301
|
Siegmund V, Schmelz S, Dickgiesser S, Beck J, Ebenig A, Fittler H, Frauendorf H, Piater B, Betz UAK, Avrutina O, Scrima A, Fuchsbauer H, Kolmar H. Durch Design verbrückt: ein konformativ eingeschränkter Transglutaminase‐Marker ermöglicht effiziente ortsspezifische Konjugation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vanessa Siegmund
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Stefan Schmelz
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Braunschweig (Deutschland)
| | - Stephan Dickgiesser
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Jan Beck
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Aileen Ebenig
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Heiko Fittler
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Holm Frauendorf
- Institut für Organische und Biomolekulare Chemie, Zentrale Analytik/Massenspektrometrie, Universität Göttingen (Deutschland)
| | | | | | - Olga Avrutina
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Andrea Scrima
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Braunschweig (Deutschland)
| | | | - Harald Kolmar
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| |
Collapse
|
302
|
VanBrunt MP, Shanebeck K, Caldwell Z, Johnson J, Thompson P, Martin T, Dong H, Li G, Xu H, D’Hooge F, Masterson L, Bariola P, Tiberghien A, Ezeadi E, Williams DG, Hartley JA, Howard PW, Grabstein KH, Bowen MA, Marelli M. Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody–Drug Conjugates Using Click Cycloaddition Chemistry. Bioconjug Chem 2015; 26:2249-60. [DOI: 10.1021/acs.bioconjchem.5b00359] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael P. VanBrunt
- Allozyne, Inc., 1600 Fairview Avenue
East, Seattle, Washington 98102, United States
| | - Kurt Shanebeck
- Allozyne, Inc., 1600 Fairview Avenue
East, Seattle, Washington 98102, United States
| | - Zachary Caldwell
- Allozyne, Inc., 1600 Fairview Avenue
East, Seattle, Washington 98102, United States
| | - Jeffrey Johnson
- Allozyne, Inc., 1600 Fairview Avenue
East, Seattle, Washington 98102, United States
| | - Pamela Thompson
- MedImmune, LLC, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Thomas Martin
- MedImmune, LLC, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Huifang Dong
- MedImmune, LLC, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Gary Li
- Allozyne, Inc., 1600 Fairview Avenue
East, Seattle, Washington 98102, United States
| | - Hengyu Xu
- Allozyne, Inc., 1600 Fairview Avenue
East, Seattle, Washington 98102, United States
| | - Francois D’Hooge
- Spirogen MedImmune, The QMB Innovation Centre, 42 New Road, London E1
2AX, United Kingdom
| | - Luke Masterson
- Spirogen MedImmune, The QMB Innovation Centre, 42 New Road, London E1
2AX, United Kingdom
| | - Pauline Bariola
- Allozyne, Inc., 1600 Fairview Avenue
East, Seattle, Washington 98102, United States
| | - Arnaud Tiberghien
- Spirogen MedImmune, The QMB Innovation Centre, 42 New Road, London E1
2AX, United Kingdom
| | - Ebele Ezeadi
- Spirogen MedImmune, The QMB Innovation Centre, 42 New Road, London E1
2AX, United Kingdom
| | - David G. Williams
- Spirogen MedImmune, The QMB Innovation Centre, 42 New Road, London E1
2AX, United Kingdom
| | - John A. Hartley
- Spirogen MedImmune, The QMB Innovation Centre, 42 New Road, London E1
2AX, United Kingdom
- UCL Cancer Institute, 72
Huntley Street, London WC1E 6BT, United Kingdom
| | - Philip W. Howard
- Spirogen MedImmune, The QMB Innovation Centre, 42 New Road, London E1
2AX, United Kingdom
| | - Kenneth H. Grabstein
- Allozyne, Inc., 1600 Fairview Avenue
East, Seattle, Washington 98102, United States
| | - Michael A. Bowen
- MedImmune, LLC, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Marcello Marelli
- Allozyne, Inc., 1600 Fairview Avenue
East, Seattle, Washington 98102, United States
- MedImmune, LLC, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
303
|
Drake PM, Rabuka D. An emerging playbook for antibody-drug conjugates: lessons from the laboratory and clinic suggest a strategy for improving efficacy and safety. Curr Opin Chem Biol 2015; 28:174-80. [PMID: 26342601 DOI: 10.1016/j.cbpa.2015.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 02/08/2023]
Abstract
Antibody-drug conjugates (ADCs) have become de rigueur for pharmaceutical oncology drug development pipelines. There are more than 40 ADCs undergoing clinical trials and many more in preclinical development. The field has rushed to follow the initial successes of Kadcyla™ and Adcetris™, and moved forward with new targets without much pause for optimization. In some respects, the ADC space has become divided into the clinical realm-where the proven technologies continue to represent the bulk of clinical candidates with a few exceptions-and the research realm-where innovations in conjugation chemistry and linker technologies have suggested that there is much room for improvement in the conventional methods. Now, two and four years after the approvals of Kadcyla™ and Adcetris™, respectively, consensus may at last be building that these two drugs rely on rather unique target antigens that enable their success. It is becoming increasingly clear that future target antigens will require additional innovative approaches. Next-generation ADCs have begun to move out of the lab and into the clinic, where there is a pressing need for continued innovation to overcome the twin challenges of safety and efficacy.
Collapse
Affiliation(s)
| | - David Rabuka
- Catalent Pharma Solutions, Emeryville, CA 94608, USA.
| |
Collapse
|
304
|
Hinrichs MJM, Dixit R. Antibody Drug Conjugates: Nonclinical Safety Considerations. AAPS J 2015; 17:1055-64. [PMID: 26024656 PMCID: PMC4540738 DOI: 10.1208/s12248-015-9790-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/14/2015] [Indexed: 02/08/2023] Open
Abstract
Antibody drug conjugates (ADCs) are biopharmaceutical molecules consisting of a cytotoxic small molecule covalently linked to a targeted protein carrier via a stable cleavable or noncleavable linker. The process of conjugation yields a highly complex molecule with biochemical properties that are distinct from those of the unconjugated components. The impact of these biochemical differences on the safety and pharmacokinetic (PK) profile of the conjugate must be considered when determining the types of nonclinical safety studies required to support clinical development of ADCs. The hybrid nature of ADCs highlights the need for a science-based approach to safety assessment that incorporates relevant aspects of small and large molecule testing paradigms. This thinking is reflected in current regulatory guidelines, where sections pertaining to conjugates allow for a flexible approach to nonclinical safety testing. The aim of this article is to review regulatory expectations regarding early assessment of nonclinical safety considerations and discuss how recent advances in our understanding of ADC-mediated toxicity can be used to guide the types of nonclinical safety studies needed to support ADC clinical development. The review will also explore nonclinical testing strategies that can be used to streamline ADC development by assessing the safety and efficacy of next generation ADC constructs using a rodent screen approach.
Collapse
Affiliation(s)
- Mary Jane Masson Hinrichs
- Department of Translational Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland, 20878, USA,
| | | |
Collapse
|
305
|
Abstract
Numerous biological applications, from diagnostic assays to immunotherapies, rely on the use of antibody-conjugates. The efficacy of these conjugates can be significantly influenced by the site at which Immunoglobulin G (IgG) is modified. Current methods that provide control over the conjugation site, however, suffer from a number of shortfalls and often require large investments of time and cost. We have developed a novel adapter protein that, when activated by long wavelength UV light, can covalently and site-specifically label the Fc region of nearly any native, full-length IgG, including all human IgG subclasses. Labeling occurs with unprecedented efficiency and speed (>90% after 30 min), with no effect on IgG affinity. The adapter domain can be bacterially expressed and customized to contain a variety of moieties (e.g., biotin, azide, fluorophores), making reliable and efficient conjugation of antibodies widely accessible to researchers at large.
