.
Collapse
Affiliation(s)
| | | | | | | | - Petra Anne Levin
- For correspondence. ; Tel. (+1) 314 935 7888; Fax (+1) 314 935 4432
| |
Collapse
|
256
|
Ortenberg R, Gon S, Porat A, Beckwith J. Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli. Proc Natl Acad Sci U S A 2004; 101:7439-44. [PMID: 15123823 PMCID: PMC409937 DOI: 10.1073/pnas.0401965101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strain of Escherichia coli missing three members of the thioredoxin superfamily, thioredoxins 1 and 2 and glutaredoxin 1, is unable to grow, a phenotype presumed to be due to the inability of cells to reduce the essential enzyme ribonucleotide reductase. Two classes of mutations can restore growth to such a strain. First, we have isolated a collection of mutations in the gene for the protein glutaredoxin 3 that suppress the growth defect. Remarkably, all eight independent mutations alter the same amino acid, methionine-43, changing it to valine, isoleucine, or leucine. From the position of the amino acid changes and their effects, we propose that these alterations change the protein so that its properties are closer to those of glutaredoxin 1. The second means of suppressing the growth defects of the multiply mutant strain was by mutations in the DNA replication genes, dnaA and dnaN. These mutations substantially increase the expression of ribonucleotide reductase, most likely by altering the interaction of the regulatory protein DnaA with the ribonucleotide reductase promoter. Our results suggest that this increase in the concentration of ribonucleotide reductase in the cell allows more effective interaction with glutaredoxin 3, thus restoring an effective pool of deoxyribonucleotides. Our studies present direct evidence that ribonucleotide reductase is the only essential enzyme that requires the three reductive proteins missing in our strains. Our results also suggest an unexpected regulatory interaction between the DnaA and DnaN proteins.
Collapse
Affiliation(s)
- Ron Ortenberg
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
257
|
Di Lallo G, Fagioli M, Barionovi D, Ghelardini P, Paolozzi L. Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. MICROBIOLOGY-SGM 2004; 149:3353-3359. [PMID: 14663069 DOI: 10.1099/mic.0.26580-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ability of each of the nine Escherichia coli division proteins (FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsL, FtsW, FtsI, FtsN) to interact with itself and with each of the remaining eight proteins was studied in 43 possible combinations of protein pairs by the two-hybrid system previously developed by the authors' group. Once the presumed interactions between the division proteins were determined, a model showing their temporal sequence of assembly was developed. This model agrees with that developed by other authors, based on the co-localization sequence in the septum of the division proteins fused with GFP. In addition, this paper shows that the authors' assay, which has already proved to be very versatile in the study of prokaryotic and eukaryotic protein interaction, is also a powerful instrument for an in vivo study of the interaction and assembly of proteins, as in the case of septum division formation.
Collapse
Affiliation(s)
- G Di Lallo
- Dipartimento di Biologia, Università "Tor Vergata", Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - M Fagioli
- Dipartimento di Biologia, Università "Tor Vergata", Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - D Barionovi
- Dipartimento di Biologia, Università "Tor Vergata", Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - P Ghelardini
- Istituto di Biologia e Patologia Molecolari del CNR, Rome, Italy
| | - L Paolozzi
- Dipartimento di Biologia, Università "Tor Vergata", Via della Ricerca Scientifica, I-00133 Rome, Italy
| |
Collapse
|
258
|
Schmidt KL, Peterson ND, Kustusch RJ, Wissel MC, Graham B, Phillips GJ, Weiss DS. A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli. J Bacteriol 2004; 186:785-93. [PMID: 14729705 PMCID: PMC321481 DOI: 10.1128/jb.186.3.785-793.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsE and FtsX have homology to the ABC transporter superfamily of proteins and appear to be widely conserved among bacteria. Early work implicated FtsEX in cell division in Escherichia coli, but this was subsequently challenged, in part because the division defects in ftsEX mutants are often salt remedial. Strain RG60 has an ftsE::kan null mutation that is polar onto ftsX. RG60 is mildly filamentous when grown in standard Luria-Bertani medium (LB), which contains 1% NaCl, but upon shift to LB with no NaCl growth and division stop. We found that FtsN localizes to potential division sites, albeit poorly, in RG60 grown in LB with 1% NaCl. We also found that in wild-type E. coli both FtsE and FtsX localize to the division site. Localization of FtsX was studied in detail and appeared to require FtsZ, FtsA, and ZipA, but not the downstream division proteins FtsK, FtsQ, FtsL, and FtsI. Consistent with this, in media lacking salt, FtsA and ZipA localized independently of FtsEX, but the downstream proteins did not. Finally, in the absence of salt, cells depleted of FtsEX stopped dividing before any change in growth rate (mass increase) was apparent. We conclude that FtsEX participates directly in the process of cell division and is important for assembly or stability of the septal ring, especially in salt-free media.
Collapse
Affiliation(s)
- Kari L Schmidt
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
259
|
Arends SJR, Weiss DS. Inhibiting cell division in Escherichia coli has little if any effect on gene expression. J Bacteriol 2004; 186:880-4. [PMID: 14729718 PMCID: PMC321490 DOI: 10.1128/jb.186.3.880-884.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA microarrays were used to compare gene expression in dividing and nondividing (filamentous) cultures of Escherichia coli. Although cells from these cultures differed profoundly in morphology, their gene expression profiles were nearly identical. These results extend previous evidence that there is no division checkpoint in E. coli, and progression through the cell cycle is not regulated by the transcription of different genes during different parts of the cell cycle.
Collapse
Affiliation(s)
- S J Ryan Arends
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
260
|
Pinho MG, Errington J. Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol Microbiol 2004; 50:871-81. [PMID: 14617148 DOI: 10.1046/j.1365-2958.2003.03719.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed several new fluorescent staining procedures that enabled us to study the synthesis of cell wall material in the spherical Gram-positive bacterium Staphylococcus aureus. The results obtained support previous proposals that these cells synthesize new wall material specifically at cell division sites, in the form of a flat circular plate that is subsequently cleaved and remodelled to produce the new hemispherical poles of the daughter cells. We have shown that formation of the septal peptidoglycan is dependent on the key cell division protein FtsZ, which recruits penicillin-binding protein (PBP) 2. Unexpectedly, in FtsZ-depleted cells, the cell wall synthetic machinery becomes dispersed and new wall material is made in dispersed patches over the entire surface of the cells, which increase in volume by up to eightfold before lysing. The results have implications for understanding the nature of S. aureus morphogenesis and for inhibitors of cell division proteins as drug targets.
Collapse
Affiliation(s)
- Mariana G Pinho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
261
|
Wissel MC, Weiss DS. Genetic analysis of the cell division protein FtsI (PBP3): amino acid substitutions that impair septal localization of FtsI and recruitment of FtsN. J Bacteriol 2004; 186:490-502. [PMID: 14702319 PMCID: PMC305773 DOI: 10.1128/jb.186.2.490-502.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsI (also called PBP3) of Escherichia coli is a transpeptidase required for synthesis of peptidoglycan in the division septum and is one of several proteins that localize to the septal ring. FtsI comprises a small cytoplasmic domain, a transmembrane helix, a noncatalytic domain of unknown function, and a catalytic (transpeptidase) domain. The last two domains reside in the periplasm. We used PCR to randomly mutagenize ftsI, ligated the products into a green fluorescent protein fusion vector, and screened approximately 7,500 transformants for gfp-ftsI alleles that failed to complement an ftsI null mutant. Western blotting and penicillin-binding assays were then used to weed out proteins that were unstable, failed to insert into the cytoplasmic membrane, or were defective in catalysis. The remaining candidates were tested for septal localization and ability to recruit another division protein, FtsN, to the septal ring. Mutant proteins severely defective in localization to the septal ring all had lesions in one of three amino acids-R23, L39, or Q46-that are in or near the transmembrane helix and implicate this region of FtsI in septal localization. Mutant FtsI proteins defective in recruitment of FtsN all had lesions in one of eight residues in the noncatalytic domain. The most interesting of these mutants had lesions at G57, S61, L62, or R210. Although separated by approximately 150 residues in the primary sequence, these amino acids are close together in the folded protein and might constitute a site of FtsI-FtsN interaction.
