251
|
Brugger D, Windisch WM. Environmental responsibilities of livestock feeding using trace mineral supplements. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2015; 1:113-118. [PMID: 29767146 PMCID: PMC5945946 DOI: 10.1016/j.aninu.2015.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 11/18/2022]
Abstract
Trace elements are essential dietary components for livestock species. However, they also exhibit a strong toxic potential. Therefore, their fluxes through the animal organism are tightly regulated by a complex molecular machinery that controls the rate of absorption from the gut lumen as well as the amount of excretion via faeces, urine and products (e.g., milk) in order to maintain an internal equilibrium. When supplemented in doses above the gross requirement trace elements accumulate in urine and faeces and, hence, manure. Thereby, trace element emissions represent a potential threat to the environment. This fact is of particular importance in regard to the widely distributed feeding practice of pharmacological zinc and copper doses for the purpose of performance enhancement. Adverse environmental effects have been described, like impairment of plant production, accumulation in edible animal products and the water supply chain as well as the correlation between increased trace element loads and antimicrobial resistance. In the light of discussions about reducing the allowed upper limits for trace element loads in feed and manure from livestock production in the European Union excessive dosing needs to be critically reconsidered. Moreover, the precision in trace element feeding has to be increased in order to avoid unnecessary supplementation and, thereby, heavy metal emissions from livestock production.
Collapse
Affiliation(s)
- Daniel Brugger
- Chair of Animal Nutrition, TUM School of Life Sciences, Technical University of Munich (TUM), Freising 85354, Germany
| | | |
Collapse
|
252
|
Malloci G, Vargiu AV, Serra G, Bosin A, Ruggerone P, Ceccarelli M. A Database of Force-Field Parameters, Dynamics, and Properties of Antimicrobial Compounds. Molecules 2015; 20:13997-4021. [PMID: 26247924 PMCID: PMC6332394 DOI: 10.3390/molecules200813997] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/28/2015] [Indexed: 02/01/2023] Open
Abstract
We present an on-line database of all-atom force-field parameters and molecular properties of compounds with antimicrobial activity (mostly antibiotics and some beta-lactamase inhibitors). For each compound, we provide the General Amber Force Field parameters for the major species at physiological pH, together with an analysis of properties of interest as extracted from µs-long molecular dynamics simulations in explicit water solution. The properties include number and population of structural clusters, molecular flexibility, hydrophobic and hydrophilic molecular surfaces, the statistics of intraand inter-molecular H-bonds, as well as structural and dynamical properties of solvent molecules within first and second solvation shells. In addition, the database contains several key molecular parameters, such as energy of the frontier molecular orbitals, vibrational properties, rotational constants, atomic partial charges and electric dipole moment, computed by Density Functional Theory. The present database (to our knowledge the first extensive one including dynamical properties) is part of a wider project aiming to build-up a database containing structural, physico-chemical and dynamical properties of medicinal compounds using different force-field parameters with increasing level of complexity and reliability. The database is freely accessible at http://www.dsf.unica.it/translocation/db/.
Collapse
Affiliation(s)
- Giuliano Malloci
- Dipartimento di Fisica, Università degli studi di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Cagliari), Italy.
| | - Attilio Vittorio Vargiu
- Dipartimento di Fisica, Università degli studi di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Cagliari), Italy.
| | - Giovanni Serra
- Dipartimento di Fisica, Università degli studi di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Cagliari), Italy.
| | - Andrea Bosin
- Dipartimento di Fisica, Università degli studi di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Cagliari), Italy.
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università degli studi di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Cagliari), Italy.
| | - Matteo Ceccarelli
- Dipartimento di Fisica, Università degli studi di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Cagliari), Italy.
| |
Collapse
|
253
|
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol 2015; 6:660. [PMID: 26217310 PMCID: PMC4495556 DOI: 10.3389/fmicb.2015.00660] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Cell Division (RND)-type multidrug efflux pumps (e.g., MexAB-OprM), chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA) is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes. Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity. The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa.
