251
|
Mishra I, Fatima T, Egamberdieva D, Arora NK. Novel Bioformulations Developed from Pseudomonas putida BSP9 and its Biosurfactant for Growth Promotion of Brassica juncea (L.). PLANTS 2020; 9:plants9101349. [PMID: 33053904 PMCID: PMC7601481 DOI: 10.3390/plants9101349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
In this study, Pseudomonas putida BSP9 isolated from rhizosphere of Brassica juncea was investigated for its plant growth promoting and biosurfactant producing activities. The isolate showed the ability to produce indole acetic acid, siderophore, phosphate solubilization activity and was an efficient producer of biosurfactant. Purification (of the biosurfactant) by thin layer chromatography (TLC) and further characterization by Fourier transform infrared spectroscopy (FTIR) revealed that biosurfactant produced by the isolate belonged to the glycolipid category, which is largely produced by Pseudomonas sp. In addition, liquid chromatography-mass spectroscopy (LC-MS) analysis showed the presence of a mixture of six mono-rhamnolipidic and a di-rhamnolipidic congeners, confirming it as a rhamnolipid biosurfactant. Bioformulations were developed using BSP9 and its biosurfactant to check their impact on promoting plant growth in B. juncea. It was noted from the study that bioformulations amended with biosurfactant (singly or in combination with BSP9) resulted in enhancement in the growth parameters of B. juncea as compared to untreated control. Maximum increment was achieved by plants inoculated with bioformulation that had BSP9 plus biosurfactant. The study also suggested that growth promotion was significant up to a threshold level of biosurfactant and that further increasing the concentration did not further enhance the growth parameter values of the plant. The study proves that novel bioformulations can be developed by integrating plant growth promoting rhizobacteria (PGPR) and their biosurfactant, and they can be effectively used for increasing agricultural productivity while minimizing our dependence on agrochemicals.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India; (I.M.); (T.F.)
| | - Tahmish Fatima
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India; (I.M.); (T.F.)
| | - Dilfuza Egamberdieva
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Correspondence: (D.E.); (N.K.A.)
| | - Naveen Kumar Arora
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India
- Correspondence: (D.E.); (N.K.A.)
| |
Collapse
|
252
|
Detection and Characterization of Antibacterial Siderophores Secreted by Endophytic Fungi from Cymbidium aloifolium. Biomolecules 2020; 10:biom10101412. [PMID: 33036284 PMCID: PMC7600725 DOI: 10.3390/biom10101412] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022] Open
Abstract
Endophytic fungi from orchid plants are reported to secrete secondary metabolites which include bioactive antimicrobial siderophores. In this study endophytic fungi capable of secreting siderophores were isolated from Cymbidium aloifolium, a medicinal orchid plant. The isolated extracellular siderophores from orchidaceous fungi act as chelating agents forming soluble complexes with Fe3+. The 60% endophytic fungi of Cymbidium aloifolium produced hydroxamate siderophore on CAS agar. The highest siderophore percentage was 57% in Penicillium chrysogenum (CAL1), 49% in Aspergillus sydowii (CAR12), 46% in Aspergillus terreus (CAR14) by CAS liquid assay. The optimum culture parameters for siderophore production were 30 °C, pH 6.5, maltose and ammonium nitrate and the highest resulting siderophore content was 73% in P. chrysogenum. The total protein content of solvent-purified siderophore increased four-fold compared with crude filtrate. The percent Fe3+ scavenged was detected by atomic absorption spectra analysis and the highest scavenging value was 83% by P. chrysogenum. Thin layer chromatography of purified P. chrysogenum siderophore showed a wine-colored spot with Rf value of 0.54. HPLC peaks with Rts of 10.5 and 12.5 min were obtained for iron-free and iron-bound P. chrysogenum siderophore, respectively. The iron-free P. chrysogenum siderophore revealed an exact mass-to-charge ratio (m/z) of 400.46 and iron-bound P. chrysogenum siderophore revealed a m/z of 453.35. The solvent-extracted siderophores inhibited the virulent plant pathogens Ralstonia solanacearum, that causes bacterial wilt in groundnut and Xanthomonas oryzae pv. oryzae which causes bacterial blight disease in rice. Thus, bioactive siderophore-producing endophytic P. chrysogenum can be exploited in the form of formulations for development of resistance against other phytopathogens in crop plants.
Collapse
|
253
|
Bacillus licheniformis strain POT1 mediated polyphenol biosynthetic pathways genes activation and systemic resistance in potato plants against Alfalfa mosaic virus. Sci Rep 2020; 10:16120. [PMID: 32999301 PMCID: PMC7527447 DOI: 10.1038/s41598-020-72676-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023] Open
Abstract
Alfalfa mosaic virus (AMV) is a worldwide distributed virus that has a very wide host range and causes significant crop losses of many economically important crops, including potato (Solanum tuberosum L.). In this study, the antiviral activity of Bacillus licheniformis strain POT1 against AMV on potato plants was evaluated. The dual foliar application of culture filtrate (CF), 24 h before and after AMV-inoculation, was the most effective treatment that showed 86.79% reduction of the viral accumulation level and improvement of different growth parameters. Moreover, HPLC analysis showed that a 20 polyphenolic compound was accumulated with a total amount of 7,218.86 and 1606.49 mg/kg in POT1-treated and non-treated plants, respectively. Additionally, the transcriptional analysis of thirteen genes controlling the phenylpropanoid, chlorogenic acid and flavonoid biosynthetic pathways revealed that most of the studied genes were induced after POT1 treatments. The stronger expression level of F3H, the key enzyme in flavonoid biosynthesis in plants, (588.133-fold) and AN2, anthocyanin 2 transcription factor, (97.005-fold) suggested that the accumulation flavonoid, especially anthocyanin, might play significant roles in plant defense against viral infection. Gas chromatography-mass spectrometry (GC-MS) analysis showed that pyrrolo[1,2-a]pyrazine-1,4-dione is the major compound in CF ethyl acetate extract, that is suggesting it acts as elicitor molecules for induction of systemic acquired resistance in potato plants. To our knowledge, this is the first study of biological control of AMV mediated by PGPR in potato plants.
Collapse
|
254
|
Li T, Mann R, Sawbridge T, Kaur J, Auer D, Spangenberg G. Novel Xanthomonas Species From the Perennial Ryegrass Seed Microbiome - Assessing the Bioprotection Activity of Non-pathogenic Relatives of Pathogens. Front Microbiol 2020; 11:1991. [PMID: 32983016 PMCID: PMC7479056 DOI: 10.3389/fmicb.2020.01991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
The productivity of the Australian dairy industry is underpinned by pasture grasses, and importantly perennial ryegrass. The performance of these pasture grasses is supported by the fungal endophyte Epichloë spp. that has bioprotection activities, however, the broader microbiome is not well characterized. In this study, we characterized a novel bioprotectant Xanthomonas species isolated from perennial ryegrass (Lolium perenne L. cv. Alto). In vitro and in planta bioassays against key fungal pathogens of grasses (Sclerotium rolfsii, Drechslera brizae and Microdochium nivale) indicated strong bioprotection activities. A complete circular chromosome of ∼5.2 Mb was generated for three strains of the novel Xanthomonas sp. Based on the 16S ribosomal RNA gene, the strains were closely related to the plant pathogen Xanthomonas translucens, however, comparative genomics of 22 closely related xanthomonad strains indicated that these strains were a novel species. The comparative genomics analysis also identified two unique gene clusters associated with the production of bioprotectant secondary metabolites including one associated with a novel nonribosomal peptide synthetase and another with a siderophore. The analysis also identified genes associated with an endophytic lifestyle (e.g., Type VI secretion system), while no genes associated with pathogenicity were identified (e.g., Type III secretion system and effectors). Overall, these results indicate that these strains represent a novel, bioactive, non-pathogenic species of the genus Xanthomonas. Strain GW was the designated type strain of this novel Xanthomonas sp.
