251
|
78495111110.1038/nrd3669" />
|
252
|
Rachner TD, Hadji P, Hofbauer LC. Novel therapies in benign and malignant bone diseases. Pharmacol Ther 2012; 134:338-44. [PMID: 22401778 DOI: 10.1016/j.pharmthera.2012.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 01/31/2023]
Abstract
With an ageing population and improving cancer therapies, the two most common benign and malignant bone diseases, osteoporosis and bone metastases, will continue to affect an increasing number of patients. Our expanding knowledge of the molecular processes underlying these conditions has resulted in novel bone targets that are currently being explored in clinical trials. Clearly, the approval of denosumab, a monoclonal antibody directed against RANKL, has just marked the beginning of a new era for bone therapy with several additional new therapies lining up for clinical approval in the coming years. Potential agents targeting the osteoclast include cathepsin K, currently in phase 3 trials, and src inhibitors. Amongst anabolic agents, inhibitors of the Wnt-inhibitor sclerostin and dickkopf-1 are promising in clinical trials. Here, we will provide a comprehensive overview of the most promising agents currently explored for the treatment of bone diseases.
Collapse
Affiliation(s)
- Tilman D Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases (TDR, LCH), Technical University, Dresden, Germany
| | | | | |
Collapse
|
253
|
Abstract
Effectively treating patients with multiple myeloma is challenging. The development of therapeutic regimens over the past decade that incorporate the proteasome inhibitor bortezomib and the immunomodulatory drugs thalidomide and lenalidomide has been the cornerstone of improving the outcome of patients with myeloma. Although these treatment regimens have improved patient survival, nearly all patients eventually relapse. Our improved understanding of the biology of the disease and the importance of the microenvironment has translated into ongoing work to help overcome the challenge of relapse. Several classes of agents including next-generation proteasome inhibitors, immunomodulatory agents, selective histone-deacetylase inhibitors, antibody and antitumor immunotherapy approaches are currently undergoing preclinical and clinical evaluation. This Review provides an update on the latest advances in the treatment of multiple myeloma. In particular, we focus on novel therapies including modulating protein homeostasis, kinases inhibitors, targeting accessory cells and cytokines, and immunomodulatory agents. A discussion of the challenges associated with these therapeutic approaches is also presented.
Collapse
|
254
|
Transcriptional silencing of the Wnt-antagonist DKK1 by promoter methylation is associated with enhanced Wnt signaling in advanced multiple myeloma. PLoS One 2012; 7:e30359. [PMID: 22363428 PMCID: PMC3281831 DOI: 10.1371/journal.pone.0030359] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 12/14/2011] [Indexed: 01/23/2023] Open
Abstract
The Wnt/β-catenin pathway plays a crucial role in the pathogenesis of various human cancers. In multiple myeloma (MM), aberrant auto-and/or paracrine activation of canonical Wnt signaling promotes proliferation and dissemination, while overexpression of the Wnt inhibitor Dickkopf1 (DKK1) by MM cells contributes to osteolytic bone disease by inhibiting osteoblast differentiation. Since DKK1 itself is a target of TCF/β-catenin mediated transcription, these findings suggest that DKK1 is part of a negative feedback loop in MM and may act as a tumor suppressor. In line with this hypothesis, we show here that DKK1 expression is low or undetectable in a subset of patients with advanced MM as well as in MM cell lines. This absence of DKK1 is correlated with enhanced Wnt pathway activation, evidenced by nuclear accumulation of β-catenin, which in turn can be antagonized by restoring DKK1 expression. Analysis of the DKK1 promoter revealed CpG island methylation in several MM cell lines as well as in MM cells from patients with advanced MM. Moreover, demethylation of the DKK1 promoter restores DKK1 expression, which results in inhibition of β-catenin/TCF-mediated gene transcription in MM lines. Taken together, our data identify aberrant methylation of the DKK1 promoter as a cause of DKK1 silencing in advanced stage MM, which may play an important role in the progression of MM by unleashing Wnt signaling.
Collapse
|
255
|
Anderson KC. The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma. J Clin Oncol 2012; 30:445-52. [PMID: 22215754 PMCID: PMC4800820 DOI: 10.1200/jco.2011.37.8919] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multiple myeloma (MM) is a remarkable example of rapid bench-to-bedside translation in new drug development. The proteasome inhibitor bortezomib and immunomodulatory drug lenalidomide targeted MM cells in the bone marrow (BM) microenvironment to overcome conventional drug resistance in laboratory and animal models and were rapidly translated into clinical trials demonstrating their efficacy in patients with relapsed and then newly diagnosed MM, with a doubling of the median survival as a direct result. The future is even brighter. First, immune-based therapies are being developed (eg, elotuzumab monoclonal antibody [MoAb]; CD138DM immunotoxin; MM cell-dendritic cell vaccines; CD138, CS-1, and XBP-1 peptide vaccines; anti-17 MoAb; and other treatments to overcome causes of immune dysfunction). Second, promising next-generation agents target the MM cell in its microenvironment (eg, deubiquitinating enzyme inhibitors; chymotryptic [carfilzomib, Onyx 0912, MLN 9708] and broader [NPI-0052] proteasome inhibitors; immunoproteasome inhibitors; and pomalidamide). Moreover, agents targeting bone biology (eg, zoledronic acid, anti-DKK-1 MoAb, anti-B-cell activating factor MoAb and bortezomib, Btk inhibitor) show promise not only in preserving bone integrity but also against MM. Third, rationally based combination therapies, including bortezomib with Akt, mammalian target of rapamycin, or histone deacetylase inhibitors, are active even in bortezomib-refractory MM. Finally, genomics is currently being used in the definition of MM heterogeneity, new target discovery, and development of personalized therapy. Myeloma therefore represents a paradigm for targeting the tumor in its microenvironment, which has already markedly improved patient outcome in MM and has great potential in other hematologic malignancies and solid tumors as well.
Collapse
Affiliation(s)
- Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115-5450, USA.
| |
Collapse
|
256
|
Baron R, Hesse E. Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. J Clin Endocrinol Metab 2012; 97:311-25. [PMID: 22238383 PMCID: PMC3275361 DOI: 10.1210/jc.2011-2332] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Osteoporosis is defined as low bone mineral density associated with skeletal fractures secondary to minimal or no trauma, most often involving the spine, the hip, and the forearm. The decrease in bone mineral density is the consequence of an unbalanced bone remodeling process, with higher bone resorption than bone formation. Osteoporosis affects predominantly postmenopausal women, but also older men. This chronic disease represents a considerable medical and socioeconomic burden for modern societies. The therapeutic options for the treatment of osteoporosis have so far comprised mostly antiresorptive drugs, in particular bisphosphonates and more recently denosumab, but also calcitonin and, for women, estrogens or selective estrogen receptor modulators. These drugs have limitations, however, in particular the fact that they lead to a low turnover state where bone formation decreases with the decrease in bone-remodeling activity. In this review, we discuss the alternative class of osteoporosis drugs, i.e. bone anabolics, their biology, and the perspectives they offer for our therapeutic armamentarium. We focus on the two main osteoanabolic pathways identified as of today: PTH, the only anabolic drug currently on the market; and activation of canonical Wnt signaling through inhibition of the endogenous inhibitors sclerostin and dickkopf1. Each approach is based on a different molecular mechanism, but most recent evidence suggests that these two pathways may actually converge, at least in part. Whereas recombinant human PTH treatment is being revisited with different formulations and attempts to regulate endogenous PTH secretion via the calcium-sensing receptor, antibodies to sclerostin and dickkopf1 are currently in clinical trials and may prove to be even more efficient at increasing bone mass, possibly independent of bone turnover. Each of these anabolic approaches has its own limitations and safety issues, but the prospects of effective anabolic therapy for osteoporosis are indeed bright.