Collapse
Affiliation(s)
- Mark C Wissel
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
262
|
Janakiraman A, Goldberg MB. Evidence for polar positional information independent of cell division and nucleoid occlusion. Proc Natl Acad Sci U S A 2004; 101:835-40. [PMID: 14715903 PMCID: PMC321767 DOI: 10.1073/pnas.0305747101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present evidence that, in Escherichia coli, polar positional information is present at midcell independent of known cell division factors. In filamented cells, IcsA, which is normally polar, localizes at or near potential cell division sites. Because the cell pole is derived from the septum, the sites to which IcsA localizes in filaments correspond to future poles. IcsA localization to these sites is independent of FtsZ, MinCDE, septation, and nucleoid occlusion, indicating that positional information for the future pole is independent of cell division and chromosome positioning. Upon IcsA localization to these sites, septation is inhibited, suggesting that IcsA recognition of this polar positional information may influence cell division.
Collapse
Affiliation(s)
- Anuradha Janakiraman
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | |
Collapse
|
263
|
Wang J, Galgoci A, Kodali S, Herath KB, Jayasuriya H, Dorso K, Vicente F, González A, Cully D, Bramhill D, Singh S. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem 2003; 278:44424-8. [PMID: 12952956 DOI: 10.1074/jbc.m307625200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The emergence of bacterial resistance to antibiotics is a major health problem and, therefore, it is critical to develop new antibiotics with novel modes of action. FtsZ, a tubulin-like GTPase, plays an essential role in bacterial cell division, and its homologs are present in almost all eubacteria and archaea. During cell division, FtsZ forms polymers in the presence of GTP that recruit other division proteins to make the cell division apparatus. Therefore, inhibition of FtsZ polymerization will prevent cells from dividing, leading to cell death. Using a fluorescent FtsZ polymerization assay, the screening of >100,000 extracts of microbial fermentation broths and plants followed by fractionation led to the identification of viriditoxin, which blocked FtsZ polymerization with an IC50 of 8.2 microg/ml and concomitant GTPase inhibition with an IC50 of 7.0 microg/ml. That the mode of antibacterial action of viriditoxin is via inhibition of FtsZ was confirmed by the observation of its effects on cell morphology, macromolecular synthesis, DNA-damage response, and increased minimum inhibitory concentration as a result of an increase in the expression of the FtsZ protein. Viriditoxin exhibited broad-spectrum antibacterial activity against clinically relevant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci, without affecting the viability of eukaryotic cells.
Collapse
Affiliation(s)
- Jun Wang
- Department of Human and Animal Infectious Disease, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Schierle CF, Berkmen M, Huber D, Kumamoto C, Boyd D, Beckwith J. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J Bacteriol 2003; 185:5706-13. [PMID: 13129941 PMCID: PMC193964 DOI: 10.1128/jb.185.19.5706-5713.2003] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli cytoplasmic protein thioredoxin 1 can be efficiently exported to the periplasmic space by the signal sequence of the DsbA protein (DsbAss) but not by the signal sequence of alkaline phosphatase (PhoA) or maltose binding protein (MBP). Using mutations of the signal recognition particle (SRP) pathway, we found that DsbAss directs thioredoxin 1 to the SRP export pathway. When DsbAss is fused to MBP, MBP also is directed to the SRP pathway. We show directly that the DsbAss-promoted export of MBP is largely cotranslational, in contrast to the mode of MBP export when the native signal sequence is utilized. However, both the export of thioredoxin 1 by DsbAss and the export of DsbA itself are quite sensitive to even the slight inhibition of SecA. These results suggest that SecA may be essential for both the slow posttranslational pathway and the SRP-dependent cotranslational pathway. Finally, probably because of its rapid folding in the cytoplasm, thioredoxin provides, along with gene fusion approaches, a sensitive assay system for signal sequences that utilize the SRP pathway.
Collapse
Affiliation(s)
- Clark F Schierle
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
265
|
Brandon LD, Goehring N, Janakiraman A, Yan AW, Wu T, Beckwith J, Goldberg MB. IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. Mol Microbiol 2003; 50:45-60. [PMID: 14507362 DOI: 10.1046/j.1365-2958.2003.03674.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asymmetric localization of proteins is essential to many biological functions of bacteria. Shigella IcsA, an outer membrane protein, is localized to the old pole of the bacillus, where it mediates assembly of a polarized actin tail during infection of mammalian cells. Actin tail assembly provides the propulsive force for intracellular movement and intercellular dissemination. Localization of IcsA to the pole is independent of the amino-terminal signal peptide (Charles, M., Perez, M., Kobil, J.H., and Goldberg, M.B., 2001, Proc Natl Acad Sci USA 98: 9871-9876) suggesting that IcsA targeting occurs in the bacterial cytoplasm and that its secretion across the cytoplasmic membrane occurs only at the pole. Here, we characterize the mechanism by which IcsA is secreted across the cytoplasmic membrane. We present evidence that IcsA requires the SecA ATPase and the SecYEG membrane channel (translocon) for secretion. Our data suggest that YidC is not required for IcsA secretion. Furthermore, we show that polar localization of IcsA is independent of SecA. Finally, we demonstrate that while IcsA requires the SecYEG translocon for secretion, components of this apparatus are uniformly distributed within the membrane. Based on these data, we propose a model for coordinate polar targeting and secretion of IcsA at the bacterial pole.
Collapse
Affiliation(s)
- Lauren D Brandon
- Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
266
|
Katayama N, Takano H, Sugiyama M, Takio S, Sakai A, Tanaka K, Kuroiwa H, Ono K. Effects of antibiotics that inhibit the bacterial peptidoglycan synthesis pathway on moss chloroplast division. PLANT & CELL PHYSIOLOGY 2003; 44:776-81. [PMID: 12881507 DOI: 10.1093/pcp/pcg096] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Moss chloroplasts should prove useful for studying the cyanobacteria-derived system in chloroplasts. To determine the effects of antibiotics that inhibit bacterial peptidoglycan synthesis, the numbers of chloroplasts in treated Physcomitrella patens cells were counted. Ampicillin and D-cycloserine caused a rapid decrease in the number of chloroplasts per cell. Fosfomycin affected half of the cells, while vancomycin affected a few cells. Conversely, bacitracin had no effect. With the decrease in chloroplast number, macrochloroplasts appeared in antibiotic-treated cells. Removal of the antibiotics resulted in the recovery of chloroplast number, suggesting that the decrease in number was directly dependent on the antibiotic treatment. Microscopic observations showed that the decrease in the number of chloroplasts resulted from cell division without chloroplast division. These results suggest that enzymes derived from the bacterial peptidoglycan synthesis pathway are related to moss chloroplast division.