Collapse
Affiliation(s)
| | | | - Yang Song
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| |
Collapse
|
306
|
Abstract
The use of monoclonal antibodies as therapeutics requires optimizing several of their key attributes. These include binding affinity and specificity, folding stability, solubility, pharmacokinetics, effector functions, and compatibility with the attachment of additional antibody domains (bispecific antibodies) and cytotoxic drugs (antibody-drug conjugates). Addressing these and other challenges requires the use of systematic design methods that complement powerful immunization and in vitro screening methods. We review advances in designing the binding loops, scaffolds, domain interfaces, constant regions, post-translational and chemical modifications, and bispecific architectures of antibodies and fragments thereof to improve their bioactivity. We also highlight unmet challenges in antibody design that must be overcome to generate potent antibody therapeutics.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | - Peter M Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| |
Collapse
|
307
|
|
308
|
Li X, Patterson JT, Sarkar M, Pedzisa L, Kodadek T, Roush WR, Rader C. Site-Specific Dual Antibody Conjugation via Engineered Cysteine and Selenocysteine Residues. Bioconjug Chem 2015; 26:2243-8. [PMID: 26161903 DOI: 10.1021/acs.bioconjchem.5b00244] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Site-specific conjugation technologies enable the production of homogeneous antibody-drug conjugates (ADCs) with improved therapeutic indices compared to conventional ADCs. However, current site-specific conjugation methods can only attach one type of drug to a single antibody. Given the emergence of acquired resistance to current ADCs, arming single antibodies with different drugs may provide an attractive option in the development of next-generation ADCs. Here, we describe a site-specific dual conjugation strategy as a platform for dual warhead ADCs.
Collapse
Affiliation(s)
| | - James T Patterson
- Department of Cell and Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
309
|
Casi G, Neri D. Antibody–Drug Conjugates and Small Molecule–Drug Conjugates: Opportunities and Challenges for the Development of Selective Anticancer Cytotoxic Agents. J Med Chem 2015; 58:8751-61. [DOI: 10.1021/acs.jmedchem.5b00457] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Giulio Casi
- Philochem AG, Libernstrasse 3, CH8112 Otelfingen, Switzerland
| | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Institute of Pharmaceutical
Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| |
Collapse
|
310
|
Dorywalska M, Strop P, Melton-Witt JA, Hasa-Moreno A, Farias SE, Galindo Casas M, Delaria K, Lui V, Poulsen K, Sutton J, Bolton G, Zhou D, Moine L, Dushin R, Tran TT, Liu SH, Rickert M, Foletti D, Shelton DL, Pons J, Rajpal A. Site-Dependent Degradation of a Non-Cleavable Auristatin-Based Linker-Payload in Rodent Plasma and Its Effect on ADC Efficacy. PLoS One 2015; 10:e0132282. [PMID: 26161543 PMCID: PMC4498778 DOI: 10.1371/journal.pone.0132282] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/11/2015] [Indexed: 11/28/2022] Open
Abstract
The efficacy of an antibody-drug conjugate (ADC) is dependent on the properties of its linker-payload which must remain stable while in systemic circulation but undergo efficient processing upon internalization into target cells. Here, we examine the stability of a non-cleavable Amino-PEG6-based linker bearing the monomethyl auristatin D (MMAD) payload site-specifically conjugated at multiple positions on an antibody. Enzymatic conjugation with transglutaminase allows us to create a stable amide linkage that remains intact across all tested conjugation sites on the antibody, and provides us with an opportunity to examine the stability of the auristatin payload itself. We report a position-dependent degradation of the C terminus of MMAD in rodent plasma that has a detrimental effect on its potency. The MMAD cleavage can be eliminated by either modifying the C terminus of the toxin, or by selection of conjugation site. Both approaches result in improved stability and potency in vitro and in vivo. Furthermore, we show that the MMAD metabolism in mouse plasma is likely mediated by a serine-based hydrolase, appears much less pronounced in rat, and was not detected in cynomolgus monkey or human plasma. Clarifying these species differences and controlling toxin degradation to optimize ADC stability in rodents is essential to make the best ADC selection from preclinical models. The data presented here demonstrate that site selection and toxin susceptibility to mouse plasma degradation are important considerations in the design of non-cleavable ADCs, and further highlight the benefits of site-specific conjugation methods.
Collapse
Affiliation(s)
- Magdalena Dorywalska
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Pavel Strop
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
- * E-mail:
| | - Jody A. Melton-Witt
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Adela Hasa-Moreno
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Santiago E. Farias
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Meritxell Galindo Casas
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Kathy Delaria
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Victor Lui
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Kris Poulsen
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Janette Sutton
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Gary Bolton
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Dahui Zhou
- Worldwide Medicinal Chemistry, Pfizer Inc., 445 Eastern Point Road, Groton, CT, 06340, United States of America
| | - Ludivine Moine
- Worldwide Medicinal Chemistry, Pfizer Inc., 445 Eastern Point Road, Groton, CT, 06340, United States of America
| | - Russell Dushin
- Worldwide Medicinal Chemistry, Pfizer Inc., 445 Eastern Point Road, Groton, CT, 06340, United States of America
| | - Thomas-Toan Tran
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Shu-Hui Liu
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Mathias Rickert
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Davide Foletti
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - David L. Shelton
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Jaume Pons
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| | - Arvind Rajpal
- Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA, 94080, United States of America
| |
Collapse
|
311
|
Antibody–drug conjugates nonclinical support: from early to late nonclinical bioanalysis using ligand-binding assays. Bioanalysis 2015; 7:1605-17. [DOI: 10.4155/bio.15.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Seema Kumar is a Principal Scientist at Pfizer. She leads a group that provides regulated bioanalytical support including assay development, validation and sample analysis for the PK and immunogenicity assessment for preclinical and clinical development of Pfizer's biotherapeutics portfolio. She is also responsible for scientific oversight of regulated studies outsourced at CROs. Prior to Pfizer, Dr Kumar held a similar role as Director of CLIA certified Clinical Bioanalytical Laboratory at XBiotech USA, Inc. She holds a PhD in Biophysical Chemistry from Johns Hopkins University, and has published several publications in peer-reviewed journals, and contributed to book chapters. The objective of antibody–drug conjugate (ADC) bioanalysis at different stages of drug development may vary and so are the associated bioanalytical challenges. While at early drug discovery stage involving candidate selection, optimization and preliminary nonclinical assessments, the goal of ADC bioanalysis is to provide PK, toxicity and efficacy data that assists in the design and selection of potential drug candidates, the late nonclinical and clinical drug development stage typically involves regulated ADC bioanalysis that delivers TK data to define and understand pharmacological and toxicological properties of the lead ADC candidate. Bioanalytical strategies and considerations involved in developing successful ligand binding assays for ADC characterization from early discovery to late nonclinical stages of drug development are presented here.
Collapse
|
312
|
Abstract
The selective delivery of potent pharmacologically active compounds to target tissue or cells by antibody–drug conjugates makes this immuno-conjugate a promising modality for the treatment of cancers. A thorough understanding of the structural integrity of the linker, the payload and the conjugation site during biological exposure is critical throughout the process of novel linker-payload design and optimization of PK profile. This understanding is a key aspect of the effort to maximize efficacy while minimizing toxicity in preclinical testing and to ensure the translation to the clinical setting. The complexity of this bioconjugate modality is a source of significant challenge for analytical interrogation and analysis in vivo. Therefore, we report herein a survey of various types of biotransformation events that have been elucidated in recent years.
Collapse
|
313
|
Liu T, Du J, Luo X, Schultz PG, Wang F. Homogeneously modified immunoglobulin domains for therapeutic application. Curr Opin Chem Biol 2015; 28:66-74. [PMID: 26117722 DOI: 10.1016/j.cbpa.2015.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/02/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
The field of therapeutic antibodies has been revolutionized over the past decade, led by the development of novel antibody-modification technologies. Besides the huge success achieved by therapeutic monoclonal antibodies, a diversity of antibody derivatives have emerged with hope to outperform their parental antibodies. Here we review the recent development of methodologies to modify immunoglobulin domains and their therapeutic applications. The innovative genetic and chemical approaches enable novel and controllable modifications on immunoglobulin domains, producing homogeneous therapeutics with new functionalities or enhanced therapeutic profiles. Such therapeutics, including antibody-drug conjugates, bispecific antibodies, and antibody/Fc fusion proteins, have demonstrated great prospects in the treatment of cancer, auto-immune diseases, infectious diseases, and many other disorders.
Collapse
Affiliation(s)
- Tao Liu
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Juanjuan Du
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Xiaozhou Luo
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Peter G Schultz
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States; Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Feng Wang
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
314
|
Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, Jonas M, Anderson ME, Setter JR, Senter PD. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 2015; 33:733-5. [DOI: 10.1038/nbt.3212] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/31/2015] [Indexed: 11/09/2022]
|
315
|
Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep 2015; 35:e00225. [PMID: 26182432 PMCID: PMC4613712 DOI: 10.1042/bsr20150089] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/18/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022] Open
Abstract
Over the past couple of decades, antibody-drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics.
Collapse
Affiliation(s)
- Christina Peters
- School of Life Sciences, Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, U.K
| | - Stuart Brown
- School of Life Sciences, Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, U.K.
| |
Collapse
|
316
|
van Geel R, Wijdeven MA, Heesbeen R, Verkade JMM, Wasiel AA, van Berkel SS, van Delft FL. Chemoenzymatic Conjugation of Toxic Payloads to the Globally Conserved N-Glycan of Native mAbs Provides Homogeneous and Highly Efficacious Antibody-Drug Conjugates. Bioconjug Chem 2015; 26:2233-42. [PMID: 26061183 DOI: 10.1021/acs.bioconjchem.5b00224] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A robust, generally applicable, nongenetic technology is presented to convert monoclonal antibodies into stable and homogeneous ADCs. Starting from a native (nonengineered) mAb, a chemoenzymatic protocol allows for the highly controlled attachment of any given payload to the N-glycan residing at asparagine-297, based on a two-stage process: first, enzymatic remodeling (trimming and tagging with azide), followed by ligation of the payload based on copper-free click chemistry. The technology, termed GlycoConnect, is applicable to any IgG isotype irrespective of glycosylation profile. Application to trastuzumab and maytansine, both components of the marketed ADC Kadcyla, demonstrate a favorable in vitro and in vivo efficacy for GlycoConnect ADC. Moreover, the superiority of the native glycan as attachment site was demonstrated by in vivo comparison to a range of trastuzumab-based glycosylation mutants. A side-by-side comparison of the copper-free click probes bicyclononyne (BCN) and a dibenzoannulated cyclooctyne (DBCO) showed a surprising difference in conjugation efficiency in favor of BCN, which could be even further enhanced by introduction of electron-withdrawing fluoride substitutions onto the azide. The resulting mAb-conjugates were in all cases found to be highly stable, which in combination with the demonstrated efficacy warrants ADCs with a superior therapeutic index.
Collapse
Affiliation(s)
- Remon van Geel
- SynAffix BV , Pivot Park, Molenstraat 110, 5342 CC, Oss, The Netherlands
| | - Marloes A Wijdeven
- SynAffix BV , Pivot Park, Molenstraat 110, 5342 CC, Oss, The Netherlands
| | - Ryan Heesbeen
- SynAffix BV , Pivot Park, Molenstraat 110, 5342 CC, Oss, The Netherlands
| | - Jorge M M Verkade
- SynAffix BV , Pivot Park, Molenstraat 110, 5342 CC, Oss, The Netherlands
| | - Anna A Wasiel
- SynAffix BV , Pivot Park, Molenstraat 110, 5342 CC, Oss, The Netherlands
| | | | - Floris L van Delft
- SynAffix BV , Pivot Park, Molenstraat 110, 5342 CC, Oss, The Netherlands
| |
Collapse
|
317
|
Kamath AV, Iyer S. Challenges and advances in the assessment of the disposition of antibody-drug conjugates. Biopharm Drug Dispos 2015; 37:66-74. [PMID: 25904406 PMCID: PMC5032988 DOI: 10.1002/bdd.1957] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/17/2015] [Accepted: 04/01/2015] [Indexed: 11/26/2022]
Abstract
Antibody‐drug conjugates (ADCs) are a rapidly growing therapeutic platform for the treatment of cancer. ADCs consist of a cytotoxic small molecule drug linked to an antibody to provide targeted delivery of the cytotoxic agent to the tumor. Understanding the pharmacokinetics (PK) and pharmacodynamics (PD) of ADCs is crucial in their design to optimize dose and regimen, to maximize efficacy and to minimize toxicity in patients. Significant progress has been made in recent years in this area, however, many fundamental questions still remain. This review discusses factors to consider while assessing the disposition of ADCs, and the unique challenges associated with these therapeutics. Current tools that are available and strategies to enable appropriate assessment are also discussed. © 2015 Genentech Inc. Biopharmaceutics & Drug Disposition Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Amrita V Kamath
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc, South San Francisco, CA, USA
| | - Suhasini Iyer
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
318
|
Brun O, Elduque X, Pedroso E, Grandas A. On-Resin Conjugation of Diene-Polyamides and Maleimides via Diels-Alder Cycloaddition. J Org Chem 2015; 80:6093-101. [PMID: 25985351 DOI: 10.1021/acs.joc.5b00592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The reaction between maleimides and resin-linked diene-polyamides allows the latter to be used in the preparation of conjugates. Conjugation takes place by reacting the insoluble, hydrophobic diene component either with water-soluble dienophiles or with dienophiles requiring mixtures of water and organic solvents. Experimental conditions can be adjusted to furnish the target conjugate in good yield with no need of adding large excesses of soluble reagent. In case protected maleimides are used, maleimide deprotection and Diels-Alder cycloaddition can be simultaneously carried out to render conjugates with different linking positions. On-resin conjugation is followed by an acidic treatment that removes the polyamide protecting groups with no harm to the cycloadduct, in contrast with the unreacted diene that is indeed degraded under these conditions. Cycloadducts incorporating suitable functional groups can undergo subsequent additional conjugation reactions in solution to furnish double conjugates.
Collapse
Affiliation(s)
- Omar Brun
- Departament de Química Orgànica, Facultat de Química and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Xavier Elduque
- Departament de Química Orgànica, Facultat de Química and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enrique Pedroso
- Departament de Química Orgànica, Facultat de Química and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Anna Grandas
- Departament de Química Orgànica, Facultat de Química and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
319
|
Dyachenko A, Wang G, Belov M, Makarov A, de Jong RN, van den Bremer ETJ, Parren PWHI, Heck AJR. Tandem Native Mass-Spectrometry on Antibody–Drug Conjugates and Submillion Da Antibody–Antigen Protein Assemblies on an Orbitrap EMR Equipped with a High-Mass Quadrupole Mass Selector. Anal Chem 2015; 87:6095-102. [DOI: 10.1021/acs.analchem.5b00788] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrey Dyachenko
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH, Utrecht, The Netherlands
| | - Guanbo Wang
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH, Utrecht, The Netherlands
| | - Mike Belov
- Thermo Fisher Scientific, Bremen, Germany
| | - Alexander Makarov
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Thermo Fisher Scientific, Bremen, Germany
| | | | | | - Paul W. H. I. Parren
- Genmab, Utrecht, The Netherlands
- Department
of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
320
|
Abstract
Antibody conjugates are important in many areas of medicine and biological research, and antibody-drug conjugates (ADCs) are becoming an important next generation class of therapeutics for cancer treatment. Early conjugation technologies relied upon random conjugation to multiple amino acid side chains, resulting in heterogeneous mixtures of labeled antibody. Recent studies, however, strongly support the notion that site-specific conjugation produces a homogeneous population of antibody conjugates with improved pharmacologic properties over randomly coupled molecules. Genetically incorporated unnatural amino acids (uAAs) allow unique orthogonal coupling strategies compared to those used for the 20 naturally occurring amino acids. Thus, uAAs provide a novel paradigm for creation of next generation ADCs. Additionally, uAA-based site-specific conjugation could also empower creation of additional multifunctional conjugates important as biopharmaceuticals, diagnostics, or reagents.