Collapse
Affiliation(s)
- Roland Baron
- Department of Medicine, Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
257
|
Shi C, Li J, Wang W, Cao W, Cao X, Wan M. Antagonists of LRP6 regulate PTH-induced cAMP generation. Ann N Y Acad Sci 2012; 1237:39-46. [PMID: 22082363 DOI: 10.1111/j.1749-6632.2011.06226.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
LRP6 is a common coreceoptor for different G protein-coupled seven-transmembrane receptors in production of cAMP. Extracelluar proteins sclerostin and DKK1, initially identified as antagonists for Wnt signaling by binding to LRP6, are negative regulators for bone formation. Here, we show that both sclerostin and DKK1 inhibit PTH-stimulated cAMP production. In addition, PTH suppresses expression of sclerostin in osteocytes in mice. We also found that sclerostin and DKK1 binds to LRP6 as antagonists to increase the availability of LRP6 to facilitate PTH signaling in a positive-feedback fashion. These studies reveal a previously unrecognized function of sclerostin and DKK1, which provides an alternative explanation for the application of sclerostin and DKK1 neutralization on enhancing bone formation as a potential therapy for skeletal diseases.
Collapse
Affiliation(s)
- Chenhui Shi
- Shihezi Medical College, Shihezi University, Xinjiang, China
| | | | | | | | | | | |
Collapse
|
258
|
Abstract
Myeloma bone disease (BD) not only impairs quality of life, but is also associated with impaired survival. Studies of the biology underlying BD support the notion that the increased osteoclastogenesis and suppressed osteoblastogenesis is both a consequence and a necessity for tumour growth and clonal expansion. Survival and expansion of the myeloma clone are dependent on its interactions with bone elements; thus, targeting these interactions should have anti-myeloma activities. Indeed, both experimental and clinical findings indicate that bone-targeted therapies, not only improve BD, but also create an inhospitable environment for myeloma cell growth and survival, favouring improved clinical outcome. This chapter summarizes recent progress in our understandings of the biology of myeloma BD, highlighting the role of osteoclasts and osteoblasts in this process and how they can be targeted therapeutically. Unravelling the mechanisms underlying myeloma-bone interactions will facilitate the development of novel therapeutic agents to treat BD, which as a consequence are likely to improve the clinical outcome of myeloma patients.
Collapse
Affiliation(s)
- G J Morgan
- Haemato-oncology Unit, The Royal Marsden NHS Foundation Trust, Surrey, UK.
| | | |
Collapse
|
259
|
Nair RR, Gebhard AW, Emmons MF, Hazlehurst LA. Emerging strategies for targeting cell adhesion in multiple myeloma. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:143-89. [PMID: 22959026 DOI: 10.1016/b978-0-12-397927-8.00006-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is an incurable hematological cancer involving proliferation of abnormal plasma cells that infiltrate the bone marrow (BM) and secrete monoclonal antibodies. The disease is clinically characterized by bone lesions, anemia, hypercalcemia, and renal failure. MM is presently treated with conventional therapies like melphalan, doxorubicin, and prednisone; or novel therapies like thalidomide, lenalidomide, and bortezomib; or with procedures like autologous stem cell transplantation. Unfortunately, these therapies fail to eliminate the minimal residual disease that remains persistent within the confines of the BM of MM patients. Mounting evidence indicates that components of the BM-including extracellular matrix, cytokines, chemokines, and growth factors-provide a sanctuary for subpopulations of MM. This co-dependent development of the disease in the context of the BM not only ensures the survival and growth of the plasma cells but contributes to de novo drug resistance. In addition, by fostering homing, angiogenesis, and osteolysis, this crosstalk plays a critical role in the progression of the disease. Not surprisingly then, over the past decade, several strategies have been developed to disrupt this communication between the plasma cells and the BM components including antibodies, peptides, and inhibitors of signaling pathways. Ultimately, the goal is to use these therapies in combination with the existing antimyeloma agents in order to further reduce or abolish minimal residual disease and improve patient outcomes.
Collapse
Affiliation(s)
- Rajesh R Nair
- Molecular Oncology Program, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | |
Collapse
|
260
|
|
261
|
Abstract
Patient outcome in multiple myeloma (MM) has been remarkably improved due to the use of combination therapies including proteasome inhibitors and immunomodulatory drugs, which target the tumor in its BM microenvironment. Ongoing efforts to improve the treatment paradigm even further include using oncogenomics to better characterize molecular pathogenesis and to develop refined patient stratification and personalized medicine in MM; using models of MM in its BM milieu to identify novel targets and to validate next-generation therapeutics directed at these targets; developing immune-based therapies including mAbs, immunotoxins targeting MM cells and cytokines, and novel vaccine strategies; and using functional oncogenomics to inform the design of novel combination therapies. With continued rapid evolution of progress in these areas, MM will be a chronic illness with sustained complete response in a significant number of patients.
Collapse
|
262
|
Vallet S, Raje N. Bone anabolic agents for the treatment of multiple myeloma. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2011; 4:339-49. [PMID: 22139744 PMCID: PMC3234318 DOI: 10.1007/s12307-011-0090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/12/2011] [Indexed: 01/10/2023]
Abstract
The majority of patients with multiple myeloma develop bone osteolytic lesions, which may lead to severe complications, including pain and fractures. The pathogenesis of bone disease depends on uncoupled bone remodeling, characterized by increased bone resorption due to upregulation of osteoclast activity and decreased bone formation due to osteoblast inhibition. In myeloma, impaired osteoblast differentiation and increased apoptosis have been described. Responsible for these effects are integrin-mediated adhesion to tumor cells and soluble factors, including WNT antagonists, BMP2 inhibitors and numerous cytokines. Based on the evidence of osteoblast suppression in myeloma, bone anabolic agents have been developed and are currently undergoing clinical evaluation. Due to bidirectional inhibitory effects characterizing tumor cells and osteoblasts interactions, agents targeting osteoblasts are expected to reduce tumor burden along with improvement of bone health. This review summarizes the current knowledge on osteoblast inhibition in myeloma and provides an overview on the clinical grade agents with bone anabolic properties, which represent new promising therapeutic strategies in myeloma.
Collapse
Affiliation(s)
- Sonia Vallet
- Division of Hematology and Oncology, Massachusetts General Hospital/Harvard Medical School, POB 216, 55 Fruit Street, Boston, MA 02114 USA
- Medical Oncology, National Center for Tumor Diseases (NCT)/University of Heidelberg, Im Neuenheimer Feld 460, Heidelberg, 69120 Germany
| | - Noopur Raje
- Division of Hematology and Oncology, Massachusetts General Hospital/Harvard Medical School, POB 216, 55 Fruit Street, Boston, MA 02114 USA
| |
Collapse
|
263
|
Update on Wnt signaling in bone cell biology and bone disease. Gene 2011; 492:1-18. [PMID: 22079544 DOI: 10.1016/j.gene.2011.10.044] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022]
Abstract
For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease.
Collapse
|
264
|
Active vaccination with Dickkopf-1 induces protective and therapeutic antitumor immunity in murine multiple myeloma. Blood 2011; 119:161-9. [PMID: 22049519 DOI: 10.1182/blood-2011-07-368472] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dickkopf-1 (DKK1), broadly expressed in myeloma cells but highly restricted in normal tissues, together with its functional roles as an osteoblast formation inhibitor, may be an ideal target for immunotherapy in myeloma. Our previous studies have shown that DKK1 (peptide)-specific CTLs can effectively lyse primary myeloma cells in vitro. The goal of this study was to examine whether DKK1 can be used as a tumor vaccine to elicit DKK1-specific immunity that can control myeloma growth or even eradicate established myeloma in vivo. We used DKK1-DNA vaccine in the murine MOPC-21 myeloma model, and the results clearly showed that active vaccination using the DKK1 vaccine not only was able to protect mice from developing myeloma, but it was also therapeutic against established myeloma. Furthermore, the addition of CpG as an adjuvant, or injection of B7H1-blocking or OX40-agonist Abs, further enhanced the therapeutic effects of the vaccine. Mechanistic studies revealed that DKK1 vaccine elicited a strong DKK1- and tumor-specific CD4+ and CD8+ immune responses, and treatment with B7H1 or OX40 Abs significantly reduced the numbers of IL-10-expressing and Foxp3+ regulatory T cells in vaccinated mice. Thus, our studies provide strong rationale for targeting DKK1 for immunotherapy of myeloma patients.