Collapse
Affiliation(s)
- Tongda Li
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,DairyBio, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Ross Mann
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,DairyBio, Bundoora, VIC, Australia
| | - Timothy Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,DairyBio, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Jatinder Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,DairyBio, Bundoora, VIC, Australia
| | - Desmond Auer
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - German Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,DairyBio, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
255
|
Siqueira ACO, Mascarin GM, Gonçalves CRNCB, Marcon J, Quecine MC, Figueira A, Delalibera Í. Multi-Trait Biochemical Features of Metarhizium Species and Their Activities That Stimulate the Growth of Tomato Plants. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
256
|
Abdel Latef AAH, Abu Alhmad MF, Kordrostami M, Abo–Baker ABAE, Zakir A. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. JOURNAL OF PLANT GROWTH REGULATION 2020; 39:1293-1306. [DOI: 10.1007/s00344-020-10065-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/07/2020] [Indexed: 09/02/2023]
|
257
|
Adedeji AA, Häggblom MM, Babalola OO. Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
258
|
Canwei S, Xiaoyun H, Ahmed N, Shiqi W, Erxun Z, Meide L. Fructosan form Paenibacillus kribbensis PS04 enhance disease resistance against Rhizoctonia solani and tobacco mosaic virus. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
259
|
Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, Zehra A, Marwal A, Upadhyay RS. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol 2020; 60:828-861. [PMID: 32815221 DOI: 10.1002/jobm.202000370] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are diverse groups of plant-associated microorganisms, which can reduce the severity or incidence of disease during antagonism among bacteria and soil-borne pathogens, as well as by influencing a systemic resistance to elicit defense response in host plants. An amalgamation of various strains of PGPR has improved the efficacy by enhancing the systemic resistance opposed to various pathogens affecting the crop. Many PGPR used with seed treatment causes structural improvement of the cell wall and physiological/biochemical changes leading to the synthesis of proteins, peptides, and chemicals occupied in plant defense mechanisms. The major determinants of PGPR-mediated induced systemic resistance (ISR) are lipopolysaccharides, lipopeptides, siderophores, pyocyanin, antibiotics 2,4-diacetylphoroglucinol, the volatile 2,3-butanediol, N-alkylated benzylamine, and iron-regulated compounds. Many PGPR inoculants have been commercialized and these inoculants consequently aid in the improvement of crop growth yield and provide effective reinforcement to the crop from disease, whereas other inoculants are used as biofertilizers for native as well as crops growing at diverse extreme habitat and exhibit multifunctional plant growth-promoting attributes. A number of applications of PGPR formulation are needed to maintain the resistance levels in crop plants. Several microarray-based studies have been done to identify the genes, which are associated with PGPR-induced systemic resistance. Identification of these genes associated with ISR-mediating disease suppression and biochemical changes in the crop plant is one of the essential steps in understanding the disease resistance mechanisms in crops. Therefore, in this review, we discuss the PGPR-mediated innovative methods, focusing on the mode of action of compounds authorized that may be significant in the development contributing to enhance plant growth, disease resistance, and serve as an efficient bioinoculants for sustainable agriculture. The review also highlights current research progress in this field with a special emphasis on challenges, limitations, and their environmental and economic advantages.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.,Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India.,Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yashoda Nandan Tripathi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan-Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ram Sanmukh Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
260
|
Geisen S, Wall DH, van der Putten WH. Challenges and Opportunities for Soil Biodiversity in the Anthropocene. Curr Biol 2020; 29:R1036-R1044. [PMID: 31593662 DOI: 10.1016/j.cub.2019.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biodiversity on Earth is strongly affected by human alterations to the environment. The majority of studies have considered aboveground biodiversity, yet little is known about whether biodiversity changes belowground follow the same patterns as those observed aboveground. It is now established that communities of soil biota have been substantially altered by direct human activities such as soil sealing, agricultural land-use intensification, and biological invasions resulting from the introduction of non-native species. In addition, altered abiotic conditions resulting from climate change have also impacted soil biodiversity. These changes in soil biodiversity can alter ecosystem functions performed by the soil biota, and therefore, human-induced global changes have a feedback effect on ecosystem services via altered soil biodiversity. Here, we highlight the major phenomena that threaten soil biodiversity, and we propose options to reverse the decline in soil biodiversity. We argue that it is essential to protect soil biodiversity as a rich reservoir that provides insurance against the changes wrought by the Anthropocene. Overall, we need to better understand the determinants of soil biodiversity and how they function, plan to avoid further losses, and restore soil biodiversity where possible. Safeguarding this rich biotic reservoir is essential for soil sustainability and, ultimately, the sustainability of human society.
Collapse
Affiliation(s)
- Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands.
| | - Diana H Wall
- School of Global Environmental Sustainability and Department of Biology, Colorado State University, Fort Collins, CO 80523-1036, USA
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University and Research, P.O. Box 8123, 6700 ES, Wageningen, The Netherlands
| |
Collapse
|
261
|
Zhu Z, Peng Q, Man Y, Li Z, Zhou X, Bai L, Peng D. Analysis of the Antifungal Properties of Bacillus velezensis B-4 Through a Bioassay and Complete-Genome Sequencing. Front Genet 2020; 11:703. [PMID: 32765583 PMCID: PMC7378798 DOI: 10.3389/fgene.2020.00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/10/2020] [Indexed: 01/21/2023] Open
Abstract
The strain B-4, isolated from a field in Changsha (China), presents strong antifungal activities, as identified by the Kirby–Bauer test, especially for pathogens that harm crops. Here, we obtained the complete genome sequence of the strain B-4 by Pacific Biosciences single-molecule real-time sequencing, making it well analyzed for understanding mechanisms and creating biological agents. Its 3,919-kb circular chromosome genome has 3,725 protein-coding genes [coding sequences (CDSs)] and 46.7% guanine–cytosine content. A comparative genome analysis of B-4 with other published strains (including Bacillus velezensis, Bacillus amyloliquefaciens, and Bacillus subtilis) revealed that the strain B-4 is a B. velezensis strain. These different strains have 2,889 CDSs in common, whereas 179 CDSs were found to be unique in the strain B-4, which is a far greater number than that in other strains. Regarding the antifungal activities of B-4, we were specifically concerned with the genes involved in the biosynthesis of secondary metabolites. In total, more than 19.56% of the genome was annotated to 12 gene clusters relating to synthesis of antimicrobial metabolites, which contained various enzyme-encoding operons for non-ribosomal peptide synthetases, polyketide synthases, and lantipeptide synthesis proteins. They were all considered to be related to the production of bacteriostatic substances or stimulation of induced systemic resistance by bacterial metabolites. These situations also present an advantage over those of other strains for biocontrol potential. We provide evidence that the biological control effect of the strain B-4, as demonstrated in antibacterial activity experiments and predicted from the complete genome sequence analysis, provides the basis for research promoting agricultural research on sustainable development, especially the contribution of biotechnology to agriculture.
Collapse
Affiliation(s)
- Zheyuan Zhu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qiong Peng
- Hunan Agricultural Biotechnology Research Institute, Changsha, China
| | - Yilong Man
- Hunan Agricultural Biotechnology Research Institute, Changsha, China
| | - Zuren Li
- Hunan Agricultural Biotechnology Research Institute, Changsha, China
| | - Xiaomao Zhou
- Hunan Agricultural Biotechnology Research Institute, Changsha, China
| | - Lianyang Bai
- Hunan Academy of Agricultural Sciences (CAAS), Changsha, China
| | - Di Peng
- Hunan Agricultural Biotechnology Research Institute, Changsha, China
| |
Collapse
|
262
|
Genomic Analysis of Three Cheese-Borne Pseudomonas lactis with Biofilm and Spoilage-Associated Behavior. Microorganisms 2020; 8:microorganisms8081208. [PMID: 32784363 PMCID: PMC7464908 DOI: 10.3390/microorganisms8081208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022] Open
Abstract
Psychrotrophic pseudomonads cause spoilage of cold fresh cheeses and their shelf-life reduction. Three cheese-borne Pseudomonas sp., ITEM 17295, ITEM 17298, and ITEM 17299 strains, previously isolated from mozzarella cheese, revealed distinctive spoilage traits based on molecular determinants requiring further investigations. Genomic indexes (ANI, isDDH), MLST-based phylogeny of four housekeeping genes (16S rRNA, gyrB, rpoB and rpoD) and genome-based phylogeny reclassified them as Pseudomonas lactis. Each strain showed distinctive phenotypic traits at 15 and 30 °C: ITEM 17298 was the highest biofilm producer at both temperatures, whilst ITEM 17295 and ITEM 17299 showed the strongest proteolytic activity at 30 °C. A wider pattern of pigments was found for ITEM 17298, while ITEM 17295 colonies were not pigmented. Although the high genomic similarity, some relevant molecular differences supported this phenotypic diversity: ITEM 17295, producing low biofilm amount, missed the pel operon involved in EPS synthesis and the biofilm-related Toxin-Antitoxin systems (mqsR/mqsA, chpB/chpS); pvdS, required for the pyoverdine synthesis, was a truncated gene in ITEM 17295, harboring, instead, a second aprA involved in milk proteolysis. This work provided new insight into the food spoiler microbiota by identifying these mozzarella cheese spoilers as P. lactis; molecular targets to be exploited in the development of novel preservative strategies were also revealed.
Collapse
|
263
|
Plant growth promoting potential of Brevibacterium sediminis A6 isolated from the tea rhizosphere of Assam, India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
264
|
Complete Genome Sequence of Bacillus sp. Strain RZ2MS9, a Multitrait Plant Growth Promoter. Microbiol Resour Announc 2020; 9:9/31/e00623-20. [PMID: 32732234 PMCID: PMC7393963 DOI: 10.1128/mra.00623-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Here, we report the complete genome sequence of Bacillus sp. strain RZ2MS9, a plant growth-promoting bacterium isolated from the rhizosphere of guarana, a native crop from Amazonas, Brazil. The assembled genome comprises 5.35 Mbp, no plasmids, and a GC content of 35.22%. Here, we report the complete genome sequence of Bacillus sp. strain RZ2MS9, a plant growth-promoting bacterium isolated from the rhizosphere of guarana, a native crop from Amazonas, Brazil. The assembled genome comprises 5.35 Mbp, no plasmids, and a GC content of 35.22%.
