301
|
Rosenberg T, Gal-Ben-Ari S, Dieterich DC, Kreutz MR, Ziv NE, Gundelfinger ED, Rosenblum K. The roles of protein expression in synaptic plasticity and memory consolidation. Front Mol Neurosci 2014; 7:86. [PMID: 25429258 PMCID: PMC4228929 DOI: 10.3389/fnmol.2014.00086] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/24/2014] [Indexed: 01/07/2023] Open
Abstract
The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation.
Collapse
Affiliation(s)
- Tali Rosenberg
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | | | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany ; Research Group Neuralomics, Leibniz Institute for Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Noam E Ziv
- Network Biology Research Laboratories and Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany ; Medical School, Otto von Guericke University Magdeburg, Germany
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; Center for Gene Manipulation in the Brain, University of Haifa Haifa, Israel
| |
Collapse
|
302
|
Barrantes FJ. Cell-surface translational dynamics of nicotinic acetylcholine receptors. Front Synaptic Neurosci 2014; 6:25. [PMID: 25414663 PMCID: PMC4220116 DOI: 10.3389/fnsyn.2014.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research, Faculty of Medical Sciences, Pontifical Catholic University of Argentina-National Scientific and Technical Research Council Buenos Aires, Argentina
| |
Collapse
|
303
|
Favela LH. Radical embodied cognitive neuroscience: addressing "grand challenges" of the mind sciences. Front Hum Neurosci 2014; 8:796. [PMID: 25339891 PMCID: PMC4187580 DOI: 10.3389/fnhum.2014.00796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/18/2014] [Indexed: 11/13/2022] Open
Abstract
It is becoming ever more accepted that investigations of mind span the brain, body, and environment. To broaden the scope of what is relevant in such investigations is to increase the amount of data scientists must reckon with. Thus, a major challenge facing scientists who study the mind is how to make big data intelligible both within and between fields. One way to face this challenge is to structure the data within a framework and to make it intelligible by means of a common theory. Radical embodied cognitive neuroscience can function as such a framework, with dynamical systems theory as its methodology, and self-organized criticality as its theory.
Collapse
Affiliation(s)
- Luis H Favela
- Department of Philosophy, University of Cincinnati Cincinnati, OH, USA ; Department of Psychology, Center for Cognition, Action, and Perception, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
304
|
Statman A, Kaufman M, Minerbi A, Ziv NE, Brenner N. Synaptic size dynamics as an effectively stochastic process. PLoS Comput Biol 2014; 10:e1003846. [PMID: 25275505 PMCID: PMC4183425 DOI: 10.1371/journal.pcbi.1003846] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/18/2014] [Indexed: 11/18/2022] Open
Abstract
Long-term, repeated measurements of individual synaptic properties have revealed that synapses can undergo significant directed and spontaneous changes over time scales of minutes to weeks. These changes are presumably driven by a large number of activity-dependent and independent molecular processes, yet how these processes integrate to determine the totality of synaptic size remains unknown. Here we propose, as an alternative to detailed, mechanistic descriptions, a statistical approach to synaptic size dynamics. The basic premise of this approach is that the integrated outcome of the myriad of processes that drive synaptic size dynamics are effectively described as a combination of multiplicative and additive processes, both of which are stochastic and taken from distributions parametrically affected by physiological signals. We show that this seemingly simple model, known in probability theory as the Kesten process, can generate rich dynamics which are qualitatively similar to the dynamics of individual glutamatergic synapses recorded in long-term time-lapse experiments in ex-vivo cortical networks. Moreover, we show that this stochastic model, which is insensitive to many of its underlying details, quantitatively captures the distributions of synaptic sizes measured in these experiments, the long-term stability of such distributions and their scaling in response to pharmacological manipulations. Finally, we show that the average kinetics of new postsynaptic density formation measured in such experiments is also faithfully captured by the same model. The model thus provides a useful framework for characterizing synapse size dynamics at steady state, during initial formation of such steady states, and during their convergence to new steady states following perturbations. These findings show the strength of a simple low dimensional statistical model to quantitatively describe synapse size dynamics as the integrated result of many underlying complex processes.