Collapse
Affiliation(s)
- Nami Katayama
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Eberhardt C, Kuerschner L, Weiss DS. Probing the catalytic activity of a cell division-specific transpeptidase in vivo with beta-lactams. J Bacteriol 2003; 185:3726-34. [PMID: 12813065 PMCID: PMC161574 DOI: 10.1128/jb.185.13.3726-3734.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin-binding protein 3 (PBP3; also called FtsI) is a transpeptidase that catalyzes cross-linking of the peptidoglycan cell wall in the division septum of Escherichia coli. To determine whether the catalytic activity of PBP3 is activated during division, we assayed acylation of PBP3 with three beta-lactams (cephalexin, aztreonam, and piperacillin) in growing cells. Acylation of PBP3 with cephalexin, but not aztreonam or piperacillin, appeared to be stimulated by cell division. Specifically, cephalexin acylated PBP3 about 50% faster in a population of dividing cells than in a population of filamentous cells in which division was inhibited by inactivation or depletion of FtsZ, FtsA, FtsQ, FtsW, or FtsN. However, in a simpler in vitro system using isolated membranes, acylation with cephalexin was not impaired by depletion of FtsW or FtsN. A conflicting previous report that the ftsA3(Ts) allele interferes with acylation of PBP3 was found to be due to the presence of a thermolabile PBP3 in the strain used in that study. The new findings presented here are discussed in light of the hypothesis that the catalytic activity of PBP3 is stimulated by interaction(s) with other division proteins. We suggest that there might be allosteric activation of substrate binding.
Collapse
|
268
|
Mileykovskaya E, Fishov I, Fu X, Corbin BD, Margolin W, Dowhan W. Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo. J Biol Chem 2003; 278:22193-8. [PMID: 12676941 DOI: 10.1074/jbc.m302603200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peripheral membrane ATPase MinD is a component of the Min system responsible for correct placement of the division site in Escherichia coli cells. By rapidly migrating from one cell pole to the other, MinD helps to block unwanted septation events at the poles. MinD is an amphitropic protein that is localized to the membrane in its ATP-bound form. A C-terminal domain essential for membrane localization is predicted to be an amphipathic alpha-helix with hydrophobic residues interacting with lipid acyl chains and cationic residues on the opposite face of the helix interacting with the head groups of anionic phospholipids (Szeto, T. H., Rowland, S. L., Rothfield, L. I., and King, G. F. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 15693-15698). To investigate whether E. coli MinD displays a preference for anionic phospholipids, we first examined the localization dynamics of a green fluorescent protein-tagged derivative of MinD expressed in a mutant of E. coli that lacks phosphatidylethanolamine. In these cells, which contain only anionic phospholipids (phosphatidylglycerol and cardiolipin), green fluorescent protein-MinD assembled into dynamic focal clusters instead of the broad zones typical of cells with normal phospholipid content. In experiments with liposomes composed of only zwitterionic, only anionic, or a mixture of anionic and zwitterionic phospholipids, purified MinD bound to these liposomes in the presence of ATP with positive cooperativity with respect to the protein concentration and exhibited Hill coefficients of about 2. Oligomerization of MinD on the liposome surface also was detected by fluorescence resonance energy transfer between MinD molecules labeled with different fluorescent probes. The affinity of MinD-ATP for anionic liposomes as well as liposomes composed of both anionic and zwitterionic phospholipids increased 9- and 2-fold, respectively, relative to zwitterionic liposomes. The degree of acyl chain unsaturation contributed positively to binding strength. These results suggest that MinD has a preference for anionic phospholipids and that MinD oscillation behavior, and therefore cell division site selection, may be regulated by membrane phospholipid composition.
Collapse
Affiliation(s)
- Eugenia Mileykovskaya
- Department of Biochemistry, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
269
|
Abstract
FtsZ is an essential cell division protein conserved throughout the bacteria and archaea. In response to an unknown cell cycle signal, FtsZ polymerizes into a ring that establishes the future division site. We conducted a series of experiments examining the link between growth rate, medial FtsZ ring formation, and the intracellular concentration of FtsZ in the gram-positive bacterium Bacillus subtilis. We found that, although the frequency of cells with FtsZ rings varies as much as threefold in a growth rate-dependent manner, the average intracellular concentration of FtsZ remains constant irrespective of doubling time. Additionally, expressing ftsZ solely from a constitutive promoter, thereby eliminating normal transcriptional control, did not alter the growth rate regulation of medial FtsZ ring formation. Finally, our data indicate that overexpressing FtsZ does not dramatically increase the frequency of cells with medial FtsZ rings, suggesting that the mechanisms governing ring formation are refractile to increases in FtsZ concentration. These results support a model in which the timing of FtsZ assembly is governed primarily through cell cycle-dependent changes in FtsZ polymerization kinetics and not simply via oscillations in the intracellular concentration of FtsZ. Importantly, this model can be extended to the gram-negative bacterium Escherichia coli. Our data show that, like those in B. subtilis, average FtsZ levels in E. coli are constant irrespective of doubling time.
Collapse
Affiliation(s)
- Richard B Weart
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
270
|
Du Y, Arvidson CG. Identification of ZipA, a signal recognition particle-dependent protein from Neisseria gonorrhoeae. J Bacteriol 2003; 185:2122-30. [PMID: 12644481 PMCID: PMC151515 DOI: 10.1128/jb.185.7.2122-2130.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic screen designed to identify proteins that utilize the signal recognition particle (SRP) for targeting in Escherichia coli was used to screen a Neisseria gonorrhoeae plasmid library. Six plasmids were identified in this screen, and each is predicted to encode one or more putative cytoplasmic membrane (CM) proteins. One of these, pSLO7, has three open reading frames (ORFs), two of which have no similarity to known proteins in GenBank other than sequences from the closely related N. meningitidis. Further analyses showed that one of these, SLO7ORF3, encodes a protein that is dependent on the SRP for localization. This gene also appears to be essential in N. gonorrhoeae since it was not possible to generate null mutations in the gene. Although appearing unique to Neisseria at the DNA sequence level, SLO7ORF3 was found to share some features with the cell division gene zipA of E. coli. These features included similar chromosomal locations (with respect to linked genes) as well as similarities in the predicted protein domain structures. Here, we show that SLO7ORF3 can complement an E. coli conditional zipA mutant and therefore encodes a functional ZipA homolog in N. gonorrhoeae. This observation is significant in that it is the first ZipA homolog identified in a non-rod-shaped organism. Also interesting is that this is the fourth cell division protein (the others are FtsE, FtsX, and FtsQ) shown to utilize the SRP for localization, which may in part explain why the genes encoding the three SRP components are essential in bacteria.
Collapse
Affiliation(s)
- Ying Du
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | |
Collapse
|
271
|
Geissler B, Elraheb D, Margolin W. A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli. Proc Natl Acad Sci U S A 2003; 100:4197-202. [PMID: 12634424 PMCID: PMC153070 DOI: 10.1073/pnas.0635003100] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ZipA and FtsA are recruited independently to the FtsZ cytokinetic ring (Z ring) and are essential for cell division of Escherichia coli. The molecular role of FtsA in cell division is unknown; however, ZipA is thought to stabilize the Z ring, anchor it to the membrane, and recruit downstream cell division proteins. Here we demonstrate that the requirement for ZipA can be bypassed completely by a single alteration in a conserved residue of FtsA (FtsA*). Cells with ftsA* in single copy in place of WT ftsA or with ftsA* alone on a multicopy plasmid divide mostly normally, whether they are zipA+ or zipA-. Experiments with ftsQAZ and ftsQA*Z on multicopy plasmids indicate that ftsQAZzipA+ and ftsQA*ZzipA- cells divide fairly normally, whereas ftsQAZzipA- cells divide poorly and ftsQA*ZzipA+ cells display a phenotype that suggests their septa are unusually stable. In support of the idea that ftsA* stabilizes Z rings, single-copy ftsA* confers resistance to excess MinC, which destabilizes Z rings. The inhibitory effect of excess ZipA on division is also suppressed by ftsA*. These results suggest that the molecular mechanism of the FtsA* bypass is to stabilize FtsZ assembly via a parallel pathway and that FtsA* can replace the multiple functions of ZipA. This is an example of a complete functional replacement of an essential prokaryotic cell division protein by another and may explain why most bacteria can divide without an obvious ZipA homolog.