Collapse
|
265
|
High-Throughput Sequencing and Expression Analysis Suggest the Involvement of Pseudomonas putida RA-Responsive microRNAs in Growth and Development of Arabidopsis. Int J Mol Sci 2020; 21:ijms21155468. [PMID: 32751751 PMCID: PMC7432263 DOI: 10.3390/ijms21155468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023] Open
Abstract
Beneficial soil microorganisms largely comprise of plant growth-promoting rhizobacteria (PGPR), which adhere to plant roots and facilitate their growth and development. Pseudomonas putida (RA) strain MTCC5279 is one such PGPR that exhibits several characteristics of plant growth promotion, such as P-solubilization, and siderophores and IAA production. Plant–PGPR interactions are very complex phenomena, and essentially modulate the expression of numerous genes, consequently leading to changes in the physiological, biochemical, cellular and molecular responses of plants. Therefore, in order to understand the molecular bases of plant–PGPR interactions, we carried out the identification of microRNAs from the roots of Arabidopsis upon P. putida RA-inoculation, and analyses of their expression. MicroRNAs (miRNAs) are 20- to 24-nt non-coding small RNAs known to regulate the expression of their target genes. Small RNA sequencing led to the identification of 293 known and 67 putative novel miRNAs, from the control and RA-inoculated libraries. Among these, 15 known miRNAs showed differential expression upon RA-inoculation in comparison to the control, and their expressions were corroborated by stem-loop quantitative real-time PCR. Overall, 28,746 and 6931 mRNAs were expected to be the targets of the known and putative novel miRNAs, respectively, which take part in numerous biological, cellular and molecular processes. An inverse correlation between the expression of RA-responsive miRNAs and their target genes also strengthened the crucial role of RA in developmental regulation. Our results offer insights into the understanding of the RA-mediated modulation of miRNAs and their targets in Arabidopsis, and pave the way for the further exploitation and characterization of candidate RA-responsive miRNA(s) for various crop improvement strategies directed towards plant sustainable growth and development.
Collapse
|
266
|
Wu Y, Ma L, Liu Q, Sikder MM, Vestergård M, Zhou K, Wang Q, Yang X, Feng Y. Pseudomonas fluorescens promote photosynthesis, carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138554. [PMID: 32305763 DOI: 10.1016/j.scitotenv.2020.138554] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Plant growth-promoting bacteria (PGPB) can promote photosynthesis and biomass production of hyperaccumulators, achieving enhanced phytoremediation efficiency of cadmium (Cd). A better understanding of the mechanisms controlling photosynthesis of hyperaccumulating plants by PGPB is necessary for developing strategies that promote the practical phytoextraction of Cd-polluted soils. In this study, chlorophyll fluorescence, gas exchange, and transcriptome sequencing were conducted to evaluate the physiological and transcriptional changes on photosynthesis and carbon fixation in hyperaccumulator Sedum alfredii after inoculation with PGPB Pseudomonas fluorescens. The results showed that bacterial inoculation significantly enhanced maximum quantum yield of PS II (Fv/Fm), effective quantum yield of PS II (ΦPSII), photochemical quenching (qP) and chlorophyll concentration, while reduced non-photochemical quenching (NPQ) of S. alfredii. Further, inoculation resulted in an increased net photosynthetic rates (Pn), intercellular CO2 concentration (Ci), transpiration rate (Tr) and stomatal conductance (Gs) of the studied plant. At the transcriptional level, 70 photosynthetic genes and 42 C4-pathway carbon fixation related genes were significantly up-regulated in response to inoculation, which could be the reason for enhanced photosynthesis and dry biomass. To sum up, this P. fluorescens strain can simultaneously promote growth and Cd uptake of S. alfredii, which can be a promising bacterial agent applied to Cd phytoremediation practices.
Collapse
Affiliation(s)
- Yingjie Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Luyao Ma
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Md Maniruzzaman Sikder
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark; Mycology and Plant Pathology, Department of Botany, Jahangirnagar University, Dhaka, Bangladesh
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Kaiyue Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
267
|
Miljaković D, Marinković J, Balešević-Tubić S. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 2020; 8:microorganisms8071037. [PMID: 32668676 PMCID: PMC7409232 DOI: 10.3390/microorganisms8071037] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.
Collapse
Affiliation(s)
- Dragana Miljaković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
- Correspondence:
| | - Jelena Marinković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Svetlana Balešević-Tubić
- Soybean Department, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| |
Collapse
|
268
|
Msimbira LA, Smith DL. The Roles of Plant Growth Promoting Microbes in Enhancing Plant Tolerance to Acidity and Alkalinity Stresses. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00106] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
269
|
Toral L, Rodríguez M, Béjar V, Sampedro I. Crop Protection against Botrytis cinerea by Rhizhosphere Biological Control Agent Bacillus velezensis XT1. Microorganisms 2020; 8:microorganisms8070992. [PMID: 32635146 PMCID: PMC7409083 DOI: 10.3390/microorganisms8070992] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/10/2023] Open
Abstract
This study aims to evaluate the use of Bacillus velezensis strain XT1 as a plant growth-promoting rhizobacterium (PGPR) and biocontrol agent against B. cinerea in tomato and strawberry plants. Foliar and radicular applications of strain XT1 increased plant total biomass as compared to the control and B. cinerea-infected plants, with root applications being, on the whole, the most effective mode of treatment. Applications of the bacterium were found to reduce infection parameters such as disease incidence and severity by 50% and 60%, respectively. We analyzed stress parameters and phytohormone content in order to evaluate the capacity of XT1 to activate the defense system through phytohormonal regulation. Overall, the application of XT1 reduced oxidative damage, while the H2O2 and malondialdehyde (MDA) content was lower in XT1-treated and B. cinerea-infected plants as compared to non-XT1-treated plants. Moreover, treatment with XT1 induced callose deposition, thus boosting the response to pathogenic infection. The results of this study suggest that the signaling and activation pathways involved in defense mechanisms are mediated by jasmonic acid (JA) and ethylene hormones, which are induced by preventive treatment with XT1. The study also highlights the potential of preventive applications of strain XT1 to activate defense mechanisms in strawberry and tomato plants through hormone regulation.
Collapse
Affiliation(s)
- Laura Toral
- Xtrem Biotech S.L., European Business Innovation Center, Avenida de la Innovación, 1, Armilla, 18016 Granada, Spain
- Correspondence: (L.T.); (I.S.)
| | - Miguel Rodríguez
- Department of Microbiology, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (M.R.); (V.B.)
- Biomedical Research Center (CIBM), Institute of Biotechnology, Avenida del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Victoria Béjar
- Department of Microbiology, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (M.R.); (V.B.)
- Biomedical Research Center (CIBM), Institute of Biotechnology, Avenida del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (M.R.); (V.B.)
- Biomedical Research Center (CIBM), Institute of Biotechnology, Avenida del Conocimiento s/n, Armilla, 18100 Granada, Spain
- Correspondence: (L.T.); (I.S.)
| |
Collapse
|
270
|
Khan MS, Gao J, Zhang M, Chen X, Moe TS, Du Y, Yang F, Xue J, Zhang X. Isolation and characterization of plant growth-promoting endophytic bacteria Bacillus stratosphericus LW-03 from Lilium wardii. 3 Biotech 2020; 10:305. [PMID: 32612899 PMCID: PMC7313711 DOI: 10.1007/s13205-020-02294-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/07/2020] [Indexed: 02/01/2023] Open
Abstract
In the present study, a new strain of Bacillus stratosphericus LW-03 was isolated from the bulbs of Lilium wardii. The isolated endophytic strain LW-03 exhibited excellent antifungal activity against common plant pathogens, such as Fusarium oxysporum, Botryosphaeria dothidea, Botrytis cinerea, and Fusarium fujikuroi. The growth inhibition percentage of Botryosphaeria dothidea was 74.56 ± 2.35%, which was the highest, followed by Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum were 71.91 ± 2.87%, 69.54 ± 2.73%, and 65.13 ± 1.91%, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several of which were putatively identified as antimicrobial agents, such as 4-hydroxy-2-nonenylquinoline N-oxide, sphingosine ceramides like cer(d18:0/16:0(2OH)), cer(d18:0/16:0), and cer(d18:1/0:0), di-peptides, tri-peptide, cyclopeptides [cyclo(D-Trp-L-Pro)], [cyclo (Pro-Phe)], dehydroabietylamine, oxazepam, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine like compound (PC(0:0/20:4), phosphatidylethanolamine (PE(18:1/0:0)), 3-Hydroxyoctadecanoic acid, 7.alpha.,27-Dihydroxycholesterol, N-Acetyl-d-mannosamine, p-Hydroxyphenyllactic acid, Phytomonic acid, and 2-undecenyl-quinoloin-4 (1H). The LW-03 strain exhibits multiple plant growth-promoting traits, including the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation activity. The beneficial effects of the endophytic strain LW-03 on the growth of two lily varieties were further evaluated under greenhouse conditions. Our results revealed plant growth-promoting activity in inoculated plants relative to non-inoculated control plants. The broad-spectrum antifungal activity and multiple plant growth-promoting properties of Bacillus stratosphericus LW-03 make it an important player in the development of biological fertilizers and sustainable agricultural biological control strategies.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Khyber Pakhtunkhwa, Peshawar, 25000 Pakistan
| | - Junlian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Mingfang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - The Su Moe
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse, 05151 Myanmar
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Fengping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| |
Collapse
|
271
|
Karthika S, Varghese S, Jisha MS. Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech 2020; 10:320. [PMID: 32656053 DOI: 10.1007/s13205-020-02306-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022] Open
Abstract
As the environmental and health concerns alert the necessity to move towards a sustainable agriculture system, biological approach using indigenous plant growth-promoting rhizobacteria (PGPR) gains a strong impetus in the field of plant disease control. In this context, the present review article addresses the usage of rhizospheric antagonistic bacteria as a suitable alternative to control tomato fungal diseases namely Fusarium wilt and early blight disease. Biological control has been considered to be an eco-friendly, safe and effective method for disease management. The inherent traits of PGPR to antagonize a pathogen through various mechanisms has been investigated extensively to utilize them as potent biocontrol agents (BCA). Hence, the article provides a detailed account on different biocontrol mechanisms displayed by BCA. It is also suggested that the use of bacterial consortium ensures consistent performance by BCA in field conditions. Likewise, this review also deals with the opportunities and obstacles faced during commercialization of these antagonistic bacteria as biocontrol agents in the market.