Collapse
Affiliation(s)
- Adiel Statman
- Department of Chemical Engineering, Technion, Haifa, Israel
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
| | - Maya Kaufman
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| | - Amir Minerbi
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| | - Noam E. Ziv
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| | - Naama Brenner
- Department of Chemical Engineering, Technion, Haifa, Israel
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
- * E-mail:
| |
Collapse
|
305
|
Petrini EM, Barberis A. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 2014; 8:300. [PMID: 25294987 PMCID: PMC4171989 DOI: 10.3389/fncel.2014.00300] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | - Andrea Barberis
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
306
|
Caroni P, Chowdhury A, Lahr M. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits. Trends Neurosci 2014; 37:604-14. [PMID: 25257207 DOI: 10.1016/j.tins.2014.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Learning can involve formation of new synapses and loss of synapses, providing memory traces of learned skills. Recent findings suggest that these synapse rearrangements reflect assembly of task-related sub-circuits from initially broadly distributed and sparse connectivity in the brain. These local circuit remodeling processes involve rapid emergence of synapses upon learning, followed by protracted validation involving strengthening of some new synapses, and selective elimination of others. The timing of these consolidation processes can vary. Here, we review these findings, focusing on how molecular/cellular mechanisms of synapse assembly, strengthening, and elimination might interface with circuit/system mechanisms of learning and memory consolidation. An integrated understanding of these learning-related processes should provide a better basis to elucidate how experience, genetic background, and disease influence brain function.
Collapse
Affiliation(s)
- Pico Caroni
- Friedrich Miescher Institut, Basel, Switzerland.
| | | | - Maria Lahr
- Friedrich Miescher Institut, Basel, Switzerland
| |
Collapse
|
307
|
Santos AI, Martínez-Ruiz A, Araújo IM. S-nitrosation and neuronal plasticity. Br J Pharmacol 2014; 172:1468-78. [PMID: 24962517 DOI: 10.1111/bph.12827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/08/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) has long been recognized as a multifaceted participant in brain physiology. Despite the knowledge that was gathered over many years regarding the contribution of NO to neuronal plasticity, for example the ability of the brain to change in response to new stimuli, only in recent years have we begun to understand how NO acts on the molecular and cellular level to orchestrate such important phenomena as synaptic plasticity (modification of the strength of existing synapses) or the formation of new synapses (synaptogenesis) and new neurons (neurogenesis). Post-translational modification of proteins by NO derivatives or reactive nitrogen species is a non-classical mechanism for signalling by NO. S-nitrosation is a reversible post-translational modification of thiol groups (mainly on cysteines) that may result in a change of function of the modified protein. S-nitrosation of key target proteins has emerged as a main regulatory mechanism by which NO can influence several levels of brain plasticity, which are reviewed in this work. Understanding how S-nitrosation contributes to neural plasticity can help us to better understand the physiology of these processes, and to better address pathological changes in plasticity that are involved in the pathophysiology of several neurological diseases.
Collapse
Affiliation(s)
- A I Santos
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
308
|
The X-linked mental retardation protein OPHN1 interacts with Homer1b/c to control spine endocytic zone positioning and expression of synaptic potentiation. J Neurosci 2014; 34:8665-71. [PMID: 24966368 DOI: 10.1523/jneurosci.0894-14.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At glutamatergic synapses, local endocytic recycling of AMPA receptors (AMPARs) is important for the supply of a mobile pool of AMPARs required for synaptic potentiation. This local recycling of AMPARs critically relies on the presence of an endocytic zone (EZ) near the postsynaptic density (PSD). The precise mechanisms that couple the EZ to the PSD still remain largely elusive, with the large GTPase Dynamin-3 and the multimeric PSD adaptor protein Homer1 as the two main players identified. Here, we demonstrate that a physical interaction between the X-linked mental retardation protein oligophrenin-1 (OPHN1) and Homer1b/c is crucial for the positioning of the EZ adjacent to the PSD, and present evidence that this interaction is important for OPHN1's role in controlling activity-dependent strengthening of excitatory synapses in the rat hippocampus. Disruption of the OPHN1-Homer1b/c interaction causes a displacement of EZs from the PSD, along with impaired AMPAR recycling and reduced AMPAR accumulation at synapses, in both basal conditions and conditions that can induce synaptic potentiation. Together, our findings unveil a novel role for OPHN1 as an interaction partner of Homer1b/c in spine EZ positioning, and provide new mechanistic insight into how genetic deficits in OPHN1 can lead to impaired synapse maturation and plasticity.
