251
|
Distinct Contributions of Neutrophils and CCR2+ Monocytes to Pulmonary Clearance of Different Klebsiella pneumoniae Strains. Infect Immun 2015; 83:3418-27. [PMID: 26056382 DOI: 10.1128/iai.00678-15] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae is a common respiratory pathogen, with some strains having developed broad resistance to clinically available antibiotics. Humans can become infected with many different K. pneumoniae strains that vary in genetic background, antibiotic susceptibility, capsule composition, and mucoid phenotype. Genome comparisons have revealed differences between K. pneumoniae strains, but the impact of genomic variability on immune-mediated clearance of pneumonia remains unclear. Experimental studies of pneumonia in mice have used the rodent-adapted 43816 strain of K. pneumoniae and demonstrated that neutrophils are essential for optimal host defense. It remains unclear, however, whether CCR2(+) monocytes contribute to K. pneumoniae clearance from the lung. We selectively depleted neutrophils, CCR2(+) monocytes, or both from immunocompetent mice and determined susceptibility to infection by the 43816 strain and 4 newly isolated clinical K. pneumoniae strains. The clinical K. pneumoniae strains, including one carbapenem-resistant ST258 strain, are less virulent than 43816. Optimal clearance of each of the 5 strains required either neutrophils or CCR2(+) monocytes. Selective neutrophil depletion markedly worsened infection with K. pneumoniae strain 43816 and three clinical isolates but did not increase susceptibility of mice to infection with the carbapenem-resistant K. pneumoniae ST258 strain. Depletion of CCR2(+) monocytes delayed recovery from infection with each of the 5 K. pneumoniae strains, revealing a contribution of these cells to bacterial clearance from the lung. Our findings demonstrate strain-dependent variation in the contributions of neutrophils and CCR2(+) monocytes to clearance of K. pneumoniae pulmonary infection.
Collapse
|
252
|
Wyres KL, Gorrie C, Edwards DJ, Wertheim HFL, Hsu LY, Van Kinh N, Zadoks R, Baker S, Holt KE. Extensive Capsule Locus Variation and Large-Scale Genomic Recombination within the Klebsiella pneumoniae Clonal Group 258. Genome Biol Evol 2015; 7:1267-79. [PMID: 25861820 PMCID: PMC4453057 DOI: 10.1093/gbe/evv062] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Klebsiella pneumoniae clonal group (CG) 258, comprising sequence types (STs) 258, 11, and closely related variants, is associated with dissemination of the K. pneumoniae carbapenemase (KPC). Hospital outbreaks of KPC CG258 infections have been observed globally and are very difficult to treat. As a consequence, there is renewed interest in alternative infection control measures such as vaccines and phage or depolymerase treatments targeting the K. pneumoniae polysaccharide capsule. To date, 78 immunologically distinct capsule variants have been described in K. pneumoniae. Previous investigations of ST258 and a small number of closely related strains suggested that capsular variation was limited within this clone; only two distinct ST258 capsule polysaccharide synthesis (cps) loci have been identified, both acquired through large-scale recombination events (>50 kb). In contrast to previous studies, we report a comparative genomic analysis of the broader K. pneumoniae CG258 (n = 39). We identified 11 different cps loci within CG258, indicating that capsular switching is actually common within the complex. We observed several insertion sequences (IS) within the cps loci, and show further intraclone diversification of two cps loci through IS activity. Our data also indicate that several large-scale recombination events have shaped the genomes of CG258, and that definition of the complex should be broadened to include ST395 (also reported to harbor KPC). As only the second report of extensive intraclonal cps variation among Gram-negative bacterial species, our findings alter our understanding of the evolution of these organisms and have key implications for the design of control measures targeting K. pneumoniae capsules.