Collapse
Affiliation(s)
- Brett Geissler
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | |
Collapse
|
272
|
Abstract
Work on two diverse rod-shaped bacteria, Escherichia coli and Bacillus subtilis, has defined a set of about 10 conserved proteins that are important for cell division in a wide range of eubacteria. These proteins are directed to the division site by the combination of two negative regulatory systems. Nucleoid occlusion is a poorly understood mechanism whereby the nucleoid prevents division in the cylindrical part of the cell, until chromosome segregation has occurred near midcell. The Min proteins prevent division in the nucleoid-free spaces near the cell poles in a manner that is beginning to be understood in cytological and biochemical terms. The hierarchy whereby the essential division proteins assemble at the midcell division site has been worked out for both E. coli and B. subtilis. They can be divided into essentially three classes depending on their position in the hierarchy and, to a certain extent, their subcellular localization. FtsZ is a cytosolic tubulin-like protein that polymerizes into an oligomeric structure that forms the initial ring at midcell. FtsA is another cytosolic protein that is related to actin, but its precise function is unclear. The cytoplasmic proteins are linked to the membrane by putative membrane anchor proteins, such as ZipA of E. coli and possibly EzrA of B. subtilis, which have a single membrane span but a cytoplasmic C-terminal domain. The remaining proteins are either integral membrane proteins or transmembrane proteins with their major domains outside the cell. The functions of most of these proteins are unclear with the exception of at least one penicillin-binding protein, which catalyzes a key step in cell wall synthesis in the division septum.
Collapse
Affiliation(s)
- Jeffery Errington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| | | | | |
Collapse
|
273
|
Carettoni D, Gómez-Puertas P, Yim L, Mingorance J, Massidda O, Vicente M, Valencia A, Domenici E, Anderluzzi D. Phage-display and correlated mutations identify an essential region of subdomain 1C involved in homodimerization of Escherichia coli FtsA. Proteins 2003; 50:192-206. [PMID: 12486713 DOI: 10.1002/prot.10244] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
FtsA plays an essential role in Escherichia coli cell division and is nearly ubiquitous in eubacteria. Several evidences postulated the ability of FtsA to interact with other septation proteins and with itself. To investigate these binding properties, we screened a phage-display library with FtsA. The isolated peptides defined a degenerate consensus sequence, which in turn displayed a striking similarity with residues 126-133 of FtsA itself. This result suggested that residues 126-133 were involved in homodimerization of FtsA. The hypothesis was supported by the analysis of correlated mutations, which identified a mutual relationship between a group of amino acids encompassing the ATP-binding site and a set of residues immediately downstream to amino acids 126-133. This information was used to assemble a model of a FtsA homodimer, whose accuracy was confirmed by probing multiple alternative docking solutions. Moreover, a prediction of residues responsible for protein-protein interaction validated the proposed model and confirmed once more the importance of residues 126-133 for homodimerization. To functionally characterize this region, we introduced a deletion in ftsA, where residues 126-133 were skipped. This mutant failed to complement conditional lethal alleles of ftsA, demonstrating that amino acids 126-133 play an essential role in E. coli.
Collapse
Affiliation(s)
- Daniele Carettoni
- GlaxoSmithKline Medicines Research Center, Via Fleming 4, 37135 Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Den Blaauwen T, Aarsman MEG, Vischer NOE, Nanninga N. Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol Microbiol 2003; 47:539-47. [PMID: 12519203 DOI: 10.1046/j.1365-2958.2003.03316.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The localization of penicillin-binding protein 2 (PBP2) in Escherichia coli has been studied using a functional green fluorescent protein (GFP)-PBP2 fusion protein. PBP2 localized in the bacterial envelope in a spot-like pattern and also at mid-cell during cell division. PBP2 disappeared from mid-cell just before separation of the two daughter cells. It localized with a preference for the cylindrical part of the bacterium in comparison with the old cell poles, which are known to be inert with respect to peptidoglycan synthesis. In contrast to subunits of the divisome, PBP2 failed to localize at mid-cell when PBP3 was inhibited by the specific antibiotic aztreonam. Therefore, despite its dependency on active PBP3 for localization at mid-cell, it seems not to be an integral part of the divisome. Cells grown for approximately half a mass doubling time in the presence of the PBP2 inhibitor mecillinam synthesized nascent cell poles with an increased diameter, indicating that PBP2 is required for the maintenance of the correct diameter of the new cell pole.
Collapse
Affiliation(s)
- Tanneke Den Blaauwen
- Swammerdam Institute for Life sciences, Kruislaan 316, 1098 SM Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
275
|
Goffin C, Ghuysen JM. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 2002; 66:702-38, table of contents. [PMID: 12456788 PMCID: PMC134655 DOI: 10.1128/mmbr.66.4.702-738.2002] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial acyltransferases of the SxxK superfamily vary enormously in sequence and function, with conservation of particular amino acid groups and all-alpha and alpha/beta folds. They occur as independent entities (free-standing polypeptides) and as modules linked to other polypeptides (protein fusions). They can be classified into three groups. The group I SxxK D,D-acyltransferases are ubiquitous in the bacterial world. They invariably bear the motifs SxxK, SxN(D), and KT(S)G. Anchored in the plasma membrane with the bulk of the polypeptide chain exposed on the outer face of it, they are implicated in the synthesis of wall peptidoglycans of the most frequently encountered (4-->3) type. They are inactivated by penicillin and other beta-lactam antibiotics acting as suicide carbonyl donors in the form of penicillin-binding proteins (PBPs). They are components of a morphogenetic apparatus which, as a whole, controls multiple parameters such as shape and size and allows the bacterial cells to enlarge and duplicate their particular pattern. Class A PBP fusions comprise a glycosyltransferase module fused to an SxxK acyltransferase of class A. Class B PBP fusions comprise a linker, i.e., protein recognition, module fused to an SxxK acyltransferase of class B. They ensure the remodeling of the (4-->3) peptidoglycans in a cell cycle-dependent manner. The free-standing PBPs hydrolyze D,D peptide bonds. The group II SxxK acyltransferases frequently have a partially modified bar code, but the SxxK motif is invariant. They react with penicillin in various ways and illustrate the great plasticity of the catalytic centers. The secreted free-standing PBPs, the serine beta-lactamases, and the penicillin sensors of several penicillin sensory transducers help the D,D-acyltransferases of group I escape penicillin action. The group III SxxK acyltransferases are indistinguishable from the PBP fusion proteins of group I in motifs and membrane topology, but they resist penicillin. They are referred to as Pen(r) protein fusions. Plausible hypotheses are put forward on the roles that the Pen(r) protein fusions, acting as L,D-acyltransferases, may play in the (3-->3) peptidoglycan-synthesizing molecular machines. Shifting the wall peptidoglycan from the (4-->3) type to the (3-->3) type could help Mycobacterium tuberculosis and Mycobacterium leprae survive by making them penicillin resistant.
Collapse
Affiliation(s)
- Colette Goffin
- Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | | |
Collapse
|
276
|
Abstract
Cell division in Escherichia coli requires the coordinated action of at least ten proteins. In recent years, substantial progress has been made in understanding the assembly of these proteins at the cell septum. These findings suggest a largely stepwise appearance of cell division proteins at the centre of the cell.