Collapse
Affiliation(s)
- S Karthika
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| | - Sherin Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| |
Collapse
|
272
|
Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield. Proc Natl Acad Sci U S A 2020; 117:14552-14560. [PMID: 32513689 PMCID: PMC7321985 DOI: 10.1073/pnas.1917259117] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In 1840, Justus von Liebig proposed the theory of mineral plant nutrition, through the invention of the Haber–Bosch process, leading to the industrialization of chemical fertilizer (inorganic nitrogen) to feed the human population. Because the excessive use of chemical fertilizer has led to numerous environmental problems, understanding the agroecosystem that contains plants, microbes, and soils is necessary for sustainable agriculture. We revealed the network structure of an agroecosystem established with different management practices and identified that organic nitrogen is a key component contributing to crop yield under the condition of soil solarization, even in the presence of inorganic nitrogen. Our finding provides a potential solution to make crop production more sustainable by utilizing organic nitrogen induced by soil solarization. Both inorganic fertilizer inputs and crop yields have increased globally, with the concurrent increase in the pollution of water bodies due to nitrogen leaching from soils. Designing agroecosystems that are environmentally friendly is urgently required. Since agroecosystems are highly complex and consist of entangled webs of interactions between plants, microbes, and soils, identifying critical components in crop production remain elusive. To understand the network structure in agroecosystems engineered by several farming methods, including environmentally friendly soil solarization, we utilized a multiomics approach on a field planted with Brassica rapa. We found that the soil solarization increased plant shoot biomass irrespective of the type of fertilizer applied. Our multiomics and integrated informatics revealed complex interactions in the agroecosystem showing multiple network modules represented by plant traits heterogeneously associated with soil metabolites, minerals, and microbes. Unexpectedly, we identified soil organic nitrogen induced by soil solarization as one of the key components to increase crop yield. A germ-free plant in vitro assay and a pot experiment using arable soils confirmed that specific organic nitrogen, namely alanine and choline, directly increased plant biomass by acting as a nitrogen source and a biologically active compound. Thus, our study provides evidence at the agroecosystem level that organic nitrogen plays a key role in plant growth.
Collapse
|
273
|
Role of Biofilm Formation by Bacillus pumilus HR10 in Biocontrol against Pine Seedling Damping-Off Disease Caused by Rhizoctonia solani. FORESTS 2020. [DOI: 10.3390/f11060652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biocontrol process mediated by plant growth-promoting rhizobacteria (PGPR) relies on multiple mechanisms. Biofilm formation plays an important role in the ability of PGPR to control plant diseases. Bacillus pumilus HR10, one such PGPR, promotes the growth of Pinus thunbergii. This study showed that the wild-type strain B. pumilus HR10 produces a stable and mature biofilm in vitro. Biofilm-deficient mutants of B. pumilus HR10 with different phenotypes were screened by mutagenesis. The contents of extracellular polysaccharides (EPS) and proteins produced by the mutant strains were significantly reduced, and the biofilms of the mutants were weakened to varying degrees. The swarming abilities of the wild-type and mutant strains were positively correlated with biofilm formation. A colonization assay demonstrated that B. pumilus HR10 could colonize the roots of Pinus massoniana seedlings in a large population and persist, while biofilm-deficient mutants showed weak colonization ability. Furthermore, a biocontrol assay showed that biocontrol efficacy of the mutants was reduced to a certain degree. We determined the inhibitory activity of B. pumilus HR10 and its ability to induce systemic resistance against Rhizoctonia solani of plants. The synthesis of lipopeptide antibiotics is probably involved in biofilm formation by B. pumilus HR10. These observations not only provide a reference for further research about the coordinated action between biofilm formation and the multiple biocontrol mechanisms of B. pumilus HR10 but also improve the understanding of the regulatory pathway of biofilm formation by B. pumilus HR10.
Collapse
|
274
|
Wang M, Xue J, Ma J, Feng X, Ying H, Xu H. Streptomyces lydicus M01 Regulates Soil Microbial Community and Alleviates Foliar Disease Caused by Alternaria alternata on Cucumbers. Front Microbiol 2020; 11:942. [PMID: 32499771 PMCID: PMC7243425 DOI: 10.3389/fmicb.2020.00942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/20/2020] [Indexed: 01/22/2023] Open
Abstract
Due to the adverse effect on the environment caused by excessive use of chemical fertilizers, the development of sustainable agriculture attracts a growing demand of biological based fertilizers composed of living microorganisms. In this study, an Actinobacteria Streptomyces lydicus M01 was isolated from the rhizosphere soil of Pyrus calleryana. This strain effectively promoted the plant growth and suppressed a foliar disease caused by Alternaria alternata on cucumbers. S. lydicus M01 exhibited growth promoting characteristics such as phosphate solubilization, IAA secretion, siderophore and ACC deaminase production. Through Illumina sequencing of the 16S rRNA gene and ITS gene of the soil microbes, we found that the application of S. lydicus M01 altered the composition of the microbial community by promoting beneficial groups, including bacteria genera Pseudarthrobacter, Sphingomonas, Rhodanobacter, and Pseudomonas, fungi genera Fusicolla, Humicola, Solicoccozyma, and Paraphaeosphaeria. Most of these bacteria and eukaryotes exhibit positive effects on growth promotion, such as nutrient accumulation, auxin secretion, abiotic stress alleviation, biological control, or bioremediation. Furthermore, studies on the reactive oxygen species (ROS) level and antioxidants of cucumber leaves revealed that S. lydicus M01 treatment reduced the ROS accumulation and increased the activities of antioxidases related with ROS scavenging, which indicated an enhanced disease resistance of cucumbers under biotic stress. Thus, our results suggest that the application of S. lydicus M01 can systemically affect plant microbiome interactions and represent a promising sustainable solution to improve agricultural production instead of chemical fertilizers.
Collapse
Affiliation(s)
- Mingxuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Jian Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Junjie Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
275
|
Metabolic Profiling of PGPR-Treated Tomato Plants Reveal Priming-Related Adaptations of Secondary Metabolites and Aromatic Amino Acids. Metabolites 2020; 10:metabo10050210. [PMID: 32443694 PMCID: PMC7281251 DOI: 10.3390/metabo10050210] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Plant growth–promoting rhizobacteria (PGPR) are beneficial microbes in the rhizosphere that can directly or indirectly stimulate plant growth. In addition, some can prime plants for enhanced defense against a broad range of pathogens and insect herbivores. In this study, four PGPR strains (Pseudomonas fluorescens N04, P. koreensis N19, Paenibacillus alvei T19, and Lysinibacillus sphaericus T22) were used to induce priming in Solanum lycopersicum (cv. Moneymaker) plants. Plants were inoculated with each of the four PGPRs, and plant tissues (roots, stems, and leaves) were harvested at 24 h and 48 h post-inoculation. Methanol-extracted metabolites were analyzed by ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS). Chemometric methods were applied to mine the data and characterize the differential metabolic profiles induced by the PGPR. The results revealed that all four strains induced defense-related metabolic reprogramming in the plants, characterized by dynamic changes to the metabolomes involving hydroxycinnamates, benzoates, flavonoids, and glycoalkaloids. In addition, targeted analysis of aromatic amino acids indicated differential quantitative increases or decreases over a two-day period in response to the four PGPR strains. The metabolic alterations point to an altered or preconditioned state that renders the plants primed for enhanced defense responses. The results contribute to ongoing efforts in investigating and unraveling the biochemical processes that define the PGPR priming phenomenon.
Collapse
|
276
|
Lankau EW, Xue D, Christensen R, Gevens AJ, Lankau RA. Management and Soil Conditions Influence Common Scab Severity on Potato Tubers Via Indirect Effects on Soil Microbial Communities. PHYTOPATHOLOGY 2020; 110:1049-1055. [PMID: 31939718 DOI: 10.1094/phyto-06-19-0223-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Common scab, caused by Streptomyces scabies and related species, is a potato tuber blemish disease that causes reductions in marketable yield worldwide. Evidence of suppression of common scab by indigenous soil microbial populations has been found in several studies. However, we lack a comprehensive understanding of how common scab severity relates functionally to potato varieties, farming systems, soil physical and chemical properties, and soil microbial communities. These factors may affect disease directly or indirectly by affecting one of the other variables. We performed a survey of 30 sampling locations across 12 fields in Wisconsin and used structural equation modeling to disentangle the direct effects of potato market classes, farm management (conventional versus organic), and soil physiochemical properties on common scab severity from their indirect effects mediated through soil bacterial and fungal communities. We found that, although potato market classes affected disease severity directly, the effects of farm management and soil physiochemistry were best explained as indirect, mediated by their impacts on soil bacterial communities. This suggests that evaluating the consequences of specific management practices for soil microbial communities may be useful for understanding disease pressure across fields.