Collapse
|
265
|
Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D, Han CY, Yu L, Lee J, Lee E, Barrero M, Kurimoto P, Niu QT, Geng Z, Winters A, Horan T, Steavenson S, Jacobsen F, Chen Q, Haldankar R, Lavallee J, Tipton B, Daris M, Sheng J, Lu HS, Daris K, Deshpande R, Valente EG, Salimi-Moosavi H, Kostenuik PJ, Li J, Liu M, Li C, Lacey DL, Simonet WS, Ke HZ, Babij P, Stolina M, Ominsky MS, Richards WG. Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 2011; 26:2610-21. [PMID: 21773994 DOI: 10.1002/jbmr.472] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The physiological role of Dickkopf-1 (Dkk1) during postnatal bone growth in rodents and in adult rodents was examined utilizing an antibody to Dkk1 (Dkk1-Ab) that blocked Dkk1 binding to both low density lipoprotein receptor-related protein 6 (LRP6) and Kremen2, thereby preventing the Wnt inhibitory activity of Dkk1. Treatment of growing mice and rats with Dkk1-Ab resulted in a significant increase in bone mineral density because of increased bone formation. In contrast, treatment of adult ovariectomized rats did not appreciably impact bone, an effect that was associated with decreased Dkk1 expression in the serum and bone of older rats. Finally, we showed that Dkk1 plays a prominent role in adult bone by mediating fracture healing in adult rodents. These data suggest that, whereas Dkk1 significantly regulates bone formation in younger animals, its role in older animals is limited to pathologies that lead to the induction of Dkk1 expression in bone and/or serum, such as traumatic injury.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Abe M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int J Hematol 2011; 94:334-343. [DOI: 10.1007/s12185-011-0949-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 01/19/2023]
|
267
|
Li S, Qin X, Liu B, Sun L, Zhang X, Li Z, Shan B, You J, Zhou Q. Dickkopf-1 is involved in invasive growth of esophageal cancer cells. J Mol Histol 2011; 42:491-8. [PMID: 21909757 DOI: 10.1007/s10735-011-9347-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/29/2011] [Indexed: 12/19/2022]
Abstract
Dickkopf-1 (DKK1) is an inhibitor of Wnt/β-catenin signaling pathway. High levels of DKK1 protein were found in a series of cancers. However, the role of DKK1 in the progression of esophageal carcinoma is not fully understood. In the present study, RT-PCR and Western blot were used to detect the expression of DKK1 in esophageal carcinoma tissues, matched adjacent normal esophageal tissues, and esophageal carcinoma cell lines. Our results showed that the expression of DKK1 was upregulated on both mRNA and protein levels in esophageal carcinoma tissues compared with the adjacent normal esophageal tissues, meanwhile, in four esophageal carcinoma cell lines analyzed, expression of DKK1 was detected with different levels. Immunohistochemistry and immunofluoresence revealed that the distribution of DKK1 was mainly in the cytoplasm in both carcinoma tissues and cell lines. To further explore the biological effects of DKK1 on proliferation, cell cycle and invasion capability, we constructed the eukaryotic expression vector pCMV-Tab-2b-DKK1 which can effectively overexpress DKK1. Subsequently, we observed that exogenous expression of DKK1 in EC9706 cell line resulted in an increased rate of proliferation, and S stage and G2/M stage ratio whereas G0/G1 ratio was decreased. In order to evaluate the invasion capability Boyden chamber was analyzed which implied that overexpression of DKK1 resulted in an increase in the invasion ability in EC9706 cell line. Taken together, the study indicates that DKK1 might be a key regulator in the progression of esophageal carcinoma and a potential therapeutic target in esophageal carcinoma.
Collapse
Affiliation(s)
- Shujun Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University, General Hospital, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Novel therapies in MM: from the aspect of preclinical studies. Int J Hematol 2011; 94:344-354. [PMID: 21881879 DOI: 10.1007/s12185-011-0917-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
During the last decade, thalidomide, lenalidomide, and bortezomib have been approved by the US Food and Drug Administration for the treatment of MM; however, MM remains incurable. The development and progression of multiple myeloma (MM) is a complex multi-step process involving genetic abnormalities in tumor cells at both early and late stages. Moreover, soluble factors and cell-cell contact within the tumor bone marrow (BM) microenvironment promotes MM cell growth, survival, and drug resistance. A number of novel agents targeting both tumor cells and growth factors in the BM milieu have been developed. Currently they are under evaluation in preclinical studies, as single agents and/or in combination, to improve outcome of MM patients.
Collapse
|
269
|
Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol Cell Biol 2011; 31:4706-19. [PMID: 21876000 DOI: 10.1128/mcb.05980-11] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wnt/β-catenin signaling is a critical regulator of skeletal physiology. However, previous studies have mainly focused on its roles in osteoblasts, while its specific function in osteoclasts is unknown. This is a clinically important question because neutralizing antibodies against Wnt antagonists are promising new drugs for bone diseases. Here, we show that in osteoclastogenesis, β-catenin is induced during the macrophage colony-stimulating factor (M-CSF)-mediated quiescence-to-proliferation switch but suppressed during the RANKL-mediated proliferation-to-differentiation switch. Genetically, β-catenin deletion blocks osteoclast precursor proliferation, while β-catenin constitutive activation sustains proliferation but prevents osteoclast differentiation, both causing osteopetrosis. In contrast, β-catenin heterozygosity enhances osteoclast differentiation, causing osteoporosis. Biochemically, Wnt activation attenuates whereas Wnt inhibition stimulates osteoclastogenesis. Mechanistically, β-catenin activation increases GATA2/Evi1 expression but abolishes RANKL-induced c-Jun phosphorylation. Therefore, β-catenin exerts a pivotal biphasic and dosage-dependent regulation of osteoclastogenesis. Importantly, these findings suggest that Wnt activation is a more effective treatment for skeletal fragility than previously recognized that confers dual anabolic and anti-catabolic benefits.
Collapse
|
270
|
Abstract
The introduction of autologous stem cell transplantation combined with the introduction of immunomodulatory drugs (IMiDs) and proteasome inhibitors has significantly improved survival of multiple myeloma patients. However, ultimately the majority of patients will develop refractory disease, indicating the need for new treatment modalities. In preclinical and clinical studies, promising results have been obtained with several monoclonal antibodies (mAbs) targeting the myeloma tumor cell or the bone marrow microenvironment. The mechanisms underlying the therapeutic efficacy of these mAbs include direct induction of tumor cell apoptosis via inhibition or activation of target molecules, complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC). The capability of IMiDs to enhance ADCC and the modulation of various important signaling cascades in myeloma cells by both bortezomib and IMiDs forms the rationale to combine these novel agents with mAbs as new treatment strategies for myeloma patients. In this review, we will give an overview of various mAbs directly targeting myeloma tumor cells or indirectly via effects on the bone marrow microenvironment. Special focus will be on the combination of these mAbs with IMiDs or bortezomib.