Collapse
Affiliation(s)
- Nienke Buddelmeijer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
277
|
Ramirez-Arcos S, Szeto J, Dillon JAR, Margolin W. Conservation of dynamic localization among MinD and MinE orthologues: oscillation of Neisseria gonorrhoeae proteins in Escherichia coli. Mol Microbiol 2002; 46:493-504. [PMID: 12406224 DOI: 10.1046/j.1365-2958.2002.03168.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Min proteins are involved in the correct placement of division septa in many bacterial species. In Escherichia coli (Ec) cells, these proteins oscillate from pole to pole, ostensibly to prevent unwanted polar septation. Here, we show that Min proteins from the coccus Neisseria gonorrhoeae (Ng) also oscillate in E. coli. Green fluorescent protein (GFP) fusions to gonococcal MinD and MinE localized dynamically in different E. coli backgrounds. GFP-MinDNg moved from pole to pole in rod-shaped E. coli cells with a 70 +/- 25 s localization cycle when MinENg was expressed in cis. The oscillation time of GFP-MinDNg was reduced when wild-type MinENg was replaced with MinENg carrying a R30D mutation, but lengthened by 15 s when activated by MinEEc. Several mutations in the N-terminal domain of MinDNg, including K16Q and 4- and 19-amino acid truncations, prevented oscillation; these MinDNg mutants showed decreased or lost interaction with themselves and MinENg. Like MinEEc-GFP, MinENg-GFP formed MinE rings and oscillated in E. coli cells when MinDEc was expressed in cis. Finally, in round E. coli cells, GFP-MinDNg appeared to move in a plane parallel to completed septa. This pattern of movement is predicted to be similar in gonococcal cells, which also divide in alternating perpendicular planes.
Collapse
|
278
|
Abstract
When bacteria such as Staphylococcus aureus and Streptococcus pneumoniae are exposed to lytic antibiotics such as penicillin and vancomycin, a self-induced killing process is initiated in the organism. This killing occurs via both non-lytic and lytic processes. Recent data suggest that the non-lytic killing system, which might affect the cytoplasmic membrane, secondarily activates murein hydrolases that eventually lyse the cell. Disturbances in this suicide pathway can lead to antibiotic tolerance, a process whereby the antibiotic still exerts its bacteriostatic effects but the self-induced killing system is impaired. In mutants obtained in vitro, signaling pathways have been affected that show either increased or decreased antibiotic-induced killing. Among clinical isolates of S. pneumoniae that are tolerant to penicillin and/or vancomycin, we do not yet know whether these signaling pathways are affected. We could, however, demonstrate that the activity of murein hydrolases is negatively controlled by the production of capsular polysaccharides in one vancomycin-tolerant isolate. Hence, type and level of capsular expression might constitute one factor that determines the degree of lysis, once the killing signal has been elicited by the antibiotic.
Collapse
Affiliation(s)
- Benriques Henriques Normark
- Swedish Institute for Infectious Disease Control and Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm Sweden.
| | | |
Collapse
|
279
|
Trusca D, Bramhill D. Fluorescent assay for polymerization of purified bacterial FtsZ cell-division protein. Anal Biochem 2002; 307:322-9. [PMID: 12202250 DOI: 10.1016/s0003-2697(02)00036-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Septum formation in Escherichia coli is a complex cascade of interactions among cell-division proteins. The tubulin-like FtsZ division protein localizes to the division site and serves a cytoskeletal role during septum formation. A novel fluorescent-based 96-well format filter assay has been developed to measure the polymerization of FtsZ. A mixture of monomers and aggregates (38 to approximately 200 KDa in range) of purified wild-type FtsZ and a fluorescently tagged derivative of FtsZ protein in stoichiometric ratio passes through a 0.2-microm filter membrane, while polymerized FtsZ is retained on the filter. Addition of the SulA protein to the assay leads to rapid disassembly of existing FtsZ polymers, demonstrating its natural regulatory effect on FtsZ under the assay conditions. This assay is sensitive (requiring 2 microM FtsZ or less) and facilitates high-throughput screening of factors affecting FtsZ polymerization.
Collapse
Affiliation(s)
- Dorina Trusca
- Department of Endocrinology and Chemical Biology, Building 50G-246, and Biologics Research, 80Y-325, Merck Research Laboratories, Rahway, NJ 07065-0900, USA
| | | |
Collapse
|
280
|
Alba BM, Leeds JA, Onufryk C, Lu CZ, Gross CA. DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev 2002; 16:2156-68. [PMID: 12183369 PMCID: PMC186436 DOI: 10.1101/gad.1008902] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
All cells have stress response pathways that maintain homeostasis in each cellular compartment. In the Gram-negative bacterium Escherichia coli, the sigma(E) pathway responds to protein misfolding in the envelope. The stress signal is transduced across the inner membrane to the cytoplasm via the inner membrane protein RseA, the anti-sigma factor that inhibits the transcriptional activity of sigma(E). Stress-induced activation of the pathway requires the regulated proteolysis of RseA. In this report we show that RseA is degraded by sequential proteolytic events controlled by the inner membrane-anchored protease DegS and the membrane-embedded metalloprotease YaeL, an ortholog of mammalian Site-2 protease (S2P). This is consistent with the mechanism of activation of ATF6, the mammalian unfolded protein response transcription factor by Site-1 protease and S2P. Thus, mammalian and bacterial cells employ a conserved proteolytic mechanism to activate membrane-associated transcription factors that initiate intercompartmental cellular stress responses.
Collapse
Affiliation(s)
- Benjamin M Alba
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
281
|
Datta P, Dasgupta A, Bhakta S, Basu J. Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. J Biol Chem 2002; 277:24983-7. [PMID: 12101218 DOI: 10.1074/jbc.m203847200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recruitment of FtsZ to the septum and its subsequent interaction with other cell division proteins in a spatially and temporally controlled manner are the keys to bacterial cell division. In the present study, we have tested the hypothesis that FtsZ and FtsW of Mycobacterium tuberculosis could be binding partners. Using gel renaturation, pull-down, and solid-phase assays, we confirm that FtsZ and FtsW interact through their C-terminal tails, which carry extensions absent in their Escherichia coli counterparts. Crucial to these interactions is the cluster of aspartate residues Asp(367) to Asp(370) of FtsZ, which most likely interact with a cluster of positively charged residues in the C-terminal tail of FtsW. Mutations of the aspartate residues 367-370 showed that changing three aspartate residues to alanine resulted in complete loss of interaction. This is the first demonstration of the direct interaction between FtsZ and FtsW. We speculate that this interaction between FtsZ and FtsW could serve to anchor FtsZ to the membrane and link septum formation to peptidoglycan synthesis in M. tuberculosis. The findings assume particular significance in view of the global efforts to explore new targets in M. tuberculosis for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Pratik Datta
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | | | | | | |
Collapse
|
282
|
Rosenberger CM, Finlay BB. Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem 2002; 277:18753-62. [PMID: 11821396 DOI: 10.1074/jbc.m110649200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Host responses during the later stages of Salmonella-macrophage interactions are critical to controlling infection but have not been well characterized. After 24 h of infection, nearly half of interferon-gamma-primed murine RAW 264.7 macrophage-like cells infected by Salmonella enterica serovar Typhimurium contained filamentous bacteria. Bacterial filamentation indicates a defect in completing replication and has been previously observed in bacteria responding to a variety of stresses. To understand whether macrophage gene expression was responsible for this effect on Salmonella Typhimurium replication, we used gene arrays to profile interferon-gamma-primed RAW 264.7 cell gene expression following infection. We observed an increase in MEK1 kinase mRNA at 8 h, an increase in MEK protein at 24 h, and measured phosphorylation of MEK's downstream target kinase, ERK1/2, throughout the 24-h infection period. Treatment of cells with MEK kinase inhibitors significantly reduced numbers of filamentous bacteria observed within macrophages after 24 h and increased the number of intracellular colony-forming units. Phagocyte NADPH oxidase inhibitors and antioxidants also significantly reduced bacterial filamentation. Either MEK kinase or phagocyte oxidase inhibitors could be added 4-8 h after infection and still significantly decrease bacterial filamentation. Oxidase activity appears to mediate bacterial filamentation in parallel to MEK kinase signaling, while inducible nitric-oxide synthase inhibitors had no significant effect on bacterial morphology. In summary, Salmonella Typhimurium infection of interferon-gamma-primed macrophages triggers a MEK kinase cascade at later infection times, and both MEK kinase and phagocyte NADPH oxidase activity impair bacterial replication. These two signaling pathways mediate a host bacteriostatic pathway and may play an important role in innate host defense against intracellular pathogens.