Collapse
|
309
|
Tracking single molecules at work in living cells. Nat Chem Biol 2014; 10:524-32. [PMID: 24937070 DOI: 10.1038/nchembio.1558] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/21/2014] [Indexed: 11/09/2022]
Abstract
Methods for imaging and tracking single molecules conjugated with fluorescent probes, called single-molecule tracking (SMT), are now providing researchers with the unprecedented ability to directly observe molecular behaviors and interactions in living cells. Current SMT methods are achieving almost the ultimate spatial precision and time resolution for tracking single molecules, determined by the currently available dyes. In cells, various molecular interactions and reactions occur as stochastic and probabilistic processes. SMT provides an ideal way to directly track these processes by observing individual molecules at work in living cells, leading to totally new views of the biochemical and molecular processes used by cells whether in signal transduction, gene regulation or formation and disintegration of macromolecular complexes. Here we review SMT methods, summarize the recent results obtained by SMT, including related superresolution microscopy data, and describe the special concerns when SMT applications are shifted from the in vitro paradigms to living cells.
Collapse
|
310
|
O’Rourke M, Gasperini R, Young KM. Adult myelination: wrapping up neuronal plasticity. Neural Regen Res 2014; 9:1261-4. [PMID: 25221576 PMCID: PMC4160850 DOI: 10.4103/1673-5374.137571] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 12/31/2022] Open
Abstract
In this review, we outline the major neural plasticity mechanisms that have been identified in the adult central nervous system (CNS), and offer a perspective on how they regulate CNS function. In particular we examine how myelin plasticity can operate alongside neurogenesis and synaptic plasticity to influence information processing and transfer in the mature CNS.
Collapse
Affiliation(s)
- Megan O’Rourke
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia
| | - Robert Gasperini
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia
- The School of Medicine, University of Tasmania, Hobart 7000, Australia
| | - Kaylene M. Young
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia
| |
Collapse
|
311
|
Petrini EM, Ravasenga T, Hausrat TJ, Iurilli G, Olcese U, Racine V, Sibarita JB, Jacob TC, Moss SJ, Benfenati F, Medini P, Kneussel M, Barberis A. Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nat Commun 2014; 5:3921. [PMID: 24894704 PMCID: PMC4059940 DOI: 10.1038/ncomms4921] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/17/2014] [Indexed: 11/09/2022] Open
Abstract
Postsynaptic long-term potentiation of inhibition (iLTP) can rely on increased GABAA receptors (GABA(A)Rs) at synapses by promoted exocytosis. However, the molecular mechanisms that enhance the clustering of postsynaptic GABA(A)Rs during iLTP remain obscure. Here we demonstrate that during chemically induced iLTP (chem-iLTP), GABA(A)Rs are immobilized and confined at synapses, as revealed by single-particle tracking of individual GABA(A)Rs in cultured hippocampal neurons. Chem-iLTP expression requires synaptic recruitment of the scaffold protein gephyrin from extrasynaptic areas, which in turn is promoted by CaMKII-dependent phosphorylation of GABA(A)R-β3-Ser(383). Impairment of gephyrin assembly prevents chem-iLTP and, in parallel, blocks the accumulation and immobilization of GABA(A)Rs at synapses. Importantly, an increase of gephyrin and GABA(A)R similar to those observed during chem-iLTP in cultures were found in the rat visual cortex following an experience-dependent plasticity protocol that potentiates inhibitory transmission in vivo. Thus, phospho-GABA(A)R-β3-dependent accumulation of gephyrin at synapses and receptor immobilization are crucial for iLTP expression and are likely to modulate network excitability.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Tiziana Ravasenga
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Torben J Hausrat
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg Eppendorf, D-20251 Hamburg, Germany
| | - Giuliano Iurilli
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Umberto Olcese
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Victor Racine
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, Singapore
| | - Jean-Baptiste Sibarita
- 1] Interdisciplinary Institute for Neuroscience, University of Bordeaux, F-33000 Bordeaux, France [2] CNRS UMR 5297, F-33000 Bordeaux, France
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University, 136 Harrison Avenue, Arnold 207 Boston, Massachusetts 0211, USA
| | - Fabio Benfenati
- 1] Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy [2] Department of Experimental Medicine, University of Genova, 16163 Genova, Italy
| | - Paolo Medini
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Matthias Kneussel
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg Eppendorf, D-20251 Hamburg, Germany
| | - Andrea Barberis
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
312
|
Abstract
The retromer complex is well known to mediate retrograde transport from endosomes to the Golgi. In a recent issue of Neuron, Choy et al. (2014) identify a function for retromer in supporting fast, local delivery of neurotransmitter receptors from endosomes to the dendritic plasma membrane.