Collapse
|
271
|
Fulciniti M, Amin S, Nanjappa P, Rodig S, Prabhala R, Li C, Minvielle S, Tai YT, Tassone P, Avet-Loiseau H, Hideshima T, Anderson KC, Munshi NC. Significant biological role of sp1 transactivation in multiple myeloma. Clin Cancer Res 2011; 17:6500-9. [PMID: 21856768 DOI: 10.1158/1078-0432.ccr-11-1036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The transcription factor specificity protein 1 (Sp1) controls number of cellular processes by regulating the expression of critical cell cycle, differentiation, and apoptosis-related genes containing proximal GC/GT-rich promoter elements. We here provide experimental and clinical evidence that Sp1 plays an important regulatory role in multiple myeloma (MM) cell growth and survival. EXPERIMENTAL DESIGN We have investigated the functional Sp1 activity in MM cells using a plasmid with Firefly luciferase reporter gene driven by Sp1-responsive promoter. We have also used both siRNA- and short hairpin RNA-mediated Sp1 knockdown to investigate the growth and survival effects of Sp1 on MM cells and further investigated the anti-MM activity of terameprocol (TMP), a small molecule that specifically competes with Sp1-DNA binding in vitro and in vivo. RESULTS We have confirmed high Sp1 activity in MM cells that is further induced by adhesion to bone marrow stromal cells (BMSC). Sp1 knockdown decreases MM cell proliferation and induces apoptosis. Sp1-DNA binding inhibition by TMP inhibits MM cell growth both in vitro and in vivo, inducing caspase-9-dependent apoptosis and overcoming the protective effects of BMSCs. CONCLUSIONS Our results show Sp1 as an important transcription factor in myeloma that can be therapeutically targeted for clinical application by TMP.
Collapse
Affiliation(s)
- Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Wu P, Walker BA, Brewer D, Gregory WM, Ashcroft J, Ross FM, Jackson GH, Child AJ, Davies FE, Morgan GJ. A gene expression-based predictor for myeloma patients at high risk of developing bone disease on bisphosphonate treatment. Clin Cancer Res 2011; 17:6347-55. [PMID: 21856767 DOI: 10.1158/1078-0432.ccr-11-0994] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Myeloma bone disease impairs quality of life and is associated with impaired survival. Even with effective bisphosphonate treatment, a significant proportion of patients still develop skeletal-related events (SRE). Identifying such patients at presentation would allow treatment modification. EXPERIMENTAL DESIGN To investigate the molecular basis of bone disease at presentation and to develop a predictive signature for patients at high risk of developing SREs on bisphosphonates, 261 presenting myeloma samples were analyzed by global gene expression profiling. The derived "SRE gene signature" was complemented by the integration of associated clinical parameters to generate an optimal predictor. RESULTS Fifty genes were significantly associated with presenting bone disease, including the WNT signaling antagonist DKK1 and genes involved in growth factor signaling and apoptosis. Higher serum calcium level and the presence of bone disease and hyperdiploidy at presentation were associated with high risk of SRE development. A gene signature derived from the fourteen genes overexpressed in the SRE group was able to identify patients at high risk of developing an SRE on treatment. These genes either belonged to the IFN-induced family or were involved in cell signaling and mitosis. Multivariate logistic model selection yielded an optimal SRE predictor comprising seven genes and calcium level, which was validated as an effective predictor in a further set of patients. CONCLUSIONS The simple expression-based SRE predictor can effectively identify individuals at high risk of developing bone disease while being on bisphosphonates. This predictor could assist with developing future trials on novel therapies aimed at reducing myeloma bone disease.
Collapse
Affiliation(s)
- Ping Wu
- Section of Haemato-Oncology Research Unit, Division of Molecular Pathology, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Wu P, Morgan GJ. Targeting bone as a therapy for myeloma. CANCER MICROENVIRONMENT 2011; 4:299-311. [PMID: 21833747 DOI: 10.1007/s12307-011-0079-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/18/2011] [Indexed: 01/10/2023]
Abstract
Myeloma bone disease (BD) not only impairs quality of life, but is also associated with impaired survival. Studies of the biology underlying BD support the notion that the increased osteoclastogenesis and suppressed osteoblastogenesis, is both a consequence and a necessity for tumour growth and clonal expansion. Survival and expansion of the myeloma clone is dependent on its interactions with bone elements, thus targeting these interactions should have antimyeloma activities. Indeed both experimental and clinical findings indicate that bone-targeted therapies not only improve BD, but also create an inhospitable environment for myeloma cell growth and survival, favouring improved clinical outcome. This review summarizes recent progress in our understandings of the biology of myeloma BD, highlighting the role of osteoclasts and osteoblasts in this process and how they can be targeted therapeutically. Unravelling the mechanisms underlying myeloma-bone interactions will facilitate the development of novel therapeutic agents to treat BD, which as a consequence are likely to improve the clinical outcome of myeloma patients.
Collapse
Affiliation(s)
- Ping Wu
- Section of Haemato-Oncology, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | | |
Collapse
|
274
|
Fatima S, Lee NP, Luk JM. Dickkopfs and Wnt/β-catenin signalling in liver cancer. World J Clin Oncol 2011; 2:311-25. [PMID: 21876852 PMCID: PMC3163259 DOI: 10.5306/wjco.v2.i8.311] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the fifth and seventh most common cause of cancer in men and women, respectively. Wnt/β-catenin signalling has emerged as a critical player in both the development of normal liver as well as an oncogenic driver in hepatocellular carcinoma (HCC). Based on the current understanding, this article summarizes the possible mechanisms for the aberrant activation of this pathway with specific focus on HCC. Furthermore, we will discuss the role of dickkopfs (DKKs) in regulating Wnt/β-catenin signalling, which is poorly understood and understudied. DKKs are a family of secreted proteins that comprise at least four members, namely DKK1-DKK4, which act as inhibitors of Wnt/β-catenin signalling. Nevertheless, not all members antagonize Wnt/β-catenin signalling. Their functional significance in hepatocarcinogenesis remains to be further characterized for which these studies should provide new insights into the regulatory role of DKKs in Wnt/β-catenin signalling in hepatic carcinogenesis. Because of the important oncogenic roles, there are an increasing number of therapeutic molecules targeting β-catenin and the Wnt/β-catenin pathway for potential therapy of HCC.
Collapse
Affiliation(s)
- Sarwat Fatima
- Sarwat Fatima, Nikki P Lee, Department of Surgery, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
275
|
Raje N, Roodman GD. Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res 2011; 17:1278-86. [PMID: 21411443 DOI: 10.1158/1078-0432.ccr-10-1804] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Osteolytic bone disease is pathognomonic of multiple myeloma (MM) and affects more than 80% of patients. Bone disease results in skeletal-related events (SRE) such as vertebral compression fractures, which may cause cord compression, hypercalcemia, pathologic fractures that require radiation or surgical fixation, and severe pain. All of these not only result in a negative impact on quality of life but also adversely impact overall survival. Osteolytic disease is a consequence of increased osteoclast (OC) activation along with osteoblast (OB) inhibition, resulting in altered bone remodeling. OC number and activity are increased in MM via cytokine deregulation within the bone marrow (BM) milieu, whereas negative regulators of OB differentiation suppress bone formation. Bisphosphonates are a well-established treatment of myeloma-related skeletal disease and are the current standard of care. However, complications arising from their long-term use have prompted studies of schedule optimization and alternate strategies. Several novel agents are currently under investigation for their positive effect on bone remodeling via OC inhibition. The identification of negative regulators of OB differentiation has prompted the use of anabolic agents. In addition to restoring bone remodeling, these drugs may inhibit tumor growth in vivo. Future studies will look to combine or sequence all of these agents with the goal of not only alleviating morbidity from bone disease but also capitalizing on the resultant antitumor activity.
Collapse
Affiliation(s)
- Noopur Raje
- Division of Hematology-Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
276
|
Abstract
Multiple myeloma (MM) is an example of rapid bench-to-bedside translation in new drug development. Bortezomib and lenalidamide target the tumor cell in the bone marrow microenvironment to overcome drug resistance in laboratory and animal models; each is effective to treat relapsed and/or refractory, relapsed, and newly diagnosed MM, and both are now showing promise as maintenance therapy. Major ongoing translational research efforts include improved classification and personalized therapies; identification and validation of next-generation agents targeting the tumor cell in its microenvironment; novel immune therapies; rationally based combination therapies; and use of novel agents to delay or prevent development of active MM. This paradigm of targeting the tumor in its microenvironment has already extended median survival in MM from 3 to 7 to 8 years and has great potential to improve patient outcome in other hematologic malignancies and solid tumors as well.