Collapse
Affiliation(s)
- Emily W Lankau
- Department of Animal Sciences, University of Wisconsin, Madison, WI
- Department of Plant Pathology, University of Wisconsin, Madison, WI
| | - Dianne Xue
- Department of Plant Pathology, University of Wisconsin, Madison, WI
| | | | - Amanda J Gevens
- Department of Plant Pathology, University of Wisconsin, Madison, WI
| | - Richard A Lankau
- Department of Plant Pathology, University of Wisconsin, Madison, WI
| |
Collapse
|
277
|
Lau ET, Khew CY, Hwang SS. Transcriptomic analysis of pepper plants provides insights into host responses to Fusarium solani infestation. J Biotechnol 2020; 314-315:53-62. [PMID: 32302654 DOI: 10.1016/j.jbiotec.2020.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/09/2023]
Abstract
Black pepper is an important commodity crop in Malaysia that generates millions of annual revenue for the country. However, black pepper yield is affected by slow decline disease caused by a soil-borne fungus Fusarium solani. RNA sequencing transcriptomics approach has been employed in this study to explore the differential gene expression in susceptible Piper nigrum L. and resistant Piper colubrinum Link. Gene expression comparative analysis of the two pepper species has yielded 2,361 differentially expressed genes (DEGs). Among them, higher expression of 1,426 DEGs was detected in resistant plant. These DEGs practically demonstrated the major branches of plant-pathogen interaction pathway (Path: ko04626). We selected five groups of defence-related DEGs for downstream qRT-PCR analysis. Cf-9, the gene responsible for recognizing fungal avirulence protein activity was found inexpressible in susceptible plant. However, this gene exhibited promising expression in resistant plant. Inactivation of Cf-9 could be the factor that causes susceptible plant fail in recognition of F. solani and subsequently delay activation of adaptive response to fungal invasion. This vital study advance the understanding of pepper plant defence in response to F. solani and aid in identifying potential solution to manage slow decline disease in black pepper cultivation.
Collapse
Affiliation(s)
- Ee Tiing Lau
- Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia.
| | - Choy Yuen Khew
- Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia
| | - Siaw San Hwang
- School of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| |
Collapse
|
278
|
Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS One 2020; 15:e0231426. [PMID: 32271848 PMCID: PMC7145150 DOI: 10.1371/journal.pone.0231426] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
Demand for agricultural crop continues to escalate in response to increasing population and damage of prime cropland for cultivation. Research interest is diverted to utilize soils with marginal plant production. Moisture stress has negative impact on crop growth and productivity. The plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGR) are vital for plant developmental process under moisture stress. The current study was carried out to investigate the effect of PGPR and PGRs (Salicylic acid and Putrescine) on the physiological activities of chickpea grown in sandy soil. The bacterial isolates were characterized based on biochemical characters including Gram-staining, P-solubilisation, antibacterial and antifungal activities and catalases and oxidases activities and were also screened for the production of indole-3-acetic acid (IAA), hydrogen cyanide (HCN) and ammonia (NH3). The bacterial strains were identified as Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium based on the results of 16S-rRNA gene sequencing. Chickpea seeds of two varieties (Punjab Noor-2009 and 93127) differing in sensitivity to drought were soaked for 3 h before sowing in fresh grown cultures of isolates. Both the PGRs were applied (150 mg/L), as foliar spray on 20 days old seedlings of chickpea. Moisture stress significantly reduced the physiological parameters but the inoculation of PGPR and PGR treatment effectively ameliorated the adverse effects of moisture stress. The result showed that chickpea plants treated with PGPR and PGR significantly enhanced the chlorophyll, protein and sugar contents. Shoot and root fresh (81%) and dry weights (77%) were also enhanced significantly in the treated plants. Leaf proline content, lipid peroxidation and antioxidant enzymes (CAT, APOX, POD and SOD) were increased in reaction to drought stress but decreased due to PGPR. The plant height (61%), grain weight (41%), number of nodules (78%) and pod (88%), plant yield (76%), pod weight (53%) and total biomass (54%) were higher in PGPR and PGR treated chickpea plants grown in sandy soil. It is concluded from the present study that the integrative use of PGPR and PGRs is a promising method and eco-friendly strategy for increasing drought tolerance in crop plants.
Collapse
|
279
|
Mathew BT, Torky Y, Amin A, Mourad AHI, Ayyash MM, El-Keblawy A, Hilal-Alnaqbi A, AbuQamar SF, El-Tarabily KA. Halotolerant Marine Rhizosphere-Competent Actinobacteria Promote Salicornia bigelovii Growth and Seed Production Using Seawater Irrigation. Front Microbiol 2020; 11:552. [PMID: 32308651 PMCID: PMC7145952 DOI: 10.3389/fmicb.2020.00552] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Salicornia bigelovii is a promising halophytic cash crop that grows in seawater of the intertidal zone of the west-north coast of the UAE. This study assess plant growth promoting (PGP) capabilities of halotolerant actinobacteria isolated from rhizosphere of S. bigelovii to be used as biological inoculants on seawater-irrigated S. bigelovii plants. Under laboratory conditions, a total of 39 actinobacterial strains were isolated, of which 22 were tolerant to high salinity (up to 8% w/v NaCl). These strains were further screened for their abilities to colonize S. bigelovii roots in vitro; the most promising ones that produced indole-3-acetic acid, polyamines (PA) or 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) were selected for rhizosphere-competency under naturally competitive environment. Three outstanding rhizosphere-competent isolates, Streptomyces chartreusis (Sc), S. tritolerans (St), and S. rochei (Sr) producing auxins, PA and ACCD, respectively, were investigated individually and as consortium (Sc/St/Sr) to determine their effects on the performance of S. bigelovii in the greenhouse. Individual applications of strains on seawater-irrigated plants significantly enhanced shoot and root dry biomass by 32.3-56.5% and 42.3-71.9%, respectively, in comparison to non-inoculated plants (control). In addition, plants individually treated with Sc, St and Sr resulted in 46.1, 60.0, and 69.1% increase in seed yield, respectively, when compared to control plants. Thus, the synergetic combination of strains had greater effects on S. bigelovii biomass (62.2 and 77.9% increase in shoot and root dry biomass, respectively) and seed yield (79.7% increase), compared to the control treatment. Our results also showed significant (P < 0.05) increases in the levels of photosynthetic pigments, endogenous auxins and PA, but a reduction in the levels of ACC in tissues of plants inoculated with Sc/St/Sr. We conclude that the consortium of isolates was the most effective treatment on S. bigelovii growth; thus confirmed by principal component and correlation analyses. To this best of our knowledge, this is the first report about halotolerant rhizosphere-competent PGP actinobacteria thriving in saline soils that can potentially contribute to promoting growth and increasing yield of S. bigelovii. These halotolerant actinobacterial strains could potentially be exploited as biofertilizers to sustain crop production in arid coastal areas.
Collapse
Affiliation(s)
- Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yaser Torky
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Abdel-Hamid I. Mourad
- Department of Mechanical Engineering, College of Engineering, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mutamed M. Ayyash
- Department of Food, Nutrition and Health Sciences, College of Food and Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
280
|
Yang X, Chen X, Song Z, Zhang X, Zhang J, Mei S. Antifungal, plant growth-promoting, and mycotoxin detoxication activities of Burkholderia sp. strain XHY-12. 3 Biotech 2020; 10:158. [PMID: 32181120 PMCID: PMC7056774 DOI: 10.1007/s13205-020-2112-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/02/2020] [Indexed: 01/16/2023] Open
Abstract
A bacterial strain named XHY-12 was isolated from corn soil samples and identified as Burkholderia sp. based on 16S rDNA sequencing, it displayed high antagonistic activity against 12 fungal pathogens and the common fungal contaminant in grain Aspergillus flavus. Plate experiment showed that XHY-12 fermentation broth reduced the incidence of S. sclerotiorum on detached rape leaves (Brassica campestris L.) by 100%, and a greenhouse experiment showed that it could promote the growth of rape seedlings with significant increases in plant height, root length, and fresh weight. Furthermore, a novel funding was the reduction of aflatoxin B1 and B2 by over 85% in 60 h, and the decomposition enzymes should be extracellular. The results suggest that XHY-12 has a potential for commercial applications as biocontrol, mycotoxin detoxification agent or biofertilizer.
Collapse
Affiliation(s)
- Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348# of West Road of Xianjia Lake, Changsha City, Hunan Province China
| | - Xiaojun Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348# of West Road of Xianjia Lake, Changsha City, Hunan Province China
| | - Zhiqiang Song
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348# of West Road of Xianjia Lake, Changsha City, Hunan Province China
| | - Xiaowei Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348# of West Road of Xianjia Lake, Changsha City, Hunan Province China
| | - Jifang Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348# of West Road of Xianjia Lake, Changsha City, Hunan Province China
| | - Shiyong Mei
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348# of West Road of Xianjia Lake, Changsha City, Hunan Province China
| |
Collapse
|
281
|
Backes A, Hausman JF, Renaut J, Ait Barka E, Jacquard C, Guerriero G. Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres. Genes (Basel) 2020; 11:E300. [PMID: 32178281 PMCID: PMC7140844 DOI: 10.3390/genes11030300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 02/05/2023] Open
Abstract
Drechslera teres (D. teres) is an ascomycete, responsible for net blotch, the most serious barley disease causing an important economic impact. The cell wall is a crucial structure for the growth and development of fungi. Thus, understanding cell wall structure, composition and biosynthesis can help in designing new strategies for pest management. Despite the severity and economic impact of net blotch, this is the first study analyzing the cell wall-related genes in D. teres. We have identified key genes involved in the synthesis/remodeling of cell wall polysaccharides, namely chitin, β-(1,3)-glucan and mixed-linkage glucan synthases, as well as endo/exoglucanases and a mitogen-activated protein kinase. We have also analyzed the differential expression of these genes in D. teres spores and in the mycelium after cultivation on different media, as well as in the presence of Paraburkholderia phytofirmans strain PsJN, a plant growth-promoting bacterium (PGPB). The targeted gene expression analysis shows higher gene expression in the spores and in the mycelium with the application of PGPB. Besides analyzing key cell-wall-related genes, this study also identifies the most suitable reference genes to normalize qPCR results in D. teres, thus serving as a basis for future molecular studies on this ascomycete.