Collapse
Affiliation(s)
- Jürg Dreier
- Basilea Pharmaceutica International Ltd.,Basel, Switzerland
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università di Cagliari – Cittadella UniversitariaMonserrato, Italy
| |
Collapse
|
254
|
Piddock LJV. Teixobactin, the first of a new class of antibiotics discovered by iChip technology? J Antimicrob Chemother 2015; 70:2679-80. [DOI: 10.1093/jac/dkv175] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
255
|
Symmons MF, Marshall RL, Bavro VN. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Front Microbiol 2015; 6:513. [PMID: 26074901 PMCID: PMC4446572 DOI: 10.3389/fmicb.2015.00513] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system – the Periplasmic Adaptor Proteins (PAPs) – relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle.
Collapse
Affiliation(s)
- Martyn F Symmons
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Robert L Marshall
- Institute of Microbiology and Infection, University of Birmingham Birmingham, UK
| | - Vassiliy N Bavro
- Institute of Microbiology and Infection, University of Birmingham Birmingham, UK
| |
Collapse
|
256
|
Friedman M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3805-3822. [PMID: 25856120 DOI: 10.1021/acs.jafc.5b00778] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Foodborne antibiotic-resistant pathogenic bacteria such as Campylobacter jejuni, Bacillus cereus, Clostridium perfringens, Escherichia coli, Salmonella enterica, Staphylococcus aureus, Vibrio cholerae, and Vibrio parahemolyticus can adversely affect animal and human health, but a better understanding of the factors involved in their pathogenesis is needed. To help meet this need, this overview surveys and interprets much of our current knowledge of antibiotic (multidrug)-resistant bacteria in the food chain and the implications for microbial food safety and animal and human health. Topics covered include the origin and prevalence of resistant bacteria in the food chain (dairy, meat, poultry, seafood, and herbal products, produce, and eggs), their inactivation by different classes of compounds and plant extracts and by the use of chlorine and physicochemical methods (heat, UV light, pulsed electric fields, and high pressure), the synergistic antimicrobial effects of combinations of natural antimicrobials with medicinal antibiotics, and mechanisms of antimicrobial activities and resistant effects. Possible areas for future research are suggested. Plant-derived and other safe natural antimicrobial compounds have the potential to control the prevalence of both susceptible and resistant pathogens in various environments. The collated information and suggested research will hopefully contribute to a better understanding of approaches that could be used to minimize the presence of resistant pathogens in animal feed and human food, thus reducing adverse effects, improving microbial food safety, and helping to prevent or treat animal and human infections.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| |
Collapse
|
257
|
Yamaguchi A, Nakashima R, Sakurai K. Structural basis of RND-type multidrug exporters. Front Microbiol 2015; 6:327. [PMID: 25941524 PMCID: PMC4403515 DOI: 10.3389/fmicb.2015.00327] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/01/2015] [Indexed: 12/29/2022] Open
Abstract
Bacterial multidrug exporters are intrinsic membrane transporters that act as cellular self-defense mechanism. The most notable characteristics of multidrug exporters is that they export a wide range of drugs and toxic compounds. The overexpression of these exporters causes multidrug resistance. Multidrug-resistant pathogens have become a serious problem in modern chemotherapy. Over the past decade, investigations into the structure of bacterial multidrug exporters have revealed the multidrug recognition and export mechanisms. In this review, we primarily discuss RND-type multidrug exporters particularly AcrAB-TolC, major drug exporter in Gram-negative bacteria. RND-type drug exporters are tripartite complexes comprising a cell membrane transporter, an outer membrane channel and an adaptor protein. Cell membrane transporters and outer membrane channels are homo-trimers; however, there is no consensus on the number of adaptor proteins in these tripartite complexes. The three monomers of a cell membrane transporter have varying conformations (access, binding, and extrusion) during transport. Drugs are exported following an ordered conformational change in these three monomers, through a functional rotation mechanism coupled with the proton relay cycle in ion pairs, which is driven by proton translocation. Multidrug recognition is based on a multisite drug-binding mechanism, in which two voluminous multidrug-binding pockets in cell membrane exporters recognize a wide range of substrates as a result of permutations at numerous binding sites that are specific for the partial structures of substrate molecules. The voluminous multidrug-binding pocket may have numerous binding sites even for a single substrate, suggesting that substrates may move between binding sites during transport, an idea named as multisite-drug-oscillation hypothesis. This hypothesis is consistent with the apparently broad substrate specificity of cell membrane exporters and their highly efficient ejection of drugs from the cell. Substrates are transported through dual multidrug-binding pockets via the peristaltic motion of the substrate translocation channel. Although there are no clinically available inhibitors of bacterial multidrug exporters, efforts to develop inhibitors based on structural information are underway.
Collapse
Affiliation(s)
- Akihito Yamaguchi
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University Ibaraki, Japan
| | - Ryosuke Nakashima
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University Ibaraki, Japan
| | - Keisuke Sakurai
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University Ibaraki, Japan
| |
Collapse
|
258
|
Narrow-spectrum inhibitors of Campylobacter jejuni flagellar expression and growth. Antimicrob Agents Chemother 2015; 59:3880-6. [PMID: 25870073 DOI: 10.1128/aac.04926-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/09/2015] [Indexed: 01/16/2023] Open
Abstract
Campylobacter jejuni is a major cause of food-borne illness due to its ability to reside within the gastrointestinal tracts of chickens. Multiple studies have identified the flagella of C. jejuni as a major determinant of chicken colonization. An inhibitor screen of approximately 147,000 small molecules was performed to identify compounds that are able to inhibit flagellar expression in a reporter strain of C. jejuni. Several compounds that modestly inhibited motility of wild-type C. jejuni in standard assays were identified, as were a number of small molecules that robustly inhibited C. jejuni growth, in vitro. Examination of similar bacterial screens found that many of these small molecules inhibited only the growth of C. jejuni. Follow-up assays demonstrated inhibition of other strains of C. jejuni and Campylobacter coli but no inhibition of the closely related Helicobacter pylori. The compounds were determined to be bacteriostatic and nontoxic to eukaryotic cells. Preliminary results from a day-of-hatch chick model of colonization suggest that at least one of the compounds demonstrates promise for reducing Campylobacter colonization loads in vivo, although further medicinal chemistry may be required to enhance bioavailability.
Collapse
|
259
|
Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. mBio 2015; 6:mBio.00309-15. [PMID: 25805730 PMCID: PMC4453527 DOI: 10.1128/mbio.00309-15] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen of increasing importance due to its multiple resistance to antibiotics and ability to survive in the hospital environment linked to its capacity to form biofilms. To fully characterize the contribution of AdeABC, AdeFGH, and AdeIJK resistance-nodulation-cell division (RND)-type efflux systems to acquired and intrinsic resistance, we constructed, from an entirely sequenced susceptible A. baumannii strain, a set of isogenic mutants overexpressing each system following introduction of a point mutation in their cognate regulator or a deletion for the pump by allelic replacement. Pairwise comparison of every derivative with the parental strain indicated that AdeABC and AdeFGH are tightly regulated and contribute to acquisition of antibiotic resistance when overproduced. AdeABC had a broad substrate range, including β-lactams, fluoroquinolones, tetracyclines-tigecycline, macrolides-lincosamides, and chloramphenicol, and conferred clinical resistance to aminoglycosides. Importantly, when combined with enzymatic resistance to carbapenems and aminoglycosides, this pump contributed in a synergistic fashion to the level of resistance of the host. In contrast, AdeIJK was expressed constitutively and was responsible for intrinsic resistance to the same major drug classes as AdeABC as well as antifolates and fusidic acid. Surprisingly, overproduction of AdeABC and AdeIJK altered bacterial membrane composition, resulting in decreased biofilm formation but not motility. Natural transformation and plasmid transfer were diminished in recipients overproducing AdeABC. It thus appears that alteration in the expression of efflux systems leads to multiple changes in the relationship between the host and its environment, in addition to antibiotic resistance. Increased expression of chromosomal genes for RND-type efflux systems plays a major role in bacterial multidrug resistance. Acinetobacter baumannii has recently emerged as an important human pathogen responsible for epidemics of hospital-acquired infections. Besides its remarkable ability to horizontally acquire resistance determinants, it has a broad intrinsic resistance due to low membrane permeability, endogenous resistance genes, and antibiotic efflux. The study of isogenic mutants from a susceptible A. baumannii clinical isolate overproducing or deleted for each of the three major RND-type pumps demonstrated their major contribution to intrinsic resistance and to the synergism between overproduction of an efflux system and acquisition of a resistance gene. We have also shown that modulation of expression of the structural genes for the efflux systems results in numerous alterations in membrane-associated cellular functions, in particular, in a decrease in biofilm formation and resistance gene acquisition.