Collapse
Affiliation(s)
- Kenneth C Anderson
- Dana-Farber Cancer Institute, Medical Oncology, Boston, Massachusetts 02115, USA.
| |
Collapse
|
277
|
Richardson PG, Lonial S, Jakubowiak AJ, Harousseau JL, Anderson KC. Monoclonal antibodies in the treatment of multiple myeloma. Br J Haematol 2011; 154:745-54. [PMID: 21777223 DOI: 10.1111/j.1365-2141.2011.08790.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite recent advances in treatment that have significantly improved overall survival, multiple myeloma (MM) remains incurable. Although rituximab, the first monoclonal antibody (MAb) evaluated in MM treatment, provided only very limited benefit, research is ongoing into a number of other MAbs directed against a variety of MM-related target antigens. Given the inherent immune dysfunction associated with MM, newer strategies that may enhance immune function in conjunction with antibodies may also provide a more fruitful clinical approach. Potential MAb targets in MM include growth factors and their receptors, other signalling molecules, and antigens expressed exclusively or predominantly on MM cells. MAb therapy involves a range of mechanisms, including antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, interference with receptor-ligand interactions, and MAb conjugation to radioisotopes or toxins. The antigens currently targeted in MM therapy are discussed, along with the development status of the corresponding MAb therapeutics. Elotuzumab, an anti-CS1 MAb, has recently achieved clinically meaningful responses when combined with lenalidomide or bortezomib in patients with relapsed and relapsed/refractory MM. Other MAbs are also showing early promise. More ongoing clinical research is required to identify optimal combination regimens and biomarkers that may help predict response to specific MAb-based combinations.
Collapse
Affiliation(s)
- Paul G Richardson
- Dana-Farber Cancer Institute, Boston, MA, USADepartment of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USAUniversity of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USACentre Rene Gauducheau, Nantes, France
| | | | | | | | | |
Collapse
|
278
|
Jones D, Glimcher LH, Aliprantis AO. Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J Clin Invest 2011; 121:2534-42. [PMID: 21737885 DOI: 10.1172/jci46262] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past decade and a half, the biomedical community has uncovered a previously unappreciated reciprocal relationship between cells of the immune and skeletal systems. Work in this field, which has been termed "osteoimmunology," has resulted in the development of clinical therapeutics for seemingly disparate diseases linked by the common themes of inflammation and bone remodeling. Here, the important concepts and discoveries in osteoimmunology are discussed in the context of the diseases bridging these two organ systems, including arthritis, osteoporosis, cancer, and infection, and the targeted treatments used by clinicians to combat them.
Collapse
Affiliation(s)
- Dallas Jones
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
279
|
Kristinsson SY, Minter AR, Korde N, Tan E, Landgren O. Bone disease in multiple myeloma and precursor disease: novel diagnostic approaches and implications on clinical management. Expert Rev Mol Diagn 2011; 11:593-603. [PMID: 21745013 PMCID: PMC3199399 DOI: 10.1586/erm.11.44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The manifestations of bone involvement in patients with multiple myeloma (MM) can have devastating clinical effects and increase mortality. Recent studies demonstrate that patients with the precursor conditions smoldering MM (SMM) and monoclonal gammopathy of undetermined significance (MGUS) show evidence of bone disease and increased risk of fractures. The understanding of the pathogenesis of bone disease in MM has expanded in recent years. The traditional skeletal survey will probably be replaced by newer and more sensitive imaging techniques, which may have a prognostic impact and change our definition of MGUS and SMM. Bisphosphonates are recommended to prevent skeletal events in patients with MM, and have also been studied in SMM and MGUS. This article summarizes the current knowledge of bone disease in plasma cell disorders, and discusses the current standard and future role of novel imaging techniques, as well as the evidence and current guidelines for bisphosphonates in MM, SMM and MGUS.
Collapse
Affiliation(s)
- Sigurdur Y Kristinsson
- Department of Medicine, Division of Hematology, Karolinska University Hospital Solna, SE-171 76, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
280
|
Terpos E, Dimopoulos MA, Berenson J. Established role of bisphosphonate therapy for prevention of skeletal complications from myeloma bone disease. Crit Rev Oncol Hematol 2011; 77 Suppl 1:S13-23. [PMID: 21353176 DOI: 10.1016/s1040-8428(11)70004-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Patients with advanced multiple myeloma (MM) often have increased osteolytic activity of osteoclasts and impaired osteogenesis by osteoblasts, resulting in osteolytic bone lesions that increase the risk of skeletal-related events (SREs) including pathologic fracture, the need for radiotherapy or surgery to bone, and spinal cord compression. Such SREs are potentially life-limiting, and can reduce patients' functional independence and quality of life. Bisphosphonates (e.g., oral clodronate and intravenous pamidronate and zoledronic acid) can inhibit osteoclast-mediated osteolysis, thereby reducing the risk of SREs, ameliorating bone pain, and potentially prolonging survival in patients with MM. Extensive clinical experience demonstrates that bisphosphonates are generally well tolerated, and common adverse events are typically mild and manageable. Studies are ongoing to optimize the timing and duration of bisphosphonate therapy in patients with bone lesions from MM.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece.
| | | | | |
Collapse
|
281
|
Seifert-Held T, Pekar T, Gattringer T, Simmet NE, Scharnagl H, Stojakovic T, Fazekas F, Storch MK. Circulating Dickkopf-1 in acute ischemic stroke and clinically stable cerebrovascular disease. Atherosclerosis 2011; 218:233-7. [PMID: 21663914 DOI: 10.1016/j.atherosclerosis.2011.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/02/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Previous data suggest that Dickkopf-1 (Dkk-1), an inhibitor of the canonical/β-catenin cascade of the Wnt pathway, is upregulated in carotid atherosclerosis and acute myocardial ischemia. It is currently unclear if such upregulation also occurs in cerebral ischemia. METHODS We measured plasma levels of Dkk-1 in patients with acute ischemic stroke (n=57) within 24h from symptom onset, in patients with clinically stable cerebrovascular disease (n=29) and in healthy controls (n=29). Stroke severity on admission was determined by the National Institutes of Stroke Scale (NIHSS). The modified Rankin Scale (mRS) served to define outcome at day 90. Ischemic stroke subtype and cause was determined by the Oxfordshire Community Stroke Project (OCSP) criteria and the Causative Classification of Stroke System (CCS). RESULTS Dkk-1 plasma levels were significantly higher in acute stroke patients (median 727.1 pg/ml) as compared to patients with stable cerebrovascular disease (median 534.2 pg/ml; p=0.017) or healthy controls (median 371.3 pg/ml; p<0.001). The difference of Dkk-1 levels between patients with stable cerebrovascular disease and healthy controls was also significant (p=0.005). No significant differences in Dkk-1 plasma levels were found between different causes or subtypes of ischemic stroke. No correlation of Dkk-1 levels was found with stroke severity on admission and outcome at day 90. CONCLUSION Our study provides for the first time evidence for a release of Dkk-1 into the circulation in patients with acute ischemic stroke and also in patients with clinically stable cerebrovascular disease.