Collapse
Affiliation(s)
- Aurélie Backes
- Unité de Recherche Résistance Induite et Bio-protection des Plantes—EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse—Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France; (A.B.); (E.A.B.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4940 Hautcharage, Luxembourg; (J.-F.H.); (J.R.)
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4940 Hautcharage, Luxembourg; (J.-F.H.); (J.R.)
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-protection des Plantes—EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse—Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France; (A.B.); (E.A.B.)
| | - Cédric Jacquard
- Unité de Recherche Résistance Induite et Bio-protection des Plantes—EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse—Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France; (A.B.); (E.A.B.)
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4940 Hautcharage, Luxembourg; (J.-F.H.); (J.R.)
| |
Collapse
|
282
|
Kang SM, Asaf S, Khan AL, Lubna, Khan A, Mun BG, Khan MA, Gul H, Lee IJ. Complete Genome Sequence of Pseudomonas psychrotolerans CS51, a Plant Growth-Promoting Bacterium, Under Heavy Metal Stress Conditions. Microorganisms 2020; 8:E382. [PMID: 32182882 PMCID: PMC7142416 DOI: 10.3390/microorganisms8030382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/02/2022] Open
Abstract
In the current study, we aimed to elucidate the plant growth-promoting characteristics of Pseudomonas psychrotolerans CS51 under heavy metal stress conditions (Zn, Cu, and Cd) and determine the genetic makeup of the CS51 genome using the single-molecule real-time (SMRT) sequencing technology of Pacific Biosciences. The results revealed that inoculation with CS51 induced endogenous indole-3-acetic acid (IAA) and gibberellins (GAs), which significantly enhanced cucumber growth (root shoot length) and increased the heavy metal tolerance of cucumber plants. Moreover, genomic analysis revealed that the CS51 genome consisted of a circular chromosome of 5,364,174 base pairs with an average G+C content of 64.71%. There were around 4774 predicted protein-coding sequences (CDSs) in 4859 genes, 15 rRNA genes, and 67 tRNA genes. Around 3950 protein-coding genes with function prediction and 733 genes without function prediction were identified. Furthermore, functional analyses predicted that the CS51 genome could encode genes required for auxin biosynthesis, nitrate and nitrite ammonification, the phosphate-specific transport system, and the sulfate transport system, which are beneficial for plant growth promotion. The heavy metal resistance of CS51 was confirmed by the presence of genes responsible for cobalt-zinc-cadmium resistance, nickel transport, and copper homeostasis in the CS51 genome. The extrapolation of the curve showed that the core genome contained a minimum of 2122 genes (95% confidence interval = 2034.24 to 2080.215). Our findings indicated that the genome sequence of CS51 may be used as an eco-friendly bioresource to promote plant growth in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (A.L.K.); (A.K.)
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (A.L.K.); (A.K.)
| | - Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (L.); (H.G.)
| | - Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (A.L.K.); (A.K.)
| | - Bong-Gyu Mun
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| | - Humaira Gul
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (L.); (H.G.)
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| |
Collapse
|
283
|
Whole Genome Sequencing and Comparative Genomics of Two Nematicidal Bacillus Strains Reveals a Wide Range of Possible Virulence Factors. G3-GENES GENOMES GENETICS 2020; 10:881-890. [PMID: 31919110 PMCID: PMC7056983 DOI: 10.1534/g3.119.400716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacillus firmus nematicidal bacterial strains are used to control plant parasitic nematode infestation of crops in agricultural production. Proteases are presumed to be the primary nematode virulence factors in nematicidal B. firmus degrading the nematode cuticle and other organs. We determined and compared the whole genome sequences of two nematicidal strains. Comparative genomics with a particular focus on possible virulence determinants revealed a wider range of possible virulence factors in a B. firmus isolate from a commercial bionematicide and a wild type Bacillus sp. isolate with nematicidal activity. The resulting 4.6 Mb B. firmus I-1582 and 5.3 Mb Bacillus sp. ZZV12-4809 genome assemblies contain respectively 18 and 19 homologs to nematode-virulent proteases, two nematode-virulent chitinase homologs in ZZV12-4809 and 28 and 36 secondary metabolite biosynthetic clusters, projected to encode antibiotics, small peptides, toxins and siderophores. The results of this study point to the genetic capability of B. firmus and related species for nematode virulence through a range of direct and indirect mechanisms.
Collapse
|
284
|
Isolation and Characterization of Plant Growth-Promoting Endophytic Bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8650957. [PMID: 32190683 PMCID: PMC7064867 DOI: 10.1155/2020/8650957] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022]
Abstract
Paenibacillus polymyxa is a plant growth-promoting rhizobacterium that has immense potential to be used as an environmentally friendly replacement of chemical fertilizers and pesticides. In the present study, Paenibacillus polymyxa SK1 was isolated from bulbs of Lilium lancifolium. The isolated endophytic strain showed antifungal activities against important plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea, and Fusarium fujikuroi. The highest percentage of growth inhibition, i.e., 66.67 ± 2.23%, was observed for SK1 against Botryosphaeria dothidea followed by 61.19 ± 3.12%, 60.71 ± 3.53%, and 55.54 ± 2.89% against Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum, respectively. The metabolite profiling of ethyl acetate fraction was assessed through the UHPLC-LTQ-IT-MS/MS analysis, and putative identification was done with the aid of the GNPS molecular networking workflow. A total of 29 compounds were putatively identified which included dipeptides, tripeptides, cyclopeptides (cyclo-(Leu-Leu), cyclo(Pro-Phe)), 2-heptyl-3-hydroxy 4-quinolone, 6-oxocativic acid, anhydrobrazilic acid, 1-(5-methoxy-1H-indol-3-yl)-2-piperidin-1-ylethane-1,2-dione, octadecenoic acid, pyochelin, 15-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid, (Z)-7-[(2R,3S)-3-[(2Z,5E)-Undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoic acid, arginylasparagine, cholic acid, sphinganine, elaidic acid, gossypin, L-carnosine, tetrodotoxin, and ursodiol. The high antifungal activity of SK1 might be attributed to the presence of these bioactive compounds. The isolated strain SK1 showed plant growth-promoting traits such as the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, nitrogen fixation, and phosphate solubilization. IAA production was strongly correlated with the application of exogenous tryptophan concentrations in the medium. Furthermore, inoculation of SK1 enhanced plant growth of two Lilium varieties, Tresor and White Heaven, under greenhouse condition. In the light of these findings, the P. polymyxa SK1 may be utilized as a source of plant growth promotion and disease control in sustainable agriculture.
Collapse
|
285
|
Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback. Microbiol Res 2020; 235:126440. [PMID: 32109690 DOI: 10.1016/j.micres.2020.126440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/09/2019] [Accepted: 02/15/2020] [Indexed: 11/23/2022]
Abstract
Although the use of crop-associated bacteria as biological control agents of fungal diseases has gained increasing interest, the biotechnological potential of forest tree-associated microbes and their natural products has scarcely been investigated. The objective of this study was to identify bacteria or bacterial products with antagonistic activity against Fusarium solani and Fusarium kuroshium, causal agent of Fusarium dieback, by screening the rhizosphere and phyllosphere of three Lauraceae species. From 195 bacterial isolates, we identified 32 isolates that significantly reduced the growth of F. solani in vitro, which mostly belonged to bacterial taxa Bacillus, Pseudomonas and Actinobacteria. The antifungal activity of their volatile organic compounds (VOCs) was also evaluated. Bacterial strain Bacillus sp. CCeRi1-002, recovered from the rhizosphere of Aiouea effusa, showed the highest percentage of direct inhibition (62.5 %) of F. solani and produced diffusible compounds that significantly reduced its mycelial growth. HPLC-MS analyses on this strain allowed to tentatively identify bioactive compounds from three lipopeptide groups (iturin, surfactin and fengycin). Bacillus sp. CCeRi1-002 and another strain identified as Pseudomonas sp. significantly inhibited F. solani mycelial growth through the emission of VOCs. Chemical analysis of their volatile profiles indicated the likely presence of 2-nonanone, 2-undecanone, disulfide dimethyl and 1-butanol 3-methyl-, which had been previously reported with antifungal activity. In antagonism assays against F. kuroshium, Bacillus sp. CCeRi1-002 and its diffusible compounds exhibited significant antifungal activity and induced hyphal deformations. Our findings highlight the importance of considering bacteria associated with forest species and the need to include bacterial products in the search for potential antagonists of Fusarium dieback.