Collapse
Affiliation(s)
- Kelly L Wyres
- IBM Research-Australia, Carlton, Victoria, Australia Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Claire Gorrie
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - David J Edwards
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Heiman F L Wertheim
- Wellcome Trust Major Overseas Programme, Clinical Research Unit, Oxford University Hanoi, Vietnam Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Li Yang Hsu
- National Hospital for Tropical Diseases, Hanoi, Vietnam
| | - Nguyen Van Kinh
- Wellcome Trust Major Overseas Programme, Clinical Research Unit, Oxford University Hanoi, Vietnam Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Ruth Zadoks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, United Kingdom
| | - Stephen Baker
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, United Kingdom The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
253
|
Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Nicolas-Chanoine MH, Decré D, Brisse S. Development of a multiplex PCR assay for identification of Klebsiella pneumoniae hypervirulent clones of capsular serotype K2. J Med Microbiol 2014; 63:1608-1614. [DOI: 10.1099/jmm.0.081448-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae isolates of capsular serotype K2 (hvKP-K2) that cause community-acquired invasive infections represent several unrelated clones, which all belong to phylogenetic group KpI. These clones can be recognized using multilocus sequence typing and genomic analyses, but no rapid method currently exists to differentiate them. In this work, a multiplex PCR assay was developed to identify three hvKP-K2 groups: (i) sequence type (ST)86; (ii) ST380 and ST679 (i.e. clonal group 380); and (iii) ST65 and ST375. A specific genetic marker, Kp50233, allowing K. pneumoniae sensu stricto (corresponding to phylogroup KpI) to be distinguished from closely related species, was included in the assay. This PCR assay will be useful in better defining the epidemiology and clinical features of emerging virulent K. pneumoniae clones.
Collapse
Affiliation(s)
- Suzanne Bialek-Davenet
- Service de Microbiologie, Hôpital Beaujon, AP-HP, 100 boulevard du Général Leclerc, 92110 Clichy, France
- CNRS, UMR3525, Paris, France
- Institut Pasteur, Microbial Evolutionary Genomics, 28 rue du Dr Roux, 75724 Paris, France
| | - Alexis Criscuolo
- CNRS, UMR3525, Paris, France
- Institut Pasteur, Microbial Evolutionary Genomics, 28 rue du Dr Roux, 75724 Paris, France
| | - Florent Ailloud
- CNRS, UMR3525, Paris, France
- Institut Pasteur, Microbial Evolutionary Genomics, 28 rue du Dr Roux, 75724 Paris, France
| | - Virginie Passet
- CNRS, UMR3525, Paris, France
- Institut Pasteur, Microbial Evolutionary Genomics, 28 rue du Dr Roux, 75724 Paris, France
| | - Marie-Hélène Nicolas-Chanoine
- INSERM UMR 1149, Université Paris Diderot – Paris 7, Paris, France
- Faculté de Médecine, Université Paris Diderot – Paris 7, Paris, France
- Service de Microbiologie, Hôpital Beaujon, AP-HP, 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Dominique Decré
- INSERM U1135, Centre d′Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology), 75013 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 CR7, Centre d′Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology), 75013
- Laboratoire de Bactériologie, Hôpital Saint-Antoine, AP-HP, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Sylvain Brisse
- CNRS, UMR3525, Paris, France
- Institut Pasteur, Microbial Evolutionary Genomics, 28 rue du Dr Roux, 75724 Paris, France
| |
Collapse
|
254
|
Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol 2014; 52:4377-80. [PMID: 25275000 DOI: 10.1128/jcm.02316-14] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A single multiplex PCR assay targeting seven virulence factors and the wzi gene specific for the K1 and K2 capsular serotypes of Klebsiella pneumoniae was developed and tested on 65 clinical isolates, which included 45 isolates responsible for community-acquired severe human infections. The assay is useful for the surveillance of emerging highly virulent strains.
Collapse
|
255
|
Population structure of KPC-producing Klebsiella pneumoniae isolates from midwestern U.S. hospitals. Antimicrob Agents Chemother 2014; 58:4961-5. [PMID: 24913165 DOI: 10.1128/aac.00125-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genome sequencing of carbapenem-resistant Klebsiella pneumoniae isolates from regional U.S. hospitals was used to characterize strain diversity and the bla(KPC) genetic context. A phylogeny based on core single-nucleotide variants (SNVs) supports a division of sequence type 258 (ST258) into two distinct groups. The primary differences between the groups are in the capsular polysaccharide locus (cps) and their plasmid contents. A strict association between clade and KPC variant was found. The bla(KPC) gene was found on variants of two plasmid backbones. This study indicates that highly similar K. pneumoniae subpopulations coexist within the same hospitals over time.
Collapse
|
256
|
D’Andrea MM, Amisano F, Giani T, Conte V, Ciacci N, Ambretti S, Santoriello L, Rossolini GM. Diversity of capsular polysaccharide gene clusters in Kpc-producing Klebsiella pneumoniae clinical isolates of sequence type 258 involved in the Italian epidemic. PLoS One 2014; 9:e96827. [PMID: 24823690 PMCID: PMC4019520 DOI: 10.1371/journal.pone.0096827] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/11/2014] [Indexed: 01/28/2023] Open
Abstract
Strains of Klebsiella pneumoniae producing KPC-type beta-lactamases (KPC-Kp) are broadly disseminating worldwide and constitute a major healthcare threat given their extensively drug resistant phenotypes and ability to rapidly disseminate in healthcare settings. In this work we report on the characterization of two different capsular polysaccharide (CPS) gene clusters, named cpsBO-4 and cps207-2, from two KPC-Kp clinical strains from Italy belonging in sequence type (ST) 258, which is one of the most successful ST of KPC-Kp spreading worldwide. While cpsBO-4 was different from known 78 K-types according to the recently proposed typing schemes based on the wzi or wzc gene sequences, cps207-2 was classified as K41 by one of these methods. Bioinformatic analysis revealed that they were represented in the genomic sequences of KPC-Kp from strains of ST258 from different countries, and cpsBO-4 was also detected in a KPC-Kp strain of ST442 from Brazil. Investigation of a collection of 46 ST258 and ST512 (a single locus variant of ST258) clinical strains representative of the recent Italian epidemic of KPC-Kp by means of a multiplex PCR typing approach revealed that cpsBO-4 was the most prevalent type, being detected both in ST258 and ST512 strains with a countrywide distribution, while cps207-2 was only detected in ST258 strains with a more restricted distribution.
Collapse
Affiliation(s)
| | - Francesco Amisano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Tommaso Giani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Viola Conte
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nagaia Ciacci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Simone Ambretti
- Operative Unit of Clinical Microbiology, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Gian Maria Rossolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
- * E-mail:
| |
Collapse
|
257
|
Diago-Navarro E, Chen L, Passet V, Burack S, Ulacia-Hernando A, Kodiyanplakkal RP, Levi MH, Brisse S, Kreiswirth BN, Fries BC. Carbapenem-resistant Klebsiella pneumoniae exhibit variability in capsular polysaccharide and capsule associated virulence traits. J Infect Dis 2014; 210:803-13. [PMID: 24634498 DOI: 10.1093/infdis/jiu157] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Novel therapies are urgently needed to treat carbapenem-resistant Klebsiella pneumoniae (CR-Kp)-mediated infection, which constitute a major health threat in the United States. In order to assess if it is feasible to develop anticapsular antibodies as a potential novel therapy, it is crucial to first systematically characterize capsular polysaccharide (CPS) and virulence traits in these strains. METHODS Forty CR-Kp were genotyped by pulsed field gel electrophoresis, multilocus sequence typing (MLST), and molecular capsule typing (C-patterns and wzi sequencing). Their biofilm formation, serum resistance, macrophage-mediated killing, and virulence in Galleria mellonella were compared. MAb (1C9) was generated by co-immunization with 2 CPSs, and cross-reactivity was investigated. RESULTS MLST assigned 80% of CR-Kp isolates to the ST258-clone. Molecular capsule typing identified new C-patterns, including C200/wzi-154, which was widely represented and associated with blaKPC-3-bearing strains. Heterogeneity was detected in biofilm formation and macrophage-mediated killing. Differences in serum resistance correlated with virulence in G. mellonella. ST258 strains carrying blaKPC-3 were less virulent than those with blaKPC-2. MAb 1C9 cross-reacted with 58% of CR-Kp CPSs. CONCLUSIONS CR-Kp ST258 strains exhibit variability of virulence-associated traits. Differences were associated with the type of KPC gene and CPS. Identification of cross-reacting anti-CPS mAbs encourages their development as adjunctive therapy.
Collapse
Affiliation(s)
- Elizabeth Diago-Navarro
- Department of Medicine Infectious Disease Division Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Liang Chen
- Public Health Research Institute Tuberculosis Center, NJMS-Rutgers University, Newark, New Jersey
| | - Virginie Passet
- Institut Pasteur, Microbial Evolutionary Genomics CNRS, UMR3525, Paris, France
| | - Seth Burack
- Department of Medicine Infectious Disease Division Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Amaia Ulacia-Hernando
- Department of Medicine Infectious Disease Division Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Rosy Priya Kodiyanplakkal
- Department of Medicine Infectious Disease Division Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Michael H Levi
- Department of Clinical Microbiology Montefiore Medical Center, Bronx, New York
| | - Sylvain Brisse
- Institut Pasteur, Microbial Evolutionary Genomics CNRS, UMR3525, Paris, France
| | - Barry N Kreiswirth
- Public Health Research Institute Tuberculosis Center, NJMS-Rutgers University, Newark, New Jersey
| | - Bettina C Fries
- Department of Medicine Infectious Disease Division Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| |
Collapse
|