Collapse
Affiliation(s)
- Trevor J Hallam
- †Sutro Biopharma, 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Erik Wold
- ‡The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Alan Wahl
- §Ambrx, Inc. 10975 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vaughn V Smider
- ‡The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
321
|
Lim RKV, Yu S, Cheng B, Li S, Kim NJ, Cao Y, Chi V, Kim JY, Chatterjee AK, Schultz PG, Tremblay MS, Kazane SA. Targeted Delivery of LXR Agonist Using a Site-Specific Antibody-Drug Conjugate. Bioconjug Chem 2015; 26:2216-22. [PMID: 25945727 DOI: 10.1021/acs.bioconjchem.5b00203] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver X receptor (LXR) agonists have been explored as potential treatments for atherosclerosis and other diseases based on their ability to induce reverse cholesterol transport and suppress inflammation. However, this therapeutic potential has been hindered by on-target adverse effects in the liver mediated by excessive lipogenesis. Herein, we report a novel site-specific antibody-drug conjugate (ADC) that selectively delivers a LXR agonist to monocytes/macrophages while sparing hepatocytes. The unnatural amino acid para-acetylphenylalanine (pAcF) was site-specifically incorporated into anti-CD11a IgG, which binds the α-chain component of the lymphocyte function-associated antigen 1 (LFA-1) expressed on nearly all monocytes and macrophages. An aminooxy-modified LXR agonist was conjugated to anti-CD11a IgG through a stable, cathepsin B cleavable oxime linkage to afford a chemically defined ADC. The anti-CD11a IgG-LXR agonist ADC induced LXR activation specifically in human THP-1 monocyte/macrophage cells in vitro (EC50-27 nM), but had no significant effect in hepatocytes, indicating that payload delivery is CD11a-mediated. Moreover, the ADC exhibited higher-fold activation compared to a conventional synthetic LXR agonist T0901317 (Tularik) (3-fold). This novel ADC represents a fundamentally different strategy that uses tissue targeting to overcome the limitations of LXR agonists for potential use in treating atherosclerosis.
Collapse
Affiliation(s)
- Reyna K V Lim
- California Institute for Biomedical Research (Calibr) , 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shan Yu
- California Institute for Biomedical Research (Calibr) , 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Bo Cheng
- California Institute for Biomedical Research (Calibr) , 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sijia Li
- California Institute for Biomedical Research (Calibr) , 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nam-Jung Kim
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yu Cao
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Victor Chi
- California Institute for Biomedical Research (Calibr) , 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ji Young Kim
- California Institute for Biomedical Research (Calibr) , 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Arnab K Chatterjee
- California Institute for Biomedical Research (Calibr) , 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter G Schultz
- California Institute for Biomedical Research (Calibr) , 11119 North Torrey Pines Road, La Jolla, California 92037, United States.,Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Matthew S Tremblay
- California Institute for Biomedical Research (Calibr) , 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Stephanie A Kazane
- California Institute for Biomedical Research (Calibr) , 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
322
|
Singh SK, Luisi DL, Pak RH. Antibody-Drug Conjugates: Design, Formulation and Physicochemical Stability. Pharm Res 2015; 32:3541-71. [PMID: 25986175 DOI: 10.1007/s11095-015-1704-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 01/13/2023]
Abstract
The convergence of advanced understanding of biology with chemistry has led to a resurgence in the development of antibody-drug conjugates (ADCs), especially with two recent product approvals. Design and development of ADCs requires the synergistic combination of the monoclonal antibody, the linker and the payload. Advances in antibody science has enabled identification and generation of high affinity, highly selective, humanized or human antibodies for a given target. Novel linker technologies have been synthesized and highly potent cytotoxic drug payloads have been created. As the first generation of ADCs utilizing lysine and cysteine chemistries moves through the clinic and into commercialization, second generation ADCs involving site specific conjugation technologies are being evaluated and tested. The latter aim to be better characterized and controlled, with wider therapeutic indices as well as improved pharmacokinetic-pharmacodynamic (PK-PD) profiles. ADCs offer some interesting physicochemical properties, due to conjugation itself, and to the (often) hydrophobic payloads that must be considered during their CMC development. New analytical methodologies are required for the ADCs, supplementing those used for the antibody itself. Regulatory filings will be a combination of small molecule and biologics. The regulators have put forth some broad principles but this landscape is still evolving.
Collapse
Affiliation(s)
- Satish K Singh
- Pfizer, Inc., Pharmaceutical R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017, USA
| | - Donna L Luisi
- Pfizer, Inc., Pharmaceutical R&D, 1 Burtt Road, Bldg. K, Andover, Massachusetts, 01810, USA
| | - Roger H Pak
- Pfizer, Inc., Pharmaceutical R&D, 1 Burtt Road, Bldg. K, Andover, Massachusetts, 01810, USA.
| |
Collapse
|
323
|
Current methods for the synthesis of homogeneous antibody-drug conjugates. Biotechnol Adv 2015; 33:775-84. [PMID: 25981886 DOI: 10.1016/j.biotechadv.2015.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/24/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022]
Abstract
Development of efficient and safe cancer therapy is one of the major challenges of the modern medicine. Over the last few years antibody-drug conjugates (ADCs) have become a powerful tool in cancer treatment with two of them, Adcetris® (brentuximab vedotin) and Kadcyla® (ado-trastuzumab emtansine), having recently been approved by the Food and Drug Administration (FDA). Essentially, an ADC is a bioconjugate that comprises a monoclonal antibody that specifically binds tumor surface antigen and a highly potent drug, which is attached to the antibody via either cleavable or stable linker. This approach ensures specificity and efficacy in fighting cancer cells, while healthy tissues remain largely unaffected. Conventional ADCs, that employ cysteine or lysine residues as conjugation sites, are highly heterogeneous. This means that the species contain various populations of the ADCs with different drug-to-antibody ratios (DARs) and different drug load distributions. DAR and drug-load distribution are essential parameters of ADCs as they determine their stability and efficacy. Therefore, various drug-loaded forms of ADCs (usually from zero to eight conjugated molecules per antibody) may have distinct pharmacokinetics (PK) in vivo and may differ in clinical performance. Recently, a significant progress has been made in the field of site-specific conjugation which resulted in a number of strategies for synthesis of the homogeneous ADCs. This review describes newly-developed methods that ensure homogeneity of the ADCs including use of engineered reactive cysteine residues (THIOMAB), unnatural amino acids, aldehyde tags, enzymatic transglutaminase- and glycotransferase-based approaches and novel chemical methods. Furthermore, we briefly discuss the limitation of these methods emphasizing the need for further improvement in the ADC design and development.
Collapse
|
324
|
Abstract
Antibody-drug conjugates are an important and emerging drug class for the treatment of cancer. Recent evidence strongly suggests that site-specific drug conjugation results in a homogenous population of molecules with more favorable activity and pharmacokinetic properties than randomly conjugated antibodies. Unnatural amino acids (uAAs) can be incorporated in recombinant proteins to enable unique orthogonal chemistries in comparison to the side chains of the natural 20 amino acids. Thus, uAAs present a novel platform for which to create next-generation antibody-drug conjugates. Furthermore, site-specific conjugation through uAAs can also enpower unique small molecule, bispecific, multispecific and other conjugates that could be important constructs for therapeutics, diagnostics and research reagents. Here, we review the progress in uAA incorporation and conjugate construction through both cell-based and -free approaches.
Collapse
|
325
|
Sadekar S, Figueroa I, Tabrizi M. Antibody Drug Conjugates: Application of Quantitative Pharmacology in Modality Design and Target Selection. AAPS JOURNAL 2015; 17:828-36. [PMID: 25933599 DOI: 10.1208/s12248-015-9766-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/01/2015] [Indexed: 11/30/2022]
Abstract
Antibody drug conjugates (ADCs) are a multi-component modality comprising of an antibody targeting a cell-specific antigen, a potent drug/payload, and a linker that can be processed within cellular compartments to release payload upon internalization. Numerous ADCs are being evaluated in both research and clinical settings within the academic and pharmaceutical industry due to their ability to selectively deliver potent payloads. Hence, there is a clear need to incorporate quantitative approaches during early stages of drug development for effective modality design and target selection. In this review, we describe a quantitative approach and framework for evaluation of the interplay between drug- and systems-dependent properties (i.e., target expression, density, localization, turnover, and affinity) in order to deliver a sufficient amount of a potent payload into the relevant target cells. As discussed, theoretical approaches with particular considerations given to various key properties for the target and modality suggest that delivery of the payload into particular effect cells to be more sensitive to antigen concentrations for targets with slow turnover rates as compared to those with faster internalization rates. Further assessments also suggest that increasing doses beyond the threshold of the target capacity (a function of target internalization and expression) may not impact the maximum amount of payload delivered to the intended effect cells. This article will explore the important application of quantitative sciences in selection of the target and design of ADC modalities.
Collapse
Affiliation(s)
- S Sadekar
- DMPK and Disposition, Biologics Discovery, Merck Research Laboratories, Palo Alto, CA, 94304, USA
| | | | | |
Collapse
|
326
|
Moody P, Chudasama V, Nathani RI, Maruani A, Martin S, Smith MEB, Caddick S. A rapid, site-selective and efficient route to the dual modification of DARPins. Chem Commun (Camb) 2015; 50:4898-900. [PMID: 24687090 PMCID: PMC4091302 DOI: 10.1039/c4cc00053f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we describe a rapid, simple method for dual modification of DARPins by introduction of cysteine mutations at specific positions that results in a vast difference in their thiol nucleophilicity, allowing for sequential modification.