Collapse
|
286
|
Abdelshafy Mohamad OA, Ma JB, Liu YH, Zhang D, Hua S, Bhute S, Hedlund BP, Li WJ, Li L. Beneficial Endophytic Bacterial Populations Associated With Medicinal Plant Thymus vulgaris Alleviate Salt Stress and Confer Resistance to Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2020; 11:47. [PMID: 32117385 PMCID: PMC7033553 DOI: 10.3389/fpls.2020.00047] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
As a result of climate change, salinity has become a major abiotic stress that reduces plant growth and crop productivity worldwide. A variety of endophytic bacteria alleviate salt stress; however, their ecology and biotechnological potential has not been fully realized. To address this gap, a collection of 117 endophytic bacteria were isolated from wild populations of the herb Thymus vulgaris in Sheikh Zuweid and Rafah of North Sinai Province, Egypt, and identified based on their 16S rRNA gene sequences. The endophytes were highly diverse, including 17 genera and 30 species. The number of bacterial species obtained from root tissues was higher (n = 18) compared to stem (n = 14) and leaf (n = 11) tissue. The endophytic bacteria exhibited several plant growth-promoting activities in vitro, including auxin synthesis, diazotrophy, phosphate solubilization, siderophore production, and production of lytic enzymes (i.e., chitinase, cellulase, protease, and lipase). Three endophytes representing Bacillus species associated with T. vulgaris such as EGY05, EGY21, and EGY25 were selected based on their ex-situ activities for growth chamber assays to test for their ability to promote the growth of tomato (Solanum lycopersicum L.) under various NaCl concentrations (50-200 mM). All three strains significantly (P < 0.05) promoted the growth of tomato plants under salt stress, compared to uninoculated controls. In addition, inoculated tomato plants by all tested strains decreased (P < 0.05) the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase). Six strains, representing Bacillus and Enterobacter species EGY01, EGY05, EGY16, EGY21, EGY25, and EGY31 were selected based on in vitro antagonistic activity to F. oxysporum for pot experiments under salt stress. All tested strains reduced the disease severity index (DSI) of tomato plants at all tested salt concentrations. Gas-chromatography/mass-spectrometry analysis of cell-free extracts of B. subtilis (EGY16) showed at least ten compounds were known to have antimicrobial activity, with the major peaks being benzene, 1,3-dimethyl-, p-xylene, dibutyl phthalate, bis (2-ethylhexyl) phthalate, and tetracosane. This study demonstrates that diverse endophytes grow in wild thyme populations and that some are able to alleviate salinity stress and inhibit F. oxysporum pathogenesis, making them promising candidates for biofertilizers and biocontrol agents.
Collapse
Affiliation(s)
- Osama Abdalla Abdelshafy Mohamad
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
- Department of Biological, Marine Sciences, and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Al-Arish, Egypt
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish, Egypt
| | - Jin-Biao Ma
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Yong-Hong Liu
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Daoyuan Zhang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Shao Hua
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Shrikant Bhute
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish, Egypt
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Wen-Jun Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Li Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| |
Collapse
|
287
|
Grossi CEM, Fantino E, Serral F, Zawoznik MS, Fernandez Do Porto DA, Ulloa RM. Methylobacterium sp. 2A Is a Plant Growth-Promoting Rhizobacteria That Has the Potential to Improve Potato Crop Yield Under Adverse Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:71. [PMID: 32127795 PMCID: PMC7038796 DOI: 10.3389/fpls.2020.00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/17/2020] [Indexed: 05/11/2023]
Abstract
A Gram-negative pink-pigmented bacillus (named 2A) was isolated from Solanum tuberosum L. cv. Desirée plants that were strikingly more developed, presented increased root hair density, and higher biomass than other potato lines of the same age. The 16S ribosomal DNA sequence, used for comparative gene sequence analysis, indicated that strain 2A belongs to the genus Methylobacterium. Nucleotide identity between Methylobacterium sp. 2A sequenced genome and the rest of the species that belong to the genus suggested that this species has not been described so far. In vitro, potato plants inoculated with Methylobacterium sp. 2A had a better performance when grown under 50 mM NaCl or when infected with Phytophthora infestans. We inoculated Methylobacterium sp. 2A in Arabidopsis thaliana roots and exposed these plants to salt stress (75 mM NaCl). Methylobacterium sp. 2A-inoculated plants, grown in control or salt stress conditions, displayed a higher density of lateral roots (p < 0.05) compared to noninoculated plants. Moreover, under salt stress, they presented a higher number of leaves and larger rosette diameter. In dual confrontation assays, Methylobacterium sp. 2A displayed biocontrol activity against P. infestans, Botrytis cinerea, and Fusarium graminearum, but not against Rhizoctonia solani, and Pythium dissotocum. In addition, we observed that Methylobacterium sp. 2A diminished the size of necrotic lesions and reduced chlorosis when greenhouse potato plants were infected with P. infestans. Methylobacterium sp. 2A produces indole acetic acid, solubilizes mineral phosphate and is able to grow in a N2 free medium. Whole-genome sequencing revealed metabolic pathways associated with its plant growth promoter capacity. Our results suggest that Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria (PGPR) that can alleviate salt stress, and restricts P. infestans infection in potato plants, emerging as a potential strategy to improve crop management.
Collapse
Affiliation(s)
- Cecilia Eugenia María Grossi
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Elisa Fantino
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Serral
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Myriam Sara Zawoznik
- Cátedra de Química Biológica Vegetal, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Darío Augusto Fernandez Do Porto
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rita María Ulloa
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
288
|
Karthika S, Midhun SJ, Jisha MS. A potential antifungal and growth-promoting bacterium Bacillus sp. KTMA4 from tomato rhizosphere. Microb Pathog 2020; 142:104049. [PMID: 32045643 DOI: 10.1016/j.micpath.2020.104049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
Plant growth-promoting rhizobacteria are indigenous beneficial bacteria that will enhance plant growth as well as suppress phytopathogens. In the present study, the isolate KTMA4 showed the highest inhibition against major phytopathogens of tomato; Fusarium oxysporum (66%) and Alternaria solani (54%) after seven days of incubation. Analysis of the 16S rRNA gene sequence revealed that the isolate KTMA4 is Bacillus cereus (MG547975). The isolate produced in vitro plants growth-promoting factors such as Indole-3-acetic acid, ammonia, catalase, siderophore and 1-aminocyclopropane-1-carboxylate deaminase and it has nitrogen fixation ability. The bacterial strain has also produced lytic enzymes such as amylase, cellulase, xylanase, lipase, and protease. Moreover, the bacterium Bacillus cereus KTMA4 effectively produced biofilm, biosurfactants and salt-tolerant (5% NaCl). The bacterium exhibited intrinsic antibiotic resistance. The in vivo studies using tomato plants grown from seeds treated with the bacterial strain KTMA4 demonstrated an enhancement in seed germination percentage (86.66 ± 2.88) and vigour index (637.5 ± 21.65) over the uninoculated control (germination percentage- 28.33 ± 2.88 and vigour index- 42.5 ± 4.33). 60 days of greenhouse study revealed that the bacterial isolate enhanced the plant growth significantly (P ≤ 0.05) compared to the uninoculated control and the treated plants. Therefore the study suggests that the newly isolated rhizosphere bacterial strain can be used as a potential biocontrol agent against a multitude of fungal pathogens as well as a biofertilizer inoculant for tomato cultivation.
Collapse
Affiliation(s)
- S Karthika
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | | | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
289
|
Yazid SNE, Jinap S, Ismail SI, Magan N, Samsudin NIP. Phytopathogenic organisms and mycotoxigenic fungi: Why do we control one and neglect the other? A biological control perspective in Malaysia. Compr Rev Food Sci Food Saf 2020; 19:643-669. [DOI: 10.1111/1541-4337.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Siti Nur Ezzati Yazid
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
| | - Selamat Jinap
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| | - Siti Izera Ismail
- Laboratory of Climate‐Smart Food Crop ProductionInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Plant ProtectionFaculty of AgricultureUniversiti Putra Malaysia Serdang Malaysia
| | - Naresh Magan
- Applied Mycology GroupCranfield Soil and AgriFood InstituteCranfield University Cranfield UK
| | - Nik Iskandar Putra Samsudin
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
290
|
Kyrychenko ОV. SYMBIOTIC PRODUCTIVITY OF PHYTO-BACTERIAL SYSTEMS UNDER THE ACTION OF N-ACETYL-D-GLUCOSAMINE ON DIAZOTROPHIC MICROORGANISMS. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
291
|
Zhang X, Su C, Liu X, Liu Z, Liang X, Zhang Y, Feng Y. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. CHEMOSPHERE 2020; 241:125027. [PMID: 31606002 DOI: 10.1016/j.chemosphere.2019.125027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate whether the plant-growth-promoting rhizobacteria (PGPR) could enhance phytoremediation efficiency of Scirpus triqueter (S.triqueter) in the pyrene-Ni co-contaminated soil. We also expected to reveal the possible mechanism for the affected phytoremediation efficiency induced by PGPR. We used three kinds of contaminated soils (Ni-contaminated soil, pyrene-contaminated soil and pyrene-Ni co-contaminated soil) to conduct this pot study. After harvest, plants growth indicators, polyphenol oxidase (PPO) activity and soil microbial community structure of each treatment were investigated to explain the different dissipation rates of pyrene and removal rates of Ni between treatments with and without PGPR. The results showed that PGPR-inoculated S. triqueter increased dissipation rates of pyrene and removal rates of Ni in all three contaminated soils, among which Ni removal rates in Ni single contaminated soil was elevated most significantly, from 0.895‰ to 8.8‰, increasing nearly 9 folds. However, Ni removal rate efficiency in co-contaminated soil was weakened because more toxic and complicated co-contaminated soil restrained plant growth and Ni absorption. We also observed that co-contamination harmed the soil microbial community more severely than that in single pyrene or Ni contaminated soil through phospholipid fatty acids analysis. Furthermore, dissipation rates of pyrene and removal rates of Ni were found positively correlated to the PPO activity and the abundance of branched and saturated fatty acids reflected by Pearson correlation analysis.