Collapse
Affiliation(s)
- Thomas Seifert-Held
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, A-8036 Graz, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
282
|
Mitsiades CS, Davies FE, Laubach JP, Joshua D, San Miguel J, Anderson KC, Richardson PG. Future directions of next-generation novel therapies, combination approaches, and the development of personalized medicine in myeloma. J Clin Oncol 2011; 29:1916-23. [PMID: 21482978 DOI: 10.1200/jco.2010.34.0760] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite tangible progress in recent years, substantial therapeutic challenges remain in multiple myeloma (MM), particularly for patients at high risk for early relapse or death and for those with advanced multi-drug resistant disease and refractoriness to currently available combination regimens. Addressing these challenges requires identification of novel classes of anti-MM agents, their incorporation into safe and more effective combination regimens, and development of efficient algorithms to select the most appropriate therapeutic options for the clinical and molecular features of individual patients at a given time during their disease. Ideally, these goals can be facilitated by preclinical identification of the "driver" molecular lesions on which different myeloma subtypes exquisitely depend, and by informative preclinical models simulating the clinical setting(s) in which trials will be conducted. Large prospective studies of patients treated uniformly with contemporary clinical regimens are essential, but there is also a major need for flexibility in studying new regimens in the future. Long-term patient follow-up and integrated annotation of clinical (safety and efficacy) and correlative (molecular, biochemical, etc) data are also critical. Novel molecular profiling techniques will likely identify more clinically and biologically discrete subsets of patients with recurrent, even if infrequent, lesions. This molecular heterogeneity, combined with the increasing numbers of candidate therapeutic targets and respective investigational agents, may pose formidable challenges for the development and implementation of personalized medicine in MM. This review discusses these challenges, as well as potential strategies to address them, with the aim of making significant improvement in the clinical outcome of patients with MM.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
283
|
Abstract
INTRODUCTION Current treatment for metastatic bone pain is mainly palliative. Recent insights into the molecular mechanisms involved in bone metastases have led to the identification of promising therapeutic targets. This review offers an update of preclinical and clinical data on new drugs for metastatic bone pain. AREAS COVERED Biphosphonates are the gold standard of bone-targeted therapy in bone metastases, for their anti-resorptive and analgesic effects. New drugs aim at breaking the 'vicious cycle' of bone metastatic disease, due to the bidirectional interaction between cancer cells and bone microenvironment. Osteoprotegerin, RANK/RANKL interaction, cathepsin K, the Wnt/beta-catenin pathway and sclerostin are emerging targets for modulation of cancer-induced bone desorption. Other promising targets are those expressed in cancer cells that metastasize to bone, including Src, nerve growth factor, endothelin A, TGF-beta and CXCR4. Interesting therapeutic options include targets on nociceptors that innervate the bone, such as TPRV1, Trk and cannabinoid receptors. EXPERT OPINION Emerging therapies promise, in the next 10 years, a significant expansion in the array of therapeutic options for bone metastases. Most of these drugs are still in an early phase of development. Further clinical trials are needed to support the evidence of their efficacy and tolerability profile.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- SAPIENZA University of Rome, Department of Medical and Surgical Sciences and Biotechnologies, Italy.
| | | | | |
Collapse
|
284
|
Glantschnig H, Scott K, Hampton R, Wei N, McCracken P, Nantermet P, Zhao JZ, Vitelli S, Huang L, Haytko P, Lu P, Fisher JE, Sandhu P, Cook J, Williams D, Strohl W, Flores O, Kimmel D, Wang F, An Z. A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J Pharmacol Exp Ther 2011; 338:568-78. [PMID: 21531794 DOI: 10.1124/jpet.111.181404] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic studies have linked both osteoporotic and high bone mass phenotypes to low-density lipoprotein receptor-related proteins (LRP4, LRP5, and LRP6). LRPs are receptors for inhibitory Dickkopf-1 (DKK1) protein, and treatment modalities that modulate LRP/DKK1 binding therefore may act as stimulators of bone mass accrual. Here, we report that RH2-18, a fully human monoclonal anti-DKK1 antibody elicits systemic pharmacologic bone efficacy and new bone formation at endosteal bone surfaces in vivo in a mouse model of estrogen-deficiency-induced osteopenia. This was paralleled by partial-to-complete resolution of osteopenia (bone mineral density) at all of the skeletal sites investigated in femur and lumbar-vertebral bodies and the restoration of trabecular bone microarchitecture. More importantly, testing of RH2-18 in adult, osteopenic rhesus macaques demonstrated a rate-limiting role of DKK1 at multiple skeletal sites and responsiveness to treatment. In conclusion, this study provides pharmacologic evidence for the modulation of DKK1 bioactivity in the adult osteopenic skeleton as a viable approach to resolve osteopenia in animal models. Thus, data described here suggest that targeting DKK1 through means such as a fully human anti-DKK1-antibody provides a potential bone-anabolic treatment for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Helmut Glantschnig
- Bone Biology, Merck Research Laboratories, 700 Sumneytown Pike, WP26A-1000, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Anderson KC, Carrasco RD. Pathogenesis of myeloma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:249-74. [PMID: 21261519 DOI: 10.1146/annurev-pathol-011110-130249] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is a neoplasm of post-germinal center, terminally differentiated B cells. It is characterized by a multifocal proliferation of clonal, long-lived plasma cells within the bone marrow (BM) and associated skeletal destruction, serum monoclonal gammopathy, immune suppression, and end-organ sequelae. MM is preceded by an age-progressive premalignant condition termed monoclonal gammopathy of undetermined significance. Unlike the genomes of most hematological malignancies, and similar to those of solid-tissue neoplasms, MM genomes are typified by numerous structural and numerical chromosomal aberrations as well as mutations in a number of oncogenes and tumor-suppressor genes, some of which have been linked to disease pathogenesis and clinical behavior. Recent studies have also defined the importance of interactions between the MM cells and their BM microenvironment, dysregulation in signaling pathways and in a specialized subpopulation of cells within the tumor (termed myeloma cancer stem cells) for tumor cell growth and survival, and the development of resistance to therapy.
Collapse
Affiliation(s)
- Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
286
|
Abstract
Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic effect of osteoporosis, particularly postmenopausal osteoporosis, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Novel treatment strategies have been developed that aim to inhibit excessive bone resorption and increase bone formation. The most promising novel treatments include: denosumab, a monoclonal antibody for receptor activator of NF-κB ligand, a key osteoclast cytokine; odanacatib, a specific inhibitor of the osteoclast protease cathepsin K; and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This overview discusses these novel therapies and explains their underlying physiology.
Collapse
Affiliation(s)
- Tilman D. Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Dresden Technical University Medical Center, Dresden, Germany
| | | | - Lorenz C. Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Dresden Technical University Medical Center, Dresden, Germany
- Center for Regenerative Therapies Dresden, Germany
| |
Collapse
|
287
|
Abstract
Breast cancer is prone to metastasize to bone. Once metastatic cells are in the bone marrow, they do not, on their own, destroy bone. Instead, they alter the functions of bone-resorbing (osteoclasts) and bone-forming cells (osteoblasts), resulting in skeletal complications that cause pathological fractures and pain. In this review, we describe promising molecular bone-targeted therapies that have arisen from recent advances in our understanding of the pathogenesis of breast cancer bone metastases. These therapies target osteoclasts (receptor activator of nuclear factor kB ligand, integrin αvβ3, c-Src, cathepsin K), osteoblasts (dickkopf-1, activin A, endothelin A) and the bone marrow microenvironment (transforming growth factor β, bone morphogenetic proteins, chemokine CXCL-12 and its receptor CXCR4). The clinical exploitation of these bone-targeted agents will provide oncologists with novel therapeutic strategies for the treatment of skeletal lesions in breast cancer.
Collapse
|
288
|
Abstract
Breast cancer is prone to metastasize to bone. Once metastatic cells are in the bone marrow, they do not, on their own, destroy bone. Instead, they alter the functions of bone-resorbing (osteoclasts) and bone-forming cells (osteoblasts), resulting in skeletal complications that cause pathological fractures and pain. In this review, we describe promising molecular bone-targeted therapies that have arisen from recent advances in our understanding of the pathogenesis of breast cancer bone metastases. These therapies target osteoclasts (receptor activator of nuclear factor kB ligand, integrin αvβ3, c-Src, cathepsin K), osteoblasts (dickkopf-1, activin A, endothelin A) and the bone marrow microenvironment (transforming growth factor β, bone morphogenetic proteins, chemokine CXCL-12 and its receptor CXCR4). The clinical exploitation of these bone-targeted agents will provide oncologists with novel therapeutic strategies for the treatment of skeletal lesions in breast cancer.