Designed ankyrin repeat proteins (DARPins) are valuable tools in both biochemistry and medicine. Herein we describe a rapid, simple method for the dual modification of DARPins by introduction of cysteine mutations at specific positions that results in a vast difference in their thiol nucleophilicity, allowing for clean sequential modification.
Collapse
Affiliation(s)
- Paul Moody
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | | | | | | | | | | | | |
Collapse
|
327
|
Paris C, Brun O, Pedroso E, Grandas A. Exploiting protected maleimides to modify oligonucleotides, peptides and peptide nucleic acids. Molecules 2015; 20:6389-408. [PMID: 25867825 PMCID: PMC6272179 DOI: 10.3390/molecules20046389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 11/16/2022] Open
Abstract
This manuscript reviews the possibilities offered by 2,5-dimethylfuran-protected maleimides. Suitably derivatized building blocks incorporating the exo Diels-Alder cycloadduct can be introduced at any position of oligonucleotides, peptide nucleic acids, peptides and peptoids, making use of standard solid-phase procedures. Maleimide deprotection takes place upon heating, which can be followed by either Michael-type or Diels-Alder click conjugation reactions. However, the one-pot procedure in which maleimide deprotection and conjugation are simultaneously carried out provides the target conjugate more quickly and, more importantly, in better yield. This procedure is compatible with conjugates involving oligonucleotides, peptides and peptide nucleic acids. A variety of cyclic peptides and oligonucleotides can be obtained from peptide and oligonucleotide precursors incorporating protected maleimides and thiols.
Collapse
Affiliation(s)
- Clément Paris
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Omar Brun
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Enrique Pedroso
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Anna Grandas
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
328
|
Deonarain MP, Yahioglu G, Stamati I, Marklew J. Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov 2015; 10:463-81. [PMID: 25797303 DOI: 10.1517/17460441.2015.1025049] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antibody drug conjugates now make up a significant fraction of biopharma's oncology pipeline due to great advances in the understanding of the three key components and how they should be optimised together. With this clinical success comes innovation to produce new enabling technologies that can deliver more effective antibody-drug conjugates (ADCs) with a larger therapeutic index. AREAS COVERED There are many reviews that discuss the various strategies for ADCs design but the last 5 years or so have witnessed the emergence of a number of different antibody formats compete with the standard whole immunoglobulin. Using published research, patent applications and conference disclosures, the authors review the many antibody and antibody-like formats, discussing innovations in protein engineering and how these new formats impact on the conjugation strategy and ultimately the performance. The alternative chemistries that are now available offer new linkages, stability profiles, drug:antibody ratio, pharmacokinetics and efficacy. The different sizes being considered promise to address issues, such as tumour penetration, circulatory half-life and side-effects. EXPERT OPINION ADCs are at the beginning of the next stage in their evolution and as these newer formats are developed and examined in the clinic, we will discover if the predicted features have a clinical benefit. From the commercial activity, it is envisaged that smaller or fragment-based ADCs will expand oncological applications.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, Herts, SG1 2FX , UK
| | | | | | | |
Collapse
|
329
|
Bornstein GG. Antibody Drug Conjugates: Preclinical Considerations. AAPS JOURNAL 2015; 17:525-34. [PMID: 25724883 DOI: 10.1208/s12248-015-9738-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/09/2015] [Indexed: 01/29/2023]
Abstract
The development path for antibody drug conjugates (ADCs) is more complex and challenging than for unmodified antibodies. While many of the preclinical considerations for both unmodified and antibody drug conjugates are shared, special considerations must be taken into account when developing an ADC. Unlike unmodified antibodies, an ADC must preferentially bind to tumor cells, internalize, and traffic to the appropriate intracellular compartment to release the payload. Parameters that can impact the pharmacological properties of this class of therapeutics include the selection of the payload, the type of linker, and the methodology for payload drug conjugation. Despite a plethora of in vitro assays and in vivo models to screen and evaluate ADCs, the challenge remains to develop improved preclinical tools that will be more predictive of clinical outcome. This review will focus on preclinical considerations for clinically validated small molecule ADCs. In addition, the lessons learned from Mylotarg®, the first in class FDA-approved ADC, are highlighted.
Collapse
Affiliation(s)
- Gadi G Bornstein
- Centers for Therapeutic Innovation (CTI), Pfizer Inc., 450 East 29th Street, New York, New York, 10016, USA,
| |
Collapse
|
330
|
Dorywalska M, Strop P, Melton-Witt JA, Hasa-Moreno A, Farias SE, Galindo Casas M, Delaria K, Lui V, Poulsen K, Loo C, Krimm S, Bolton G, Moine L, Dushin R, Tran TT, Liu SH, Rickert M, Foletti D, Shelton DL, Pons J, Rajpal A. Effect of attachment site on stability of cleavable antibody drug conjugates. Bioconjug Chem 2015; 26:650-9. [PMID: 25643134 DOI: 10.1021/bc5005747] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The systemic stability of the antibody-drug linker is crucial for delivery of an intact antibody-drug conjugate (ADC) to target-expressing tumors. Linkers stable in circulation but readily processed in the target cell are necessary for both safety and potency of the delivered conjugate. Here, we report a range of stabilities for an auristatin-based payload site-specifically attached through a cleavable valine-citrulline-p-aminobenzylcarbamate (VC-PABC) linker across various sites on an antibody. We demonstrate that the conjugation site plays an important role in determining VC-PABC linker stability in mouse plasma, and that the stability of the linker positively correlates with ADC cytotoxic potency both in vitro and in vivo. Furthermore, we show that the VC-PABC cleavage in mouse plasma is not mediated by Cathepsin B, the protease thought to be primarily responsible for linker processing in the lysosomal degradation pathway. Although the VC-PABC cleavage is not detected in primate plasma in vitro, linker stabilization in the mouse is an essential prerequisite for designing successful efficacy and safety studies in rodents during preclinical stages of ADC programs. The divergence of linker metabolism in mouse plasma and its intracellular cleavage offers an opportunity for linker optimization in the circulation without compromising its efficient payload release in the target cell.
Collapse
Affiliation(s)
- Magdalena Dorywalska
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Pavel Strop
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Jody A Melton-Witt
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Adela Hasa-Moreno
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Santiago E Farias
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Meritxell Galindo Casas
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Kathy Delaria
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Victor Lui
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Kris Poulsen
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Carole Loo
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Stellanie Krimm
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Gary Bolton
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Ludivine Moine
- ‡Worldwide Medicinal Chemistry, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Russell Dushin
- ‡Worldwide Medicinal Chemistry, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Thomas-Toan Tran
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Shu-Hui Liu
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Mathias Rickert
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Davide Foletti
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - David L Shelton
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Jaume Pons
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| | - Arvind Rajpal
- †Rinat Laboratories, Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| |
Collapse
|
331
|
Dennler P, Bailey LK, Spycher PR, Schibli R, Fischer E. Microbial transglutaminase and c-myc-tag: a strong couple for the functionalization of antibody-like protein scaffolds from discovery platforms. Chembiochem 2015; 16:861-7. [PMID: 25688874 DOI: 10.1002/cbic.201500009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 12/30/2022]
Abstract
Antibody-like proteins selected from discovery platforms are preferentially functionalized by site-specific modification as this approach preserves the binding abilities and allows a side-by-side comparison of multiple conjugates. Here we present an enzymatic bioconjugation platform that targets the c-myc-tag peptide sequence (EQKLISEEDL) as a handle for the site-specific modification of antibody-like proteins. Microbial transglutaminase (MTGase) was exploited to form a stable isopeptide bond between the glutamine on the c-myc-tag and various primary-amine-functionalized substrates. We attached eight different functionalities to a c-myc-tagged antibody fragment and used these bioconjugates for downstream applications such as protein multimerization, immobilization on surfaces, fluorescence microscopy, fluorescence-activated cell sorting, and in vivo nuclear imaging. The results demonstrate the versatility of our conjugation strategy for transforming a c-myc-tagged protein into any desired probe.