Collapse
Affiliation(s)
- Carrie M Rosenberger
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
283
|
Hale CA, de Boer PAJ. ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. J Bacteriol 2002; 184:2552-6. [PMID: 11948172 PMCID: PMC135003 DOI: 10.1128/jb.184.9.2552-2556.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The septal ring in Escherichia coli consists of at least nine essential gene products whose order of assembly resembles a mostly linear dependency pathway: FtsA and ZipA directly bind FtsZ polymers at the prospective division site, followed by the sequential addition of FtsK, FtsQ, FtsL, FtsW, FtsI, and FtsN. Recruitment of FtsK and all downstream components requires the prior localization of FtsA. Here we show that recruitment of FtsK, FtsQ, FtsL, and FtsN equally requires ZipA. The results imply that association of both FtsA and ZipA with FtsZ polymers is needed for further maturation of the nascent organelle.
Collapse
Affiliation(s)
- Cynthia A Hale
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA.
| | | |
Collapse
|
284
|
Buddelmeijer N, Judson N, Boyd D, Mekalanos JJ, Beckwith J. YgbQ, a cell division protein in Escherichia coli and Vibrio cholerae, localizes in codependent fashion with FtsL to the division site. Proc Natl Acad Sci U S A 2002; 99:6316-21. [PMID: 11972052 PMCID: PMC122946 DOI: 10.1073/pnas.092128499] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
YgbQ is a cell division protein in Escherichia coli and Vibrio cholerae. In E. coli the ygbQ gene was discovered as a result of a computer search of the E. coli genome designed to find potential interacting partners for cell division protein FtsL. In V. cholerae, ygbQ was identified as an essential gene by using a transposon that fuses genes to an arabinose promoter. The role of YgbQ in cell division is supported by the following. Cells depleted of YgbQ in both organisms form long filaments, but DNA segregation is not affected. YgbQ localizes to the constriction site in wild-type E. coli cells. Localization of E. coli YgbQ to the constriction site depends on cell division proteins FtsQ and FtsL but not FtsW and FtsI, placing YgbQ in the sequential dependency order of proteins localizing to the division site. Localization of green fluorescent protein-FtsL also depends on YgbQ, indicating that FtsL and YgbQ colocalize to the division site in E. coli. Our results show colocalization of proteins to the bacterial midcell in E. coli and raise the possibility that these proteins interact in a coiled-coil structure.
Collapse
Affiliation(s)
- Nienke Buddelmeijer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
285
|
Corbin BD, Yu XC, Margolin W. Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. EMBO J 2002; 21:1998-2008. [PMID: 11953319 PMCID: PMC125965 DOI: 10.1093/emboj/21.8.1998] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The MinCDE proteins help to select cell division sites in normal cylindrical Escherichia coli by oscillating along the long axis, preventing unwanted polar divisions. To determine how the Min system might function in cells with multiple potential division planes, we investigated its role in a round-cell rodA mutant. Round cells lacking MinCDE were viable, but growth, morphology and positioning of cell division sites were abnormal relative to Min+ cells. In round cells with a long axis, such as those undergoing cell division, green fluorescent protein (GFP) fusions to MinD almost always oscillated parallel to the long axis. However, perfect spheres or irregularly shaped cells exhibited MinD movement to and from multiple sites on the cell surface. A MinE-GFP fusion exhibited similar behavior. These results indicate that the Min proteins can potentially localize anywhere in the cell but tend to move a certain maximum distance from their previous assembly site, thus favoring movement along the cell's long axis. A new model for the spatial control of division planes by the Min system in round cells is proposed.
Collapse
Affiliation(s)
| | | | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA
Corresponding author e-mail:
| |
Collapse
|
286
|
Pogliano J, Sharp MD, Pogliano K. Partitioning of chromosomal DNA during establishment of cellular asymmetry in Bacillus subtilis. J Bacteriol 2002; 184:1743-9. [PMID: 11872726 PMCID: PMC134875 DOI: 10.1128/jb.184.4.1743-1749.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The switch from symmetric to asymmetric cell division is a key feature of development in many organisms, including Bacillus subtilis sporulation. Here we demonstrate that, prior to the onset of asymmetric cell division, the B. subtilis chromosome is partitioned into two unequally sized domains, with the origin-proximal one-third of the future forespore chromosome condensed near one pole of the cell. Asymmetric chromosome partitioning is independent of polar division, as it occurs in cells depleted of FtsZ but depends on two transcription factors that govern the initiation of sporulation, sigma(H) and Spo0A-P. It is also independent of chromosome partitioning proteins Spo0J and Soj, suggesting the existence of a novel mechanism controlling chromosome structure. Thus, our results demonstrate that, during sporulation, two separable events prepare B. subtilis for asymmetric cell division: the relocation of cell division sites to the cell poles and the asymmetric partitioning of the future forespore chromosome.
Collapse
Affiliation(s)
- Joe Pogliano
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0349, USA
| | | | | |
Collapse
|
287
|
Pichoff S, Lutkenhaus J. Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J 2002; 21:685-93. [PMID: 11847116 PMCID: PMC125861 DOI: 10.1093/emboj/21.4.685] [Citation(s) in RCA: 315] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ZipA and FtsA are essential division proteins in Escherichia coli that are recruited to the division site by interaction with FtsZ. Utilizing a newly isolated temperature-sensitive mutation in zipA we have more fully characterized the role of ZipA. We confirmed that ZipA is not required for Z ring formation; however, we found that ZipA, like FtsA, is required for recruitment of FtsK and therefore all downstream division proteins. In the absence of FtsA or ZipA Z rings formed; however, in the absence of both, new Z rings were unable to form and preformed Z rings were destabilized. Consistent with this, we found that an FtsZ mutant unable to interact with both ZipA and FtsA was unable to assemble into Z rings. These results demonstrate that ZipA and FtsA are both required for recruitment of additional division proteins to the Z ring, but either one is capable of supporting formation and stabilization of Z rings.
Collapse
Affiliation(s)
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
Corresponding author e-mail:
| |
Collapse
|
288
|
Chen JC, Minev M, Beckwith J. Analysis of ftsQ mutant alleles in Escherichia coli: complementation, septal localization, and recruitment of downstream cell division proteins. J Bacteriol 2002; 184:695-705. [PMID: 11790739 PMCID: PMC139535 DOI: 10.1128/jb.184.3.695-705.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2001] [Accepted: 11/06/2001] [Indexed: 11/20/2022] Open
Abstract
FtsQ, a 276-amino-acid, bitopic membrane protein, is one of the nine proteins known to be essential for cell division in gram-negative bacterium Escherichia coli. To define residues in FtsQ critical for function, we performed random mutagenesis on the ftsQ gene and identified four alleles (ftsQ2, ftsQ6, ftsQ15, and ftsQ65) that fail to complement the ftsQ1(Ts) mutation at the restrictive temperature. Two of the mutant proteins, FtsQ6 and FtsQ15, are functional at lower temperatures but are unable to localize to the division site unless wild-type FtsQ is depleted, suggesting that they compete poorly with the wild-type protein for septal targeting. The other two mutants, FtsQ2 and FtsQ65, are nonfunctional at all temperatures tested and have dominant-negative effects when expressed in an ftsQ1(Ts) strain at the permissive temperature. FtsQ2 and FtsQ65 localize to the division site in the presence or absence of endogenous FtsQ, but they cannot recruit downstream cell division proteins, such as FtsL, to the septum. These results suggest that FtsQ2 and FtsQ65 compete efficiently for septal targeting but fail to promote the further assembly of the cell division machinery. Thus, we have separated the localization ability of FtsQ from its other functions, including recruitment of downstream cell division proteins, and are beginning to define regions of the protein responsible for these distinct capabilities.