Collapse
|
289
|
Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 2011; 10:5. [PMID: 21483657 PMCID: PMC3072659 DOI: 10.4103/1477-3163.78111] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/18/2011] [Indexed: 12/13/2022] Open
Abstract
Activation of the Wnt signaling pathway via mutation of the adenomatous polyposis coli gene (APC) is a critical event in the development of colon cancer. For colon carcinogenesis, however, constitutive signaling through the canonical Wnt pathway is not a singular event. Here we review how canonical Wnt signaling is modulated by intracellular LEF/TCF composition and location, the action of different Wnt ligands, and the secretion of Wnt inhibitory molecules. We also review the contributions of non-canonical Wnt signaling and other distinct pathways in the tumor micro environment that cross-talk to the canonical Wnt pathway and thereby influence colon cancer progression. These ‘non-APC’ aspects of Wnt signaling are considered in relation to the development of potential agents for the treatment of patients with colon cancer. Regulatory pathways that influence Wnt signaling highlight how it might be possible to design therapies that target a network of signals beyond that of APC and β-catenin.
Collapse
Affiliation(s)
- Rani Najdi
- Department of Microbiology and Molecular Genetics, University of California, Irvine
| | | | | |
Collapse
|
290
|
Tai YT, Anderson KC. Antibody-based therapies in multiple myeloma. BONE MARROW RESEARCH 2011; 2011:924058. [PMID: 22046572 PMCID: PMC3200112 DOI: 10.1155/2011/924058] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/04/2011] [Indexed: 01/06/2023]
Abstract
The unmet need for improved multiple myeloma (MM) therapy has stimulated clinical development of monoclonal antibodies (mAbs) targeting either MM cells or cells of the bone marrow (BM) microenvironment. In contrast to small-molecule inhibitors, therapeutic mAbs present the potential to specifically target tumor cells and directly induce an immune response to lyse tumor cells. Unique immune-effector mechanisms are only triggered by therapeutic mAbs but not by small molecule targeting agents. Although therapeutic murine mAbs or chimeric mAbs can cause immunogenicity, the advancement of genetic recombination for humanizing rodent mAbs has allowed large-scale production and designation of mAbs with better affinities, efficient selection, decreasing immunogenicity, and improved effector functions. These advancements of antibody engineering technologies have largely overcome the critical obstacle of antibody immunogenicity and enabled the development and subsequent Food and Drug Administration (FDA) approval of therapeutic Abs for cancer and other diseases.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Kenneth C. Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| |
Collapse
|
291
|
Calimeri T, Battista E, Conforti F, Neri P, Di Martino MT, Rossi M, Foresta U, Piro E, Ferrara F, Amorosi A, Bahlis N, Anderson KC, Munshi N, Tagliaferri P, Causa F, Tassone P. A unique three-dimensional SCID-polymeric scaffold (SCID-synth-hu) model for in vivo expansion of human primary multiple myeloma cells. Leukemia 2011; 25:707-11. [PMID: 21233838 PMCID: PMC3089835 DOI: 10.1038/leu.2010.300] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
292
|
Abstract
Multiple myeloma is still a fatal disease. Despite advances in high-dose chemotherapy and stem-cell transplantation and the development of novel therapeutics, relapse of the underlying disease remains the primary cause of treatment failure. Strategies for posttransplantation immunomodulation are desirable for eradication of remaining tumor cells. To this end, immunotherapy aimed at inducing myeloma-specific immunity in patients has been explored. Idiotype protein, secreted by myeloma cells, has been the primary target for immunotherapy as it is the best defined tumor-specific antigen. This chapter focuses on novel immunotherapies that are being developed to treat patients with myeloma. I will discuss potential myeloma antigens, antigen-specific T cells, and their function on myeloma tumor cells, and T-cell-based and antibody-based immunotherapies for myeloma. Furthermore, clinical studies of T-cell-based immunotherapy in the form of vaccination, allogeneic stem-cell transplantation and donor lymphocyte infusions, with or without donor vaccination using patient-derived idiotype, and future application of donor-derived or patient-derived, antigen-specific T-cell infusion in this disease are also discussed. Based on the specificity of the immune effector molecules and cells, immunotherapies with specific T cells or therapeutic antibodies may represent novel strategies for the treatment of multiple myeloma in the near future.
Collapse
|
293
|
Santini D, Galluzzo S, Zoccoli A, Pantano F, Fratto ME, Vincenzi B, Lombardi L, Gucciardino C, Silvestris N, Riva E, Rizzo S, Russo A, Maiello E, Colucci G, Tonini G. New molecular targets in bone metastases. Cancer Treat Rev 2011; 36 Suppl 3:S6-S10. [PMID: 21129612 DOI: 10.1016/s0305-7372(10)70013-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bone metastases have a major impact on morbidity and on mortality in cancer patients. Despite its clinical relevance, metastasis remains the most poorly elucidated aspect of carcinogenesis. The biological mechanisms leading to bone metastasis establishment have been referred as "vicious circle," a complex network between cancer cells and the bone microenvironment. This review is aimed to underline the new molecular targets in bone metastases management other than bisphosphonates. Different pathways or molecules such as RANK/RANKL/OPG, cathepsin K, endothelin-1, Wnt/DKK1, Src have recently emerged as potential targets and nowadays preclinical and clinical trials are underway. The results from those in the advanced clinical phases are encouraging and underlined the need to design large randomised clinical trials to validate these results in the next future. Targeting the bone by preventing skeletal related events (SREs) and bone metastases has major clinical impact in improving survival in bone metastatic patients and in preventing disease relapse in adjuvant setting.
Collapse
Affiliation(s)
- D Santini
- Medical Oncology Department, University Campus Bio-Medico, Via Alvaro del Portillo 200, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Matsumoto T, Abe M. TGF-β-related mechanisms of bone destruction in multiple myeloma. Bone 2011; 48:129-34. [PMID: 20570621 DOI: 10.1016/j.bone.2010.05.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/23/2010] [Indexed: 01/10/2023]
Abstract
In destructive bone lesions of multiple myeloma (MM), osteoclastic bone resorption is enhanced, while bone formation is suppressed with impaired osteoblast differentiation from their progenitor cells. As a result, a strong negative balance in bone turnover develops in MM bone lesions. The suppression of bone formation is mainly due to a secretion of Wnt signal inhibitors, secreted Frizzled-related protein (sFRP)-2 and 3 and dikkopf1 (DKK1). In addition, the enhanced bone resorption in MM bone lesions causes a marked increase in the release and activation of transforming growth factor (TGF)-β. Although TGF-β enhances the recruitment and proliferation of osteoblast progenitors, TGF-β potently inhibits later phases of osteoblast differentiation and maturation and suppresses matrix mineralization. Thus, TGF-β also plays a role in the suppression of bone formation in MM bone lesions. In fact, when TGF-β action is suppressed by inhibitors of TGF-β type I receptor kinase, the inhibition of terminal differentiation of osteoblasts and mineralization is abrogated. While immature mesenchymal stromal cells support the growth and survival of MM cells, mature osteoblasts enhance MM cell apoptosis and cell cycle arrest. Thus, the inhibition of TGF-β signaling by TGF-β type I receptor kinase inhibitor causes not only an enhancement of bone formation but also a suppression of MM cell growth. Inhibition of TGF-β signaling can become a new therapeutic approach against MM.
Collapse
Affiliation(s)
- Toshio Matsumoto
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan.
| | | |
Collapse
|
295
|
Anderson KC. New insights into therapeutic targets in myeloma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2011; 2011:184-190. [PMID: 22160032 DOI: 10.1182/asheducation-2011.1.184] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Patient outcome in multiple myeloma (MM) has been remarkably improved due to the use of combination therapies including proteasome inhibitors and immunomodulatory drugs, which target the tumor in its BM microenvironment. Ongoing efforts to improve the treatment paradigm even further include using oncogenomics to better characterize molecular pathogenesis and to develop refined patient stratification and personalized medicine in MM; using models of MM in its BM milieu to identify novel targets and to validate next-generation therapeutics directed at these targets; developing immune-based therapies including mAbs, immunotoxins targeting MM cells and cytokines, and novel vaccine strategies; and using functional oncogenomics to inform the design of novel combination therapies. With continued rapid evolution of progress in these areas, MM will be a chronic illness with sustained complete response in a significant number of patients.
Collapse
|
296
|
Abstract
Multiple myeloma (MM) is the most frequent cancer to involve the skeleton and results in purely osteolytic lesions that rarely heal. MM bone disease is responsible for some of the most devastating complications of MM. The marrow microenvironment plays a key role in MM bone disease as well as in the initiation, expansion and chemoresistance of MM cells. How this microenvironment becomes so supportive of MM, and the contribution and interaction of the various components of the microenvironment to enhancing MM growth are only beginning to be understood. However, it is clear that suppression of osteoblast activity plays a key role in the bone destructive process as well as progression of the tumor burden in myeloma. The impairment of osteoblast activity in MM results primarily from blockade of osteogenic differentiation of mesenchymal progenitors to mature osteoblasts. MM patients have low to normal levels of bone formation markers, such as alkaline phosphatase and osteocalcin in the setting of increased bone resorption. In contrast, MM patients without bone lesions display balanced bone remodeling with increased osteoclastogenesis and normal or increased bone formation rates. Both soluble factors and cell-to-cell contact between MM cells and osteoblast progenitors are responsible for the suppression of osteoblast differentiation in MM. In this article, the mechanism responsible for osteoblast suppression will be reviewed, and the effects of novel bone anabolic agents on myeloma bone disease will be discussed.
Collapse
Affiliation(s)
- G David Roodman
- Veterans Affairs Pittsburgh Healthcare System, Research and Development, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
297
|
Fowler JA, Edwards CM, Croucher PI. Tumor-host cell interactions in the bone disease of myeloma. Bone 2011; 48:121-8. [PMID: 20615487 PMCID: PMC3005983 DOI: 10.1016/j.bone.2010.06.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
Multiple myeloma is a hematological malignancy that is associated with the development of a destructive osteolytic bone disease, which is a major cause of morbidity for patients with myeloma. Interactions between myeloma cells and cells of the bone marrow microenvironment promote both tumor growth and survival and bone destruction, and the osteolytic bone disease is now recognized as a contributing component to tumor progression. Since myeloma bone disease is associated with both an increase in osteoclastic bone resorption and a suppression of osteoblastic bone formation, research to date has largely focused upon the role of the osteoclast and osteoblast. However, it is now clear that other cell types within the bone marrow, including cells of the immune system, mesenchymal stem cells and bone marrow stromal cells, can contribute to the development of myeloma bone disease. This review discusses the cellular mechanisms and potential therapeutic targets that have been implicated in myeloma bone disease.
Collapse
Affiliation(s)
- Jessica A. Fowler
- Vanderbilt Center for Bone Biology, Department of Cancer Biology, Vanderbilt University, Nashville, TN
| | - Claire M. Edwards
- Vanderbilt Center for Bone Biology, Department of Cancer Biology, Vanderbilt University, Nashville, TN
| | - Peter I. Croucher
- The Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| |
Collapse
|
298
|
Bjorklund CC, Ma W, Wang ZQ, Davis RE, Kuhn DJ, Kornblau SM, Wang M, Shah JJ, Orlowski RZ. Evidence of a role for activation of Wnt/beta-catenin signaling in the resistance of plasma cells to lenalidomide. J Biol Chem 2010; 286:11009-20. [PMID: 21189262 DOI: 10.1074/jbc.m110.180208] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lenalidomide plays an important role in our chemotherapeutic armamentarium against multiple myeloma, in part by exerting direct anti-proliferative and pro-apoptotic effects. Unfortunately, long-term exposure leads to the development of drug resistance through unknown mechanisms, and we therefore sought to identify pathways that could be responsible for this phenotype. Chronic drug exposure produced myeloma cell lines that were tolerant of the direct effects of lenalidomide, with a degree of resistance of up to 2,500-fold. Gene expression profiling and pathway analysis identified dysregulation of the Wnt/β-catenin pathway as a consistent change across four independent cell isolates, and a pair of primary plasma cell samples. Acute drug treatment also increased β-catenin transcription by 3-fold or more, and both acute and chronic exposure resulted in enhanced accumulation of β-catenin protein by up to 20-fold or more. This produced Wnt/β-catenin pathway activation, as judged by increased activity of a lymphoid enhancer factor/T-cell factor promoter reporter, and enhanced accumulation of the downstream targets cyclin D1 and c-Myc. Components of the β-catenin destruction complex were also impacted by lenalidomide, which suppressed casein kinase 1α expression while augmenting glycogen synthase kinase 3α/β phosphorylation. Stimulation of Wnt/β-catenin signaling with recombinant Wnt-3a, or by overexpression of β-catenin, reduced the anti-proliferative activity of lenalidomide. Conversely, suppression of β-catenin with small hairpin RNAs restored plasma cell sensitivity to lenalidomide. Together, these findings support the hypothesis that lenalidomide mediates activation of Wnt/β-catenin signaling in plasma cells as a mechanism of inducible chemoresistance through effects at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Chad C Bjorklund
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Cejka D, Herberth J, Branscum AJ, Fardo DW, Monier-Faugere MC, Diarra D, Haas M, Malluche HH. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol 2010; 6:877-82. [PMID: 21164019 DOI: 10.2215/cjn.06550810] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES The serum proteins sclerostin and Dickkopf-1 (Dkk-1) are soluble inhibitors of canonical wnt signaling and were recently identified as components of parathyroid hormone (PTH) signal transduction. This study investigated the associations between sclerostin and Dkk-1 with histomorphometric parameters of bone turnover, mineralization, and volume in stage 5 chronic kidney disease patients on dialysis (CKD-5D). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In a cross-sectional study, 60 CKD-5D patients underwent bone biopsies followed by histomorphometry. Levels of sclerostin, Dkk-1, and intact PTH (iPTH) were determined in blood. RESULTS Serum levels of sclerostin and iPTH correlated negatively. In unadjusted analyses, sclerostin correlated negatively with histomorphometric parameters of turnover, osteoblastic number, and function. In adjusted analyses, sclerostin remained a strong predictor of parameters of bone turnover and osteoblast number. An observed correlation between sclerostin and cancellous bone volume was lost in regression analyses. Sclerostin was superior to iPTH for the positive prediction of high bone turnover and number of osteoblasts. In contrast, iPTH was superior to sclerostin for the negative prediction for high bone turnover and had similar predictive values than sclerostin for the number of osteoblasts. Serum levels of Dkk-1 did not correlate with iPTH or with any histomorphometric parameter. CONCLUSIONS Our data describe a promising role for serum measurements of sclerostin in addition to iPTH in the diagnosis of high bone turnover in CKD-5D patients, whereas measurements of Dkk-1 do not seem to be useful for this purpose.
Collapse
Affiliation(s)
- Daniel Cejka
- Division of Nephrology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
300
|
Abstract
Some of the most common cancer types, including breast cancer, prostate cancer, and lung cancer, show a predilection to metastasize to bone. The molecular basis of this preferential growth of cancer cells in the bone microenvironment has been an area of active investigation. Although the precise molecular mechanisms underlying this process remain to be elucidated, it is now increasingly being recognized that the unique characteristics of the bone niche provide homing signals to cancer cells, and create a microenvironment conducive for the cancer cells to colonize. Concomitantly, cancer cells release several regulatory factors that result in abnormal bone destruction and/or formation. This complex bidirectional interplay between tumor cells and bone microenvironment establishes a "vicious cycle" that leads to a selective growth advantage for the cancer cells. The molecular insights gained on the underpinnings of bone metastasis in recent years have also provided us with avenues to devise innovative approaches for therapeutic intervention. The goal of this review is to describe our current understanding of molecular pathophysiology of cancer metastases to bone, as well as its therapeutic implications.
Collapse
Affiliation(s)
- Theresa Guise
- Indiana University, Gatch Clinical Building, Room 459, 541 N Clinical Dr, Indianapolis, IN 46202-5111, USA.
| |
Collapse
|