Collapse
Affiliation(s)
- Patrick Dennler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA10A, 5232 Villigen PSI, (Switzerland)
| | | | | | | | | |
Collapse
|
332
|
Lhospice F, Brégeon D, Belmant C, Dennler P, Chiotellis A, Fischer E, Gauthier L, Boëdec A, Rispaud H, Savard-Chambard S, Represa A, Schneider N, Paturel C, Sapet M, Delcambre C, Ingoure S, Viaud N, Bonnafous C, Schibli R, Romagné F. Site-Specific Conjugation of Monomethyl Auristatin E to Anti-CD30 Antibodies Improves Their Pharmacokinetics and Therapeutic Index in Rodent Models. Mol Pharm 2015; 12:1863-71. [PMID: 25625323 DOI: 10.1021/mp500666j] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibody-drug conjugates (ADCs) have demonstrated clinical benefits that have led to the recent FDA approval of KADCYLA and ADCETRIS. Most ADCs that are currently in clinical use or development, including ADCETRIS, are produced by chemical conjugation of a toxin via either lysine or cysteine residues, inevitably leading to heterogeneous products with variable drug-to-antibody ratios (DARs). Here, we describe the in vitro and in vivo characterization of four novel ADCs that are based on the anti-CD30 antibody cAC10, which has the same polypeptide backbone as ADCETRIS, and compare the results with the latter. Bacterial transglutaminase (BTG) was exploited to site-specifically conjugate derivatives of monomethyl auristatin E (all comprising a cleavable linker) to the glutamine at positions 295 and 297 of cAC10, thereby yielding homogeneous ADCs with a DAR of 4. In vitro cell toxicity experiments using two different CD30-positive cell lines (Karpas 299 and Raji-CD30(+)) revealed comparable EC50 values for ADCETRIS (1.8 ± 0.4 and 3.6 ± 0.6 ng/mL, respectively) and the four cAC10-based ADCs (2.0 ± 0.4 to 4.9 ± 1.0 ng/mL). Quantitative time-dependent in vivo biodistribution studies (3-96 h p.i.) in normal and xenografted (Karpas 299 cells) SCID mice were performed with a selected (125)I-radioiodinated cAC10 ADC and compared with that of (125)I-ADCETRIS. The chemo-enzymatically conjugated, radioiodinated ADC showed higher tumor uptake (17.84 ± 2.2% ID/g 24 h p.i.) than (125)I-ADCETRIS (10.5 ± 1.8% ID/g 24 h p.i.). Moreover, (125)I-ADCETRIS exhibited higher nontargeted liver and spleen uptake. In line with these results, the maximum tolerated dose of the BTG-coupled ADC (>60 mg/kg) was significantly higher than that of ADCETRIS (18 mg/kg) in rats. These results suggest that homogeneous ADCs display improved pharmacokinetics and better therapeutic indexes compared to those of chemically modified ADCs with variable DARs.
Collapse
Affiliation(s)
- F Lhospice
- †Innate Pharma SA, F13276 Marseille, France
| | - D Brégeon
- †Innate Pharma SA, F13276 Marseille, France
| | - C Belmant
- †Innate Pharma SA, F13276 Marseille, France
| | - P Dennler
- ‡Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - A Chiotellis
- §Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - E Fischer
- ‡Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - L Gauthier
- †Innate Pharma SA, F13276 Marseille, France
| | - A Boëdec
- †Innate Pharma SA, F13276 Marseille, France
| | - H Rispaud
- †Innate Pharma SA, F13276 Marseille, France
| | | | - A Represa
- †Innate Pharma SA, F13276 Marseille, France
| | | | - C Paturel
- †Innate Pharma SA, F13276 Marseille, France
| | - M Sapet
- †Innate Pharma SA, F13276 Marseille, France
| | | | - S Ingoure
- †Innate Pharma SA, F13276 Marseille, France
| | - N Viaud
- †Innate Pharma SA, F13276 Marseille, France
| | | | - R Schibli
- ‡Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland.,§Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - F Romagné
- ∥MI-mAbs (C/0 CIML), Parc Scientifique et Technologique de Luminy, Avenue de Luminy case 906, F13288 Marseille Cedex 9, France
| |
Collapse
|
333
|
Generating Site-Specifically Modified Proteins via a Versatile and Stable Nucleophilic Carbon Ligation. ACTA ACUST UNITED AC 2015; 22:293-8. [DOI: 10.1016/j.chembiol.2014.11.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/15/2014] [Accepted: 11/25/2014] [Indexed: 01/20/2023]
|
334
|
Agarwal P, Bertozzi CR. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem 2015; 26:176-92. [PMID: 25494884 PMCID: PMC4335810 DOI: 10.1021/bc5004982] [Citation(s) in RCA: 450] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Antibody–drug
conjugates (ADCs) combine the specificity
of antibodies with the potency of small molecules to create targeted
drugs. Despite the simplicity of this concept, generation of clinically
successful ADCs has been very difficult. Over the past several decades,
scientists have learned a great deal about the constraints on antibodies,
linkers, and drugs as they relate to successful construction of ADCs.
Once these components are in hand, most ADCs are prepared by nonspecific
modification of antibody lysine or cysteine residues with drug-linker
reagents, which results in heterogeneous product mixtures that cannot
be further purified. With advances in the fields of bioorthogonal
chemistry and protein engineering, there is growing interest in producing
ADCs by site-specific conjugation to the antibody, yielding more homogeneous
products that have demonstrated benefits over their heterogeneous
counterparts in vivo. Here, we chronicle the development
of a multitude of site-specific conjugation strategies for assembly
of ADCs and provide a comprehensive account of key advances and their
roots in the fields of bioorthogonal chemistry and protein engineering.
Collapse
Affiliation(s)
- Paresh Agarwal
- Departments of Chemistry and ‡Molecular and Cell Biology and §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States
| | | |
Collapse
|
335
|
McCombs JR, Owen SC. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS JOURNAL 2015; 17:339-51. [PMID: 25604608 DOI: 10.1208/s12248-014-9710-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/19/2014] [Indexed: 11/30/2022]
Abstract
Antibody drug conjugates (ADCs) have emerged as an important pharmaceutical class of drugs designed to harness the specificity of antibodies with the potency of small molecule therapeutics. The three main components of ADCs are the antibody, the linker, and the payload; the majority of early work focused intensely on improving the functionality of these pieces. Recently, considerable attention has been focused on developing methods to control the site and number of linker/drug conjugated to the antibody, with the aim of producing more homogenous ADCs. In this article, we review popular conjugation methods and highlight recent approaches including "click" conjugation and enzymatic ligation. We discuss current linker technology, contrasting the characteristics of cleavable and non-cleavable linkers, and summarize the essential properties of ADC payload, centering on chemotherapeutics. In addition, we report on the progress in characterizing to determine physicochemical properties and on advances in purifying to obtain homogenous products. Establishing a set of selection and analytical criteria will facilitate the translation of novel ADCs and ensure the production of effective biosimilars.
Collapse
Affiliation(s)
- Jessica R McCombs
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S. 2000 E., Salt Lake City, UT, 84112, USA
| | | |
Collapse
|
336
|
Evolving Strategies for Target Selection for Antibody-Drug Conjugates. Pharm Res 2015; 32:3494-507. [PMID: 25585957 DOI: 10.1007/s11095-015-1624-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/06/2015] [Indexed: 01/06/2023]
Abstract
Antibody-drug conjugates (ADCs) represent a promising modality for the treatment of cancer. The therapeutic strategy is to deliver a potent drug preferentially to the tumor and not normal tissues by attaching the drug to an antibody that recognizes a tumor antigen. The selection of antigen targets is critical to enabling a therapeutic window for the ADC and has proven to be surprisingly complex. We surveyed the tumor and normal tissue expression profiles of the targets of ADCs currently in clinical development. Our analysis demonstrates a surprisingly broad range of expression profiles and the inability to formalize any optimal parameters for an ADC target. In this context, we discuss additional considerations for ADC target selection, including interdependencies among biophysical properties of the drug, biological functions of the target and strategies for clinical development. The TPBG (5T4) oncofetal antigen and the anti-TPBG ADC A1-mcMMAF are highlighted to demonstrate the relevance of the target's biological function. Emerging platform technologies and novel biological insights are expanding ADC target space and transforming strategies for target selection.