Collapse
Affiliation(s)
- Joseph C Chen
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
289
|
Mercer KLN, Weiss DS. The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol 2002; 184:904-12. [PMID: 11807049 PMCID: PMC134820 DOI: 10.1128/jb.184.4.904-912.2002] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2001] [Accepted: 11/11/2001] [Indexed: 11/20/2022] Open
Abstract
The bacterial cell division protein FtsW has been suggested to perform two functions: stabilize the FtsZ cytokinetic ring, and facilitate septal peptidoglycan synthesis by the transpeptidase FtsI (penicillin-binding protein 3). We show here that depleting Escherichia coli cells of FtsW had little effect on the abundance of FtsZ rings but abrogated recruitment of FtsI to potential division sites. Analysis of FtsW localization confirmed and extended these results; septal localization of FtsW required FtsZ, FtsA, FtsQ, and FtsL but not FtsI. Thus, FtsW is a late recruit to the division site and is essential for subsequent recruitment of its cognate transpeptidase FtsI but not for stabilization of FtsZ rings. We suggest that a primary function of FtsW homologues--which are found in almost all bacteria and appear to work in conjunction with dedicated transpeptidases involved in division, elongation, or sporulation--is to recruit their cognate transpeptidases to the correct subcellular location.
Collapse
Affiliation(s)
- Keri L N Mercer
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
290
|
den Blaauwen T, Lindqvist A, Löwe J, Nanninga N. Distribution of the Escherichia coli structural maintenance of chromosomes (SMC)-like protein MukB in the cell. Mol Microbiol 2001; 42:1179-88. [PMID: 11886550 DOI: 10.1046/j.1365-2958.2001.02691.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluorescent polyclonal antibodies specific for MukB have been used to study its localization in Escherichia coli. In wild-type cells, the MukB protein appeared as a limited number of oblong shapes embracing the nucleoid. MukB remained associated with the nucleoid in the absence of DNA replication. The centre of gravity of the dispersed MukB signal initially localized near mid-cell, but moved to approximately quarter positions well before the termination of DNA replication and its subsequent reinitiation. Because MukB had been reported to bind to FtsZ and to its eukaryotic homologue tubulin in vitro, cells were co-labelled with MukB- and FtsZ-specific fluorophores. No co-localization of MukB with polymerized FtsZ (the FtsZ ring) was observed at any time during the cell cycle. A possible role for MukB in preventing premature FtsZ polymerization and in DNA folding that might assist DNA segregation is discussed.
Collapse
Affiliation(s)
- T den Blaauwen
- Swammerdam Institute for Life Sciences, Kruislaan 316, 1098 SM Amsterdam, PO Box 194062, 1090 GB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
291
|
Pichoff S, Lutkenhaus J. Escherichia coli division inhibitor MinCD blocks septation by preventing Z-ring formation. J Bacteriol 2001; 183:6630-5. [PMID: 11673433 PMCID: PMC95494 DOI: 10.1128/jb.183.22.6630-6635.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The min system spatially regulates division through the topological regulation of MinCD, an inhibitor of cell division. MinCD was previously shown to inhibit division by preventing assembly of the Z ring (E. Bi and J. Lutkenhaus, J. Bacteriol. 175:1118-1125, 1993); however, this was questioned in a recent report (S. S. Justice, J. Garcia-Lara, and L. I. Rothfield, Mol. Microbiol. 37:410-423, 2000) which indicated that MinCD acted after Z-ring formation and prevented the recruitment of FtsA to the Z ring. This discrepancy was due in part to alternative fixation conditions. We have therefore reinvestigated the action of MinCD and avoided fixation by using green fluorescent protein (GFP) fusions to division proteins. MinCD prevented the localization of both FtsZ-GFP and ZipA-GFP, consistent with it preventing Z-ring assembly. Consistent with a direct interaction between FtsZ and the MinCD inhibitor, we find that increased FtsZ, but not FtsA, suppresses MinCD-induced lethality. Furthermore, strains carrying various alleles of ftsZ, selected on the basis of resistance to the inhibitor SulA, displayed variable resistance to MinCD. These results are consistent with FtsZ as the target of MinCD and confirm that this inhibitor prevents Z-ring assembly.
Collapse
Affiliation(s)
- S Pichoff
- Department of Microbiology, University of Kansas Medical Center, Kansas City 66160, USA
| | | |
Collapse
|
292
|
Phillips GJ. Green fluorescent protein--a bright idea for the study of bacterial protein localization. FEMS Microbiol Lett 2001; 204:9-18. [PMID: 11682170 DOI: 10.1111/j.1574-6968.2001.tb10854.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Use of the green fluorescent protein (GFP) of Aequorea victoria as a reporter for protein and DNA localization has provided sensitive, new approaches for studying the organization of the bacterial cell, leading to new insights into diverse cellular processes. GFP has many characteristics that make it useful for localization studies in bacteria, primarily its ability to fluoresce when fused to target polypeptides without the addition of exogenously added substrates. As an alternative to immunofluorescence microscopy, the expression of gfp gene fusions has been used to probe the function of cellular components fundamental for DNA replication, translation, protein export, and signal transduction, that heretofore have been difficult to study in living cells. Moreover, protein and DNA localization can now be monitored in real time, revealing that several proteins important for cell division, development and sporulation are dynamically localized throughout the cell cycle. The use of additional GFP variants that permit the labeling of multiple components within the same cell, and the use of GFP for genetic screens, should continue to make this a valuable tool for addressing complex questions about the bacterial cell.
Collapse
Affiliation(s)
- G J Phillips
- Department of Microbiology, 207 Science I Building, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
293
|
Chen JC, Beckwith J. FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol Microbiol 2001; 42:395-413. [PMID: 11703663 DOI: 10.1046/j.1365-2958.2001.02640.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During cell division in Gram-negative bacteria, the cell envelope invaginates and constricts at the septum, eventually severing the cell into two compartments, and separating the replicated genetic materials. In Escherichia coli, at least nine essential gene products participate directly in septum formation: FtsA, FtsI, FtsL, FtsK, FtsN, FtsQ, FtsW, FtsZ and ZipA. All nine proteins have been localized to the septal ring, an equatorial ring structure at the division site. We used translational fusions to green fluorescent protein (GFP) to demonstrate that FtsQ, FtsL and FtsI localize to potential division sites in filamentous cells depleted of FtsN, but not in those depleted of FtsK. We also constructed translational fusions of FtsZ, FtsA, FtsQ, FtsL and FtsI to enhanced cyan or yellow fluorescent protein (ECFP or EYFP respectively), GFP variants with different fluorescence spectra. Examination of cells expressing different combinations of the fusions indicated that FtsA, FtsQ, FtsL and FtsI co-localize with FtsZ in filaments depleted of FtsN. These localization results support the model that E. coli cell division proteins assemble sequentially as a multimeric complex at the division site: first FtsZ, then FtsA and ZipA independently of each other, followed successively by FtsK, FtsQ, FtsL, FtsW, FtsI and FtsN.
Collapse
Affiliation(s)
- J C Chen
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
294
|
Levin PA, Schwartz RL, Grossman AD. Polymer stability plays an important role in the positional regulation of FtsZ. J Bacteriol 2001; 183:5449-52. [PMID: 11514533 PMCID: PMC95432 DOI: 10.1128/jb.183.18.5449-5452.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We conducted a series of experiments examining the effect of polymer stability on FtsZ localization dynamics in Bacillus subtilis. A loss-of-function mutation in ezrA, a putative polymer-destabilizing factor, suppresses the defects in FtsZ polymer stability associated with minCD overexpression. In addition, a mutation that is predicted to stabilize the FtsZ polymer leads to the formation of polar FtsZ rings. These data support the hypothesis that carefully balanced polymer stability is important for the assembly and localization of FtsZ during the bacterial cell cycle.