Collapse
Affiliation(s)
- Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Chang Su
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Zhenguo Liu
- College of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xia Liang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yanming Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuwei Feng
- College of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
292
|
Towards a Sustainable Agriculture: Strategies Involving Phytoprotectants against Salt Stress. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Salinity is one of the main constraints for agriculture productivity worldwide. This important abiotic stress has worsened in the last 20 years due to the increase in water demands in arid and semi-arid areas. In this context, increasing tolerance of crop plants to salt stress is needed to guarantee future food supply to a growing population. This review compiles knowledge on the use of phytoprotectants of microbial origin (arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria), osmoprotectants, melatonin, phytohormones and antioxidant metabolism-related compounds as alleviators of salt stress in numerous plant species. Phytoprotectants are discussed in detail, including their nature, applicability, and role in the plant in terms of physiological and phenotype effects. As a result, increased crop yield and crop quality can be achieved, which in turn positively impact food security. Herein, efforts from academic and industrial sectors should focus on defining the treatment conditions and plant-phytoprotectant associations providing higher benefits.
Collapse
|
293
|
Ali S, Hameed S, Shahid M, Iqbal M, Lazarovits G, Imran A. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol Res 2020; 232:126389. [DOI: 10.1016/j.micres.2019.126389] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/21/2019] [Accepted: 11/29/2019] [Indexed: 02/03/2023]
|
294
|
Gupta P, Kumar V, Usmani Z, Rani R, Chandra A, Gupta VK. Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. CHEMOSPHERE 2020; 240:124944. [PMID: 31726591 DOI: 10.1016/j.chemosphere.2019.124944] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 05/27/2023]
Abstract
The present study explores the potential of two chromium tolerant and plant growth promoting bacterial strains, Klebsiella sp. and Enterobacter sp. in luxuriant growth of tomato plants under chromium stress conditions. For the assessment of potentiality of the two selected strains, a pot scale experiment was setup with tomato plant under different levels of chromium contamination. In pot experiment, different plant growth parameters, oxidative stress tolerance and chromium bioremediation potential were studied upon inoculation of the selected bacterial strains. The results of pot experiment showed that both the strains were effective in promotion of plant growth and enhanced the plant biomass but Enterobacter sp. was more prominent in enhancement of root length, shoot length, fresh and dry weight, and nutrient uptake in tomato plant. The enhancement of enzymes to combat oxidative stress in tomato plant under chromium stress was also observed for both the strains. Both strains enhanced the levels of superoxide dismutase, catalase, peroxidase, total phenolic, and ascorbic acid in tomato plant under different levels of chromium stress conditions. The chromium phytoremediation potential of tomato plant upon inoculation of both the strains was also studied. The results of phytoremediation showed greater chromium accumulation in roots with poor translocation in shoot upon inoculation of Klebsiella sp. while no significant enhancement in chromium uptake by tomato plant was observed on inoculation of Enterobacter sp. compared to control. Thus, these two strains can effectively be used in luxuriant growth of tomato plant under metal stress conditions.
Collapse
Affiliation(s)
- Pratishtha Gupta
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Vipin Kumar
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India.
| | - Zeba Usmani
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Rupa Rani
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Avantika Chandra
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Vijai Kumar Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
295
|
Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int J Mol Sci 2020; 21:ijms21030963. [PMID: 32024003 PMCID: PMC7037962 DOI: 10.3390/ijms21030963] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs), microbe-associated molecular patterns (MAMPs), herbivore-associated molecular patterns (HAMPs), and damage-associated molecular patterns (DAMPs) are molecules produced by microorganisms and insects in the event of infection, microbial priming, and insect predation. These molecules are then recognized by receptor molecules on or within the plant, which activates the defense signaling pathways, resulting in plant’s ability to overcome pathogenic invasion, induce systemic resistance, and protect against insect predation and damage. These small molecular motifs are conserved in all organisms. Fungi, bacteria, and insects have their own specific molecular patterns that induce defenses in plants. Most of the molecular patterns are either present as part of the pathogen’s structure or exudates (in bacteria and fungi), or insect saliva and honeydew. Since biotic stresses such as pathogens and insects can impair crop yield and production, understanding the interaction between these organisms and the host via the elicitor–receptor interaction is essential to equip us with the knowledge necessary to design durable resistance in plants. In addition, it is also important to look into the role played by beneficial microbes and synthetic elicitors in activating plants’ defense and protection against disease and predation. This review addresses receptors, elicitors, and the receptor–elicitor interactions where these components in fungi, bacteria, and insects will be elaborated, giving special emphasis to the molecules, responses, and mechanisms at play, variations between organisms where applicable, and applications and prospects.
Collapse
|
296
|
Polyak YM, Sukcharevich VI. Allelopathic Interactions between Plants and Microorganisms in Soil Ecosystems. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086419060033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
297
|
Wang C, Zhao D, Qi G, Mao Z, Hu X, Du B, Liu K, Ding Y. Effects of Bacillus velezensis FKM10 for Promoting the Growth of Malus hupehensis Rehd. and Inhibiting Fusarium verticillioides. Front Microbiol 2020; 10:2889. [PMID: 31998247 PMCID: PMC6965166 DOI: 10.3389/fmicb.2019.02889] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/02/2019] [Indexed: 11/26/2022] Open
Abstract
Bacillus velezensis is a novel species of Bacillus that has been widely investigated and used because of its direct or indirect growth improvement effect for many plants. B. velezensis FKM10 was previously isolated from rhizosphere soil of apple trees and shows potential as a plant growth-promoting and biocontrol bacterium. In this study, strain FKM10 was verified to inhibit some fungal pathogens of soil-borne plant diseases, produce siderophores to absorb ferric iron for plants, and degrade proteins. Pot experiments showed that the application of strain FKM10 could directly promote the growth of Malus hupehensis Rehd. by increasing biomass, promoting the absorption of nutrients, improving soil fertility, changing the soil microbial community structure, and reducing fungal diversity. The results of this study provided a basis for using strain FKM10 to improve crop yield and overcome diseases of plants. The mechanism of strain FKM10 to control the phytopathogenic fungus Fusarium verticillioides was studied by interoperation with RNA sequencing. Strain FKM10 can destroy the cell wall and cell membrane of F. verticillioides. The secretion of glucosidases, such as β-glucanase, might be one of the causes of the destruction of the fungal cell wall. The regulation of amino acid metabolism might also play an important role in the antibacterial process of strain FKM10. During the antibacterial process, strain FKM10 attacks F. verticillioides and strain FKM10 itself is also affected: the expression of spores is increased, the number of viable cells is decreased, and the ribonucleoprotein complex and flagellar assembly-related genes are downregulated. The results of this study indicate that both strain FKM10 and F. verticillioides have mutually inhibitory activities in a liquid environment. Comparative genome analysis of B. velezensis FKM10 reveals that the general features of their genomes are similar overall and contain the core genome for this species. The results of this study further reveal that B. velezensis can also serve as a basis for developing new biocontrol agents or microbial fertilizers.
Collapse
Affiliation(s)
- Chengqiang Wang
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Dongying Zhao
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Guozhen Qi
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhiquan Mao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiuna Hu
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Binghai Du
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Kai Liu
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yanqin Ding
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
298
|
Effects of Endophytic Bacillus Subtilis and Salicylic Acid on Postharvest Diseases ( Phytophthora infestans, Fusarium oxysporum) Development in Stored Potato Tubers. PLANTS 2020; 9:plants9010076. [PMID: 31936027 PMCID: PMC7020475 DOI: 10.3390/plants9010076] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 11/28/2022]
Abstract
Postharvest diseases of potato lead to significant food and economic losses worldwide. The exogenous application of eco-friendly methods plays an important role in the control of postharvest decay. In this work the effects of endophytic bacteria B. subtilis (10-4, 26D) were studied in the context of two application parameters: concentration, with a range between 103–108 CFU/mL tested, and synergistic effects of the signal molecule salicylic acid (SA) (0.05 mM) on potato tubers’ resistance to Phytophthora infestans and Fusarium oxysporum during storage. The experiments were carried out on hydroponically grown potato (Solanum tuberosum L.) mini-tubers. This study demonstrates the suppressive effect of B. subtilis (10-4, 26D) on diseases of potato during storage and reveals that this effect happens in a dose-dependent manner, both individually and in combination with SA. The most effective concentrations of B. subtilis for suppression of both Ph.infestans and F. oxysporum are 108 CFU/mL (10-4 and 26D), 107 CFU/mL (10-4 + SA) and 106 CFU/mL (26D + SA). The ability of B. subtilis (10-4, 26D) to effectively penetrate and colonize the internal tubers’ tissues when applied immediately prior to storage, and the ability of SA to accelerate these processes, have been proven. B. subtilis (10-4, 26D), individually and in compositions with SA, increased ascorbic acid content and decreased pathogen-induced proline accumulation and lipid peroxidation in tubers. This indicates a protective effect conferred to cells against reactive oxygen and an extension of aging processes, manifested by a prolonged shelf life and extended preservation of fresh appearance.
Collapse
|
299
|
Ibrahim M, Ahmad F, Nawaz H, Aslam M, Shad MA. Studies on correlations between soil chemistry and bacterial population in rhizosphere of Bt and non-Bt cotton and characterization of rhizobacteria. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1826177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muhammad Ibrahim
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Fiaz Ahmad
- Department of Plant Physiology/Chemistry, Central Cotton Research Institute, Multan, Pakistan
| | - Haq Nawaz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Aslam
- Department of Pathology, Quaid-e-Azam Medical College, Bahawalpur, Pakistan
| | | |
Collapse
|
300
|
Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN. Diversity, Plant Growth Promoting Attributes, and Agricultural Applications of Rhizospheric Microbes. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2020. [DOI: 10.1007/978-3-030-38453-1_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|