Collapse
|
337
|
Selecting an Optimal Antibody for Antibody- Drug Conjugate Therapy. ANTIBODY-DRUG CONJUGATES 2015. [DOI: 10.1007/978-3-319-13081-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
338
|
Leder L. Site-specific protein labeling in the pharmaceutical industry: experiences from novartis drug discovery. Methods Mol Biol 2015; 1266:7-27. [PMID: 25560065 DOI: 10.1007/978-1-4939-2272-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chemically modified proteins play an important role in several fields of pharmaceutical R&D, starting from various activities in drug discovery all the way down to biopharmaceuticals with improved properties such as antibody-drug conjugates. In the first part of the present chapter the significance and use of labeled proteins in biophysical methods, biochemical and cellular assays, in vivo imaging, and biopharmaceuticals is reviewed in general. In this context, the most relevant methods for site-specific modification of proteins and their application are also described. In the second part of the chapter, in-house (Novartis) results and experience with different techniques for selective protein labeling are discussed, with a focus on chemical or enzymatic (Avi-tag) biotinylation of proteins and their application in biophysical and biochemical assays. It can be concluded that while modern methods of site-specific protein labeling offer new possibilities for pharmaceutical R&D, classical methods are still the mainstay mainly due to being well established. However, site-specific protein labeling is expected to increase in importance, in particular for antibody-drug conjugates and other chemically modified biopharmaceuticals.
Collapse
Affiliation(s)
- Lukas Leder
- Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Novartis Campus, 4056, Basel, Switzerland,
| |
Collapse
|
339
|
Kline T, Steiner AR, Penta K, Sato AK, Hallam TJ, Yin G. Methods to Make Homogenous Antibody Drug Conjugates. Pharm Res 2014; 32:3480-93. [PMID: 25511917 PMCID: PMC4596908 DOI: 10.1007/s11095-014-1596-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
Antibody drug conjugates (ADCs) have progressed from hypothesis to approved therapeutics in less than 30 years, and the technologies available to modify both the antibodies and the cytotoxic drugs are expanding rapidly. For reasons well reviewed previously, the field is trending strongly toward homogeneous, defined antibody conjugation. In this review we present the antibody and small molecule chemistries that are currently used and being explored to develop specific, homogenous ADCs.
Collapse
Affiliation(s)
- Toni Kline
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA
| | - Alexander R Steiner
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA
| | - Kalyani Penta
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA
| | - Aaron K Sato
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA
| | - Trevor J Hallam
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA
| | - Gang Yin
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA.
| |
Collapse
|
340
|
Kamath AV, Iyer S. Preclinical Pharmacokinetic Considerations for the Development of Antibody Drug Conjugates. Pharm Res 2014; 32:3470-9. [PMID: 25446773 PMCID: PMC4596897 DOI: 10.1007/s11095-014-1584-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
Antibody drug conjugates (ADCs) are an emerging new class of targeted therapeutics for cancer that use antibodies to deliver cytotoxic drugs to cancer cells. There are two FDA approved ADCs on the market and over 30 ADCs in the clinical pipeline against a number of different cancer types. The structure of an ADC is very complex with multiple components and considerable efforts are ongoing to determine the attributes necessary for clinical success. Understanding the pharmacokinetics of an ADC and how it impacts efficacy and toxicity is a critical part of optimizing ADC design and delivery i.e., dose and schedule. This review discusses the pharmacokinetic considerations for an ADC and tools and strategies that can be used to evaluate molecules at the preclinical stage.
Collapse
Affiliation(s)
- Amrita V Kamath
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc, 1 DNA Way (Mailstop 463A), South San Francisco, CA, 94080, USA.
| | - Suhasini Iyer
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc, 1 DNA Way (Mailstop 463A), South San Francisco, CA, 94080, USA
| |
Collapse
|
341
|
Shefet-Carasso L, Benhar I. Antibody-targeted drugs and drug resistance--challenges and solutions. Drug Resist Updat 2014; 18:36-46. [PMID: 25476546 DOI: 10.1016/j.drup.2014.11.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 11/24/2022]
Abstract
Antibody-based therapy of various human malignancies has shown efficacy in the past 30 years and is now one of the most successful and leading strategies for targeted treatment of patients harboring hematological malignancies and solid tumors. Antibody-drug conjugates (ADCs) aim to take advantage of the affinity and specificity of monoclonal antibodies (mAbs) to selectively deliver potent cytotoxic drugs to antigen-expressing tumor cells. Key parameters for ADC include choosing the optimal components of the ADC (the antibody, the linker and the cytotoxic drug) and selecting the suitable cell-surface target antigen. Building on the success of recent FDA approval of brentuximab vedotin (Adcetris) and ado-trastuzumab emtansine (Kadcyla), ADCs are currently a class of drugs with a robust pipeline with clinical applications that are rapidly expanding. The more ADCs are being evaluated in preclinical models and clinical trials, the clearer are becoming the parameters and the challenges required for their therapeutic success. This rapidly growing knowledge and clinical experience are revealing novel modalities and mechanisms of resistance to ADCs, hence offering plausible solutions to such challenges. Here, we review the key parameters for designing a powerful ADC, focusing on how ADCs are addressing the challenge of multiple drug resistance (MDR) and its rational overcoming.
Collapse
Affiliation(s)
- LeeRon Shefet-Carasso
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
342
|
Klinguer-Hamour C, Strop P, Shah DK, Ducry L, Xu A, Beck A. World Antibody-Drug Conjugate Summit, October 15-16, 2013, San Francisco, CA. MAbs 2014; 6:18-29. [PMID: 24423618 PMCID: PMC3929441 DOI: 10.4161/mabs.27437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The World Antibody-Drug Conjugate (WADC) Summits organized by Hanson Wade are currently the largest meetings fully dedicated to ADCs. The first global ADC Summit was organized in Boston in October 2010. Since 2011, two WADC are held every year in Frankfurt and San Francisco, respectively. The 2013 WADC San Francisco event was structured around plenary sessions with keynote speakers from AbbVie, Agensys, ImmunoGen, Immunomedics, Genentech, Pfizer and Seattle Genetics. Parallel tracks were also organized addressing ADC discovery, development and optimization of chemistry, manufacturing and control (CMC) issues. Discovery and process scientists, regulatory experts (US Food and Drug Administration), academics and clinicians were present, including representatives from biotechnology firms (Concortis, CytomX Therapeutics, Glykos, Evonik, Igenica, Innate Pharma, Mersana Therapeutics, Polytherics, Quanta Biodesign, Redwood Bioscience, Sutro Biopharma, SynAffix), pharmaceutical companies (Amgen, Genmab, Johnson and Johnson, MedImmune, Novartis, Progenics, Takeda) and contract research or manufacturing organizations (Baxter, Bayer, BSP Pharmaceuticals, Fujifilm/Diosynth, Lonza, Pierre Fabre Contract Manufacturing, Piramal, SAFC, SafeBridge).
Collapse
Affiliation(s)
| | | | - Dhaval K Shah
- Department of Pharmaceutical Sciences; The State University of New York at Buffalo; Buffalo, NY USA
| | | | | | - Alain Beck
- Centre d'Immunologie Pierre Fabre; Saint Julien en Genevois, France
| |
Collapse
|
343
|
Abstract
Antibody drug conjugates (ADCs) are an emerging class of targeted therapeutics with the potential to improve therapeutic index over traditional chemotherapy. Drugs and linkers have been the current focus of ADC development, in addition to antibody and target selection. Recently, however, the importance of conjugate homogeneity has been realized. The current methods for drug attachment lead to a heterogeneous mixture, and some populations of that mixture have poor in vivo performance. New methods for site-specific drug attachment lead to more homogeneous conjugates and allow control of the site of drug attachment. These subtle improvements can have profound effects on in vivo efficacy and therapeutic index. This review examines current methods for site-specific drug conjugation to antibodies, and compares in vivo results with their non-specifically conjugated counterparts. The apparent improvement in pharmacokinetics and the reduced off target toxicity warrant further development of this site-specific modification approach for future ADC development.