Collapse
Affiliation(s)
- Ginny G Farias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - David C Gershlick
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
313
|
Abstract
The development of methods to follow the dynamics of synaptic molecules in living neurons has radically altered our view of the synapse, from that of a generally static structure to that of a dynamic molecular assembly at steady state. This view holds not only for relatively labile synaptic components, such as synaptic vesicles, cytoskeletal elements, and neurotransmitter receptors, but also for the numerous synaptic molecules known as scaffolding molecules, a generic name for a diverse class of molecules that organize synaptic function in time and space. Recent studies reveal that these molecules, which confer a degree of stability to synaptic assemblies over time scales of hours and days, are themselves subject to significant dynamics. Furthermore, these dynamics are probably not without effect; wherever studied, these seem to be associated with spontaneous changes in scaffold molecule content, synaptic size, and possibly synaptic function. This review describes the dynamics exhibited by synaptic scaffold molecules, their typical time scales, and the potential implications to our understanding of synaptic function.
Collapse
Affiliation(s)
- Noam E. Ziv
- Technion–Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
314
|
Garret M, Boué-Grabot E, Taly A. Long distance effect on ligand-gated ion channels extracellular domain may affect interactions with the intracellular machinery. Commun Integr Biol 2014; 7:e27984. [PMID: 25254078 PMCID: PMC4167410 DOI: 10.4161/cib.27984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 11/19/2022] Open
Abstract
Modulation of receptor trafficking is critical for controlling neurotransmission. A γ2(R43Q) point mutation on GABAA receptor subunit is linked to epilepsy in human. We recently analyzed the effect of this amino-acid substitution on GABAA receptor trafficking and showed that this mutation as well as agonist application, both affecting GABAA receptor extracellular domain, have an effect on receptor endocytosis. By comparing homology models based on ligand gated ion channels in their active and resting states, we reveal that the γ2R43 domain is located in a loop that is affected by motion resulting from receptor activation. Taken together, these results suggest that endocytosis of GABAA receptors is linked to agonist induced conformational changes. We propose that ligand or modulator binding is followed by a whole chain of interconnections, including the intracellular domain, that may influence ligand-gated channel trafficking.
Collapse
Affiliation(s)
- Maurice Garret
- Univ. Bordeaux; INCIA; UMR 5287; Bordeaux, France ; CNRS; INCIA; UMR 5287; Bordeaux, France
| | - Eric Boué-Grabot
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France ; CNRS; Institut des Maladies Neurodégénératives; UMR 5293; Bordeaux, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique (CNRS-Université Paris Diderot); Paris, France
| |
Collapse
|
315
|
Müller-Dahlhaus F, Vlachos A. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation. Front Mol Neurosci 2013; 6:50. [PMID: 24381540 PMCID: PMC3865432 DOI: 10.3389/fnmol.2013.00050] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/29/2013] [Indexed: 11/13/2022] Open
Abstract
Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neural plasticity is required to optimize current treatment protocols. Studies in small animals or appropriate in vitro preparations (including models of brain diseases) provide highly useful experimental approaches in this context. State-of-the-art electrophysiological and live-cell imaging techniques that are well established in basic neuroscience can help answering some of the major questions in the field, such as (i) which neural structures are activated during TMS, (ii) how does rTMS induce Hebbian plasticity, and (iii) are other forms of plasticity (e.g., metaplasticity, structural plasticity) induced by rTMS? We argue that data gained from these studies will support the development of more effective and specific applications of rTMS in clinical practice.
Collapse
Affiliation(s)
- Florian Müller-Dahlhaus
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen Tübingen, Germany
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|