Collapse
Affiliation(s)
- P A Levin
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | | | |
Collapse
|
295
|
de Pedro MA, Donachie WD, Höltje JV, Schwarz H. Constitutive septal murein synthesis in Escherichia coli with impaired activity of the morphogenetic proteins RodA and penicillin-binding protein 2. J Bacteriol 2001; 183:4115-26. [PMID: 11418550 PMCID: PMC95299 DOI: 10.1128/jb.183.14.4115-4126.2001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pattern of peptidoglycan (murein) segregation in cells of Escherichia coli with impaired activity of the morphogenetic proteins penicillin-binding protein 2 and RodA has been investigated by the D-cysteine-biotin immunolabeling technique (M. A. de Pedro, J. C. Quintela, J.-V. Höltje, and H. Schwarz, J. Bacteriol. 179:2823-2834, 1997). Inactivation of these proteins either by amdinocillin treatment or by mutations in the corresponding genes, pbpA and rodA, respectively, leads to the generation of round, osmotically stable cells. In normal rod-shaped cells, new murein precursors are incorporated all over the lateral wall in a diffuse manner, being mixed up homogeneously with preexisting material, except during septation, when strictly localized murein synthesis occurs. In contrast, in rounded cells, incorporation of new precursors is apparently a zonal process, localized at positions at which division had previously taken place. Consequently, there is no mixing of new and old murein. Old murein is preserved for long periods of time in large, well-defined areas. We propose that the observed patterns are the result of a failure to switch off septal murein synthesis at the end of septation events. Furthermore, the segregation results confirm that round cells of rodA mutants do divide in alternate, perpendicular planes as previously proposed (K. J. Begg and W. D. Donachie, J. Bacteriol. 180:2564-2567, 1998).
Collapse
Affiliation(s)
- M A de Pedro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
296
|
Haney SA, Glasfeld E, Hale C, Keeney D, He Z, de Boer P. Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J Biol Chem 2001; 276:11980-7. [PMID: 11278571 DOI: 10.1074/jbc.m009810200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recruitment of ZipA to the septum by FtsZ is an early, essential step in cell division in Escherichia coli. We have used polymerase chain reaction-mediated random mutagenesis in the yeast two-hybrid system to analyze this interaction and have identified residues within a highly conserved sequence at the C terminus of FtsZ as the ZipA binding site. A search for suppressors of a mutation that causes a loss of interaction (ftsZ(D373G)) identified eight different changes at two residues within this sequence. In vitro, wild type FtsZ interacted with ZipA with a high affinity in an enzyme-linked immunosorbent assay, whereas FtsZ(D373G) failed to interact. Two mutant proteins examined restored this interaction significantly. In vivo, the alleles tested are significantly more toxic than the wild type ftsZ and cannot complement a deletion. We have shown that a fusion, which encodes the last 70 residues of FtsZ in the two-hybrid system, is sufficient for the interaction with FtsA and ZipA. However, when the wild type sequence is compared with one that encodes FtsZ(D373G), no interaction was seen with either protein. Mutations surrounding Asp-373 differentially affected the interactions of FtsZ with ZipA and FtsA, indicating that these proteins bind the C terminus of FtsZ differently.
Collapse
Affiliation(s)
- S A Haney
- Department of Infectious Disease, Wyeth-Ayerst Research, Pearl River, New York 10965 and the Department of Molecular Biology and Microbiology, Case Western Reserve University Medical School, Cleveland, Ohio 44106-4960
| | | | | | | | | | | |
Collapse
|
297
|
Wang Y, Jones BD, Brun YV. A set of ftsZ mutants blocked at different stages of cell division in Caulobacter. Mol Microbiol 2001; 40:347-60. [PMID: 11309118 DOI: 10.1046/j.1365-2958.2001.02395.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FtsZ is required throughout the cell division process in eubacteria and in archaea. We report the isolation of novel mutants of the FtsZ gene in Caulobacter crescentus. Clusters of charged amino acids were changed to alanine to minimize mutations that affect protein folding. Molecular modelling indicated that all the clustered-charged-to-alanine mutations had altered amino acids at the surface of the protein. Of 13 such mutants, four were recessive-lethal, three were dominant-lethal, and six had no discernible phenotype. An FtsZ depletion strain of Caulobacter was constructed to analyse the phenotype of the recessive-lethal mutations and used to show that they blocked cell division at distinct stages. One mutation blocked the initiation of cell division, two mutations blocked cell division randomly, and one mutation blocked both early and late stages of cell division. The effect of the recessive mutations on the subcellular localization of FtsZ was determined. Models to explain the various mutant phenotypes are discussed. This is the first set of recessive alleles of ftsZ blocked at different stages of cell division.
Collapse
Affiliation(s)
- Y Wang
- Department of Biology, Indiana University, Jordan Hall 142, 1001 East 3rd St., Bloomington, IN 47405-3700, USA
| | | | | |
Collapse
|
298
|
Affiliation(s)
- J Beckwith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
299
|
Chalut C, Charpentier X, Remy MH, Masson JM. Differential responses of Escherichia coli cells expressing cytoplasmic domain mutants of penicillin-binding protein 1b after impairment of penicillin-binding proteins 1a and 3. J Bacteriol 2001; 183:200-6. [PMID: 11114917 PMCID: PMC94866 DOI: 10.1128/jb.183.1.200-206.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Accepted: 10/09/2000] [Indexed: 11/20/2022] Open
Abstract
Penicillin-binding protein 1b (PBP1b) is the major high-molecular-weight PBP in Escherichia coli. Although it is coded by a single gene, it is usually found as a mixture of three isoforms which vary with regard to the length of their N-terminal cytoplasmic tail. We show here that although the cytoplasmic tail seems to play no role in the dimerization of PBP1b, as was originally suspected, only the full-length protein is able to protect the cells against lysis when both PBP1a and PBP3 are inhibited by antibiotics. This suggests a specific role for the full-length PBP1b in the multienzyme peptidoglycan-synthesizing complex that cannot be fulfilled by either PBP1a or the shorter PBP1b proteins. Moreover, we have shown by alanine-stretch-scanning mutagenesis that (i) residues R(11) to G(13) are major determinants for correct translocation and folding of PBP1b and that (ii) the specific interactions involving the full-length PBP1b can be ascribed to the first six residues at the N-terminal end of the cytoplasmic domain. These results are discussed in terms of the interactions with other components of the murein-synthesizing complex.
Collapse
Affiliation(s)
- C Chalut
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 du CNRS, Toulouse, France
| | | | | | | |
Collapse
|
300
|
Brendler T, Sawitzke J, Sergueev K, Austin S. A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation. EMBO J 2000; 19:6249-58. [PMID: 11080170 PMCID: PMC305820 DOI: 10.1093/emboj/19.22.6249] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SeqA is an Escherichia coli DNA-binding protein that acts at replication origins and controls DNA replication. However, binding is not exclusive to origins. Many fragments containing two or more hemi-methylated GATC sequences bind efficiently. Binding was optimal when two such sequences were closely apposed or up to 31 bases apart on the same face of the DNA helix. Binding studies suggest that neighboring bound proteins contact each other to form a complex with the intervening DNA looped out. There are many potential binding sites distributed around the E.coli chromosome. As replication produces a transient wave of hemi-methylation, tracts of SeqA binding are likely to associate with each fork as replication progresses. The number and positions of green fluorescent protein-SeqA foci seen in living cells suggest that they correspond to these tracts, and that the forks are tethered to planes of cell division. SeqA may help to tether the forks or to organize newly replicated DNA into a structure that aids DNA to segregate away from the replication machinery.
Collapse
Affiliation(s)
- T Brendler
- Gene Regulation and Chromosome Biology Laboratory, Division of Basic Sciences, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|