Collapse
|
344
|
Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs 2014; 6:34-45. [PMID: 24423619 PMCID: PMC3929453 DOI: 10.4161/mabs.27022] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Antibody therapeutics have revolutionized the treatment of cancer over the past two decades. Antibodies that specifically bind tumor surface antigens can be effective therapeutics; however, many unmodified antibodies lack therapeutic activity. These antibodies can instead be applied successfully as guided missiles to deliver potent cytotoxic drugs in the form of antibody drug conjugates (ADCs). The success of ADCs is dependent on four factors—target antigen, antibody, linker, and payload. The field has made great progress in these areas, marked by the recent approval by the US Food and Drug Administration of two ADCs, brentuximab vedotin (Adcetris®) and ado-trastuzumab emtansine (Kadcyla®). However, the therapeutic window for many ADCs that are currently in pre-clinical or clinical development remains narrow and further improvements may be required to enhance the therapeutic potential of these ADCs. Production of ADCs is an area where improvement is needed because current methods yield heterogeneous mixtures that may include 0–8 drug species per antibody molecule. Site-specific conjugation has been recently shown to eliminate heterogeneity, improve conjugate stability, and increase the therapeutic window. Here, we review and describe various site-specific conjugation strategies that are currently used for the production of ADCs, including use of engineered cysteine residues, unnatural amino acids, and enzymatic conjugation through glycotransferases and transglutaminases. In addition, we also summarize differences among these methods and highlight critical considerations when building next-generation ADC therapeutics.
Collapse
Affiliation(s)
| | | | - Helga Raab
- Genentech, Inc; South San Francisco, CA USA
| | | | | |
Collapse
|
345
|
Wagner-Rousset E, Janin-Bussat MC, Colas O, Excoffier M, Ayoub D, Haeuw JF, Rilatt I, Perez M, Corvaïa N, Beck A. Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. MAbs 2014; 6:273-85. [PMID: 24135617 PMCID: PMC3929440 DOI: 10.4161/mabs.26773] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here we report the design and production of an antibody-fluorophore conjugate (AFC) as a non-toxic model of an antibody-drug conjugate (ADC). This AFC is based on the conjugation of dansyl sulfonamide ethyl amine (DSEA )-linker maleimide on interchain cysteines of trastuzumab used as a reference antibody. The resulting AFC was first characterized by routine analytical methods (SEC, SDS-PAGE, CE-SDS, HIC and native MS), resulting in similar chromatograms,electropherograms and mass spectra to those reported for hinge Cys-linked ADCs. IdeS digestion of the AFC was then performed, followed by reduction and analysis by liquid chromatography coupled to mass spectrometry analysis. Dye loading and distribution on light chain and Fd fragments were calculated, as well as the average dye to antibody ratio (DAR) for both monomeric and multimeric species. In addition, by analyzing the Fc fragment in the same run, full glycoprofiling and demonstration of the absence of additional conjugation was easily achieved. As for naked antibodies and Fc-fusion proteins, IdeS proteolytic digestion may rapidly become a reference analytical method at all stages of ADC discovery, preclinical and clinical development. The method can be routinely used for comparability assays, formulation, process scale-up and transfer, and to define critical quality attributes in a quality-by-design approach.
Collapse
|
346
|
Mills BJ, Laurence JS. Stability analysis of an inline peptide-based conjugate for metal delivery: nickel(II)-claMP Tag epidermal growth factor as a model system. J Pharm Sci 2014; 104:416-23. [PMID: 25212829 DOI: 10.1002/jps.24132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/11/2014] [Accepted: 07/30/2014] [Indexed: 01/25/2023]
Abstract
Metals are a key component of many diagnostic imaging and biotechnology applications, and the majority of cancer patients receive a platinum-based drug as part of their treatment. Significant effort has been devoted to developing tight binding synthetic chelators to enable effective targeted delivery of metal-based conjugates, with most successes involving lanthanides rather than transition metals for diagnostic imaging. Chemical conjugation modifies the protein's properties and generates a heterogeneous mixture of products. Chelator attachment is typically carried out by converting the amino group on lysines to an amide, which can impact the stability and solubility of the targeting protein and these properties vary among the set of individual conjugate species. Site-specific attachment is sought to reduce complexity and control stability. Here, the metal abstraction peptide technology was applied to create the claMP Tag, an inline platform for generating site-specific conjugates involving transition metals. The claMP Tag was genetically encoded into epidermal growth factor (EGF) and loaded with nickel(II) as a model system to demonstrate that the tag within the homogeneous inline conjugate presents sufficient solution stability to enable biotechnology applications. The structure and disulfide network of the protein and chemical stability of the claMP Tag and EGF components were characterized.
Collapse
Affiliation(s)
- Brittney J Mills
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, 66045
| | | |
Collapse
|
347
|
Liu T, Luo S, Wang Y, Tan X, Qi Q, Shi C. Synthesis and characterization of a glycine-modified heptamethine indocyanine dye for in vivo cancer-targeted near-infrared imaging. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1287-97. [PMID: 25246770 PMCID: PMC4166911 DOI: 10.2147/dddt.s65696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Near-infrared (NIR) fluorescent sensors have emerged as promising molecular tools for cancer imaging and detection in living systems. However, cancer NIR fluorescent sensors are very challenging to develop because they are required to exhibit good specificity and low toxicity as an eligible contrast agent. Here, we describe the synthesis of a new heptamethine indocyanine dye (NIR-27) modified with a glycine at the end of each N-alkyl side chain, and its biological characterization for in vivo cancer-targeted NIR imaging. In addition to its high specificity, NIR-27 also shows lower cytotoxicity than indocyanine green, a nonspecific NIR probe widely used in clinic. These characteristics suggest that NIR-27 is a promising prospect as a new NIR fluorescent sensor for sensitive cancer detection.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Yang Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Xu Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Qingrong Qi
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
348
|
Lyon RP, Setter JR, Bovee TD, Doronina SO, Hunter JH, Anderson ME, Balasubramanian CL, Duniho SM, Leiske CI, Li F, Senter PD. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol 2014; 32:1059-62. [PMID: 25194818 DOI: 10.1038/nbt.2968] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/26/2014] [Indexed: 01/20/2023]
Abstract
Many antibody-drug conjugates (ADCs) are unstable in vivo because they are formed from maleimide-containing components conjugated to reactive thiols. These thiosuccinimide linkages undergo two competing reactions in plasma: elimination of the maleimide through a retro-Michael reaction, which results in loss of drug-linker from the ADC, and hydrolysis of the thiosuccinimide ring, which results in a derivative that is resistant to the elimination reaction. In an effort to create linker technologies with improved stability characteristics, we used diaminopropionic acid (DPR) to prepare a drug-linker incorporating a basic amino group adjacent to the maleimide, positioned to provide intramolecular catalysis of thiosuccinimide ring hydrolysis. This basic group induces the thiosuccinimide to undergo rapid hydrolysis at neutral pH and room temperature. Once hydrolyzed, the drug-linker is no longer subject to maleimide elimination reactions, preventing nonspecific deconjugation. In vivo studies demonstrate that the increased stability characteristics can lead to improved ADC antitumor activity and reduced neutropenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fu Li
- Seattle Genetics, Bothell, Washington, USA
| | | |
Collapse
|
349
|
Hui JZ, Al Zaki A, Cheng Z, Popik V, Zhang H, Luning Prak ET, Tsourkas A. Facile method for the site-specific, covalent attachment of full-length IgG onto nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3354-63. [PMID: 24729432 PMCID: PMC4142076 DOI: 10.1002/smll.201303629] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/20/2014] [Indexed: 05/18/2023]
Abstract
Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non-site-specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non-natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry-compatible azide group onto the C-terminus of Protein Z during the recombinant protein purification step. This enabled the crosslinked-Protein Z-IgG complexes to be efficiently and site-specifically attached to aza-dibenzocyclooctyne-modified nanoparticles, via copper-free click chemistry.
Collapse
Affiliation(s)
- James Zhe Hui
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Ajlan Al Zaki
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Vladimir Popik
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Hongtao Zhang
- Department of Pathology and Lab Medicine, University of Pennsylvania, PA 19104, USA
| | - Eline T. Luning Prak
- Department of Pathology and Lab Medicine, University of Pennsylvania, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| |
Collapse
|
350
|
Hui JZ, Tsourkas A. Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG. Bioconjug Chem 2014; 25:1709-19. [PMID: 25121619 PMCID: PMC4166039 DOI: 10.1021/bc500305v] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody's antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community.
Collapse
Affiliation(s)
- James Z Hui
- Department of Bioengineering, University of Pennsylvania , 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|