Collapse
|
260
|
AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci U S A 2015; 112:3511-6. [PMID: 25737552 DOI: 10.1073/pnas.1419939112] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The incidence of multidrug-resistant bacterial infections is increasing globally and the need to understand the underlying mechanisms is paramount to discover new therapeutics. The efflux pumps of Gram-negative bacteria have a broad substrate range and transport antibiotics out of the bacterium, conferring intrinsic multidrug resistance (MDR). The genomes of pre- and posttherapy MDR clinical isolates of Salmonella Typhimurium from a patient that failed antibacterial therapy and died were sequenced. In the posttherapy isolate we identified a novel G288D substitution in AcrB, the resistance-nodulation division transporter in the AcrAB-TolC tripartite MDR efflux pump system. Computational structural analysis suggested that G288D in AcrB heavily affects the structure, dynamics, and hydration properties of the distal binding pocket altering specificity for antibacterial drugs. Consistent with this hypothesis, recreation of the mutation in standard Escherichia coli and Salmonella strains showed that G288D AcrB altered substrate specificity, conferring decreased susceptibility to the fluoroquinolone antibiotic ciprofloxacin by increased efflux. At the same time, the substitution increased susceptibility to other drugs by decreased efflux. Information about drug transport is vital for the discovery of new antibacterials; the finding that one amino acid change can cause resistance to some drugs, while conferring increased susceptibility to others, could provide a basis for new drug development and treatment strategies.
Collapse
|
261
|
Lin X, Lin L, Yao Z, Li W, Sun L, Zhang D, Luo J, Lin W. An integrated quantitative and targeted proteomics reveals fitness mechanisms of Aeromonas hydrophila under oxytetracycline stress. J Proteome Res 2015; 14:1515-25. [PMID: 25621997 DOI: 10.1021/pr501188g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To date, above ten thousand tons of antibiotics are used in aquaculture each year that lead to the deterioration of natural resources. However, knowledge is limited on the molecular biological behavior of common aquatic pathogens against antibiotics stress. In this study, proteomics profiles of Aeromonas hydrophila, which were exposed to different levels of oxytetracycline (OXY) stress, were displayed and compared using iTRAQ labeling and SWATH-MS based LC-MS/MS methods. A total 1383 proteins were identified by SWATH-MS method, and 2779 proteins were identified from iTRAQ labeling samples. There are 152 up-regulated and 52 down-regulated proteins overlapped in 5 μg/mL OXY stress and both 83 up- and down-regulated proteins overlapped in 10 μg/mL OXY stress in both methods, respectively. Results show that many protein synthesis and translation related proteins increased, while energy generation related proteins decreased in OXY stress. The varieties of selected proteins involved in both pathways were further validated by sMRM(HR), q-PCR, and enzyme activity assay. Furthermore, the concentrations of NAD+ and NADH were measured to verify the characteristic of energy generation process in OXY stress and OXY resistance strain. We demonstrate that the down-regulation of energy generation related metabolic pathways and up-regulation of translation may play an important role in antibiotics fitness or resistance of aquatic pathogens.
Collapse
Affiliation(s)
- Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, PR China
| | | | | | | | | | | | | | | |
Collapse
|