301
|
Monsalve FA, Pyarasani RD, Delgado-Lopez F, Moore-Carrasco R. Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm 2013; 2013:549627. [PMID: 23781121 PMCID: PMC3678499 DOI: 10.1155/2013/549627] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/03/2013] [Accepted: 04/17/2013] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome is estimated to affect more than one in five adults, and its prevalence is growing in the adult and pediatric populations. The most widely recognized metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics commonly manifest a prothrombotic state and a proinflammatory state as well. Peroxisome proliferator-activated receptors (PPARs) may serve as potential therapeutic targets for treating the metabolic syndrome and its related risk factors. The PPARs are transcriptional factors belonging to the ligand-activated nuclear receptor superfamily. So far, three isoforms of PPARs have been identified, namely, PPAR- α, PPAR-β/δ, and PPAR-γ. Various endogenous and exogenous ligands of PPARs have been identified. PPAR- α and PPAR- γ are mainly involved in regulating lipid metabolism, insulin sensitivity, and glucose homeostasis, and their agonists are used in the treatment of hyperlipidemia and T2DM. Whereas PPAR- β / δ function is to regulate lipid metabolism, glucose homeostasis, anti-inflammation, and fatty acid oxidation and its agonists are used in the treatment of metabolic syndrome and cardiovascular diseases. This review mainly focuses on the biological role of PPARs in gene regulation and metabolic diseases, with particular focus on the therapeutic potential of PPAR modulators in the treatment of thrombosis.
Collapse
Affiliation(s)
- Francisco A. Monsalve
- Departamento Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad de Talca, Chile
- Instituto de Químicas y Recursos Naturales, Universidad de Talca, Chile
| | | | | | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad Ciencias de la Salud, Universidad de Talca, Chile
| |
Collapse
|
302
|
Zbidah M, Lupescu A, Herrmann T, Yang W, Foller M, Jilani K, Lang F. Effect of honokiol on erythrocytes. Toxicol In Vitro 2013; 27:1737-45. [PMID: 23673313 DOI: 10.1016/j.tiv.2013.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
Honokiol ((3,5-di-(2-propenyl)-1,1-biphenyl-2,2-diol), a component of Magnolia officinalis, stimulates apoptosis and is thus considered for the treatment of malignancy. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and by breakdown of cell membrane phosphatidylserine asymmetry with phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be triggered following increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). The present study explored, whether honokiol elicits eryptosis. Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, hemolysis from hemoglobin release, [Ca(2+)]i from Fluo3-fluorescence, and ceramide from fluorescent antibodies. As a result, a 48 h exposure to honokiol was followed by a slight but significant increase of [Ca(2+)]i (15 μM), significant decrease of forward scatter (5 μM), significant increase of annexin-V-binding (5 μM) and significant increase of ceramide formation (15 μM). Honokiol further induced slight, but significant hemolysis. Honokiol (15 μM) induced annexin-V-binding was significantly blunted but not abrogated in the nominal absence of extracellular Ca(2+). In conclusion, honokiol triggers suicidal erythrocyte death or eryptosis, an effect at least in part due to stimulation of Ca(2+) entry and ceramide formation.
Collapse
Affiliation(s)
- Mohanad Zbidah
- Department of Physiology, University of Tuebingen, Gmelinstraße 5, 72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
303
|
Magnolol ameliorates ligature-induced periodontitis in rats and osteoclastogenesis: in vivo and in vitro study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:634095. [PMID: 23573141 PMCID: PMC3618931 DOI: 10.1155/2013/634095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 11/17/2022]
Abstract
Periodontal disease characterized by alveolar bone resorption and bacterial pathogen-evoked inflammatory response has been believed to have an important impact on human oral health. The aim of this study was to evaluate whether magnolol, a main constituent of Magnolia officinalis, could inhibit the pathological features in ligature-induced periodontitis in rats and osteoclastogenesis. The sterile, 3–0 (diameter; 0.2 mm) black braided silk thread, was placed around the cervix of the upper second molars bilaterally and knotted medially to induce periodontitis. The morphological changes around the ligated molars and alveolar bone were examined by micro-CT. The distances between the amelocemental junction and the alveolar crest of the upper second molars bilaterally were measured to evaluate the alveolar bone loss. Administration of magnolol (100 mg/kg, p.o.) significantly inhibited alveolar bone resorption, the number of osteoclasts on bony surface, and protein expression of receptor activator of nuclear factor-κB ligand (RANKL), a key mediator promoting osteoclast differentiation, in ligated rats. Moreover, the ligature-induced neutrophil infiltration, expression of inducible nitric oxide synthase, cyclooxygenase-2, matrix metalloproteinase (MMP)-1 and MMP-9, superoxide formation, and nuclear factor-κB activation in inflamed gingival tissues were all attenuated by magnolol. In the in vitro study, magnolol also inhibited the growth of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans that are key pathogens initiating periodontal disease. Furthermore, magnolol dose dependently reduced RANKL-induced osteoclast differentiation from RAW264.7 macrophages, tartrate-resistant acid phosphatase (TRAP) activity of differentiated cells accompanied by a significant attenuation of resorption pit area caused by osteoclasts. Collectively, we demonstrated for the first time that magnolol significantly ameliorates the alveolar bone loss in ligature-induced experimental periodontitis by suppressing periodontopathic microorganism accumulation, NF-κB-mediated inflammatory mediator synthesis, RANKL formation, and osteoclastogenesis. These activities support that magnolol is a potential agent to treat periodontal disease.
Collapse
|
304
|
Lin CF, Hwang TL, Al-Suwayeh SA, Huang YL, Hung YY, Fang JY. Maximizing dermal targeting and minimizing transdermal penetration by magnolol/honokiol methoxylation. Int J Pharm 2013; 445:153-62. [PMID: 23380623 DOI: 10.1016/j.ijpharm.2013.01.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/17/2012] [Accepted: 01/24/2013] [Indexed: 01/27/2023]
Abstract
Magnolol and honokiol, predominant active compounds in the family Magnoliaceae, are known to exhibit strong anti-inflammatory activities against dermal disorders. We attempted to modify the structures of magnolol and honokiol by methoxylation to optimize the skin delivery ability. Absorption of these permeants into and through the skin was performed at both an infinite dose and saturated solubility. Superoxide anion and elastase released from human neutrophils were the biomarkers used to examine anti-inflammatory potencies of these permeants. The safety of the permeants was evaluated by keratinocyte viability and in vivo bioengineering techniques. Topical magnolol and honokiol at an infinite dose (7.5 mM) showed skin accumulations of 0.22 and 0.16 nmol/mg, respectively. Methoxylation significantly enhanced their skin absorption. Deposition amounts of dimethylmagnolol and dimethylhonokiol were respectively 15- and 7-fold greater than those of magnolol and honokiol. Contrary to the skin accumulation results, the transdermal penetration across skin decreased following methoxylation. No transdermal delivery occurred for dimethylhonokiol. Skin uptake of 4'-O-methylhonokiol was 2-fold higher than that of 2-O-methylhonokiol, although they are isomers. Methoxylated permeants demonstrated selective absorption into follicles, which showed 3-5-fold higher follicular amounts compared to magnolol and honokiol. The relative order of anti-inflammatory activities was honokiol>2-O-methylmagnolol>dimethylhonokiol>magnolol. The other compounds exhibited negligible or negative responses in activated neutrophils. Magnolol and honokiol induced slight but significant keratinocyte cytotoxicity and stratum corneum disruption. Daily administration of methoxylated permeants, especially dimethylhonokiol, produced no skin irritation for up to 7 days. Methoxylated magnolol and honokiol can be efficient and safe candidates for treating inflammatory skin disorders.
Collapse
Affiliation(s)
- Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
305
|
Chuang DY, Chan MH, Zong Y, Sheng W, He Y, Jiang JH, Simonyi A, Gu Z, Fritsche KL, Cui J, Lee JC, Folk WR, Lubahn DB, Sun AY, Sun GY. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. J Neuroinflammation 2013; 10:15. [PMID: 23356518 PMCID: PMC3576246 DOI: 10.1186/1742-2094-10-15] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/17/2013] [Indexed: 11/29/2022] Open
Abstract
Background The bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders. Magnolol (Mag) and honokiol (Hon) are isomers of polyphenolic compounds from the bark of Magnolia officinalis, and have been identified as major active components exhibiting anti-oxidative, anti-inflammatory, and neuroprotective effects. In this study, we investigate the ability of these isomers to suppress oxidative stress in neurons stimulated by the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) and oxidative and inflammatory responses in microglial cells activated by interferon-γ (IFNγ) and lipopolysaccharide (LPS). We also attempt to elucidate the mechanism and signaling pathways involved in cytokine-induced production of reactive oxygen species (ROS) in microglial cells. Methods Dihydroethidium (DHE) was used to assay superoxide production in neurons, while CM-H2DCF-DA was used to test for ROS production in murine (BV-2) and rat (HAPI) immortalized microglial cells. NADPH oxidase inhibitors (for example, diphenyleneiodonium (DPI), AEBSF, and apocynin) and immunocytochemistry targeting p47phox and gp91phox were used to assess the involvement of NADPH oxidase. Western blotting was used to assess iNOS and ERK1/2 expression, and the Griess reaction protocol was employed to determine nitric oxide (NO) concentration. Results Exposure of Hon and Mag (1–10 μM) to neurons for 24 h did not alter neuronal viability, but both compounds (10 μM) inhibited NMDA-stimulated superoxide production, a pathway known to involve NADPH oxidase. In microglial cells, Hon and Mag inhibited IFNγ±LPS-induced iNOS expression, NO, and ROS production. Studies with inhibitors and immunocytochemical assay further demonstrated the important role of IFNγ activating the NADPH oxidase through the p-ERK-dependent pathway. Hon and, to a lesser extent, Mag inhibited IFNγ-induced p-ERK1/2 and its downstream pathway for ROS and NO production. Conclusion This study highlights the important role of NADPH oxidase in mediating oxidative stress in neurons and microglial cells and has unveiled the role of IFNγ in stimulating the MAPK/ERK1/2 signaling pathway for activation of NADPH oxidase in microglial cells. Hon and Mag offer anti-oxidative or anti-inflammatory effects, at least in part, through suppressing IFNγ-induced p-ERK1/2 and its downstream pathway.
Collapse
Affiliation(s)
- Dennis Y Chuang
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Rempel V, Fuchs A, Hinz S, Karcz T, Lehr M, Koetter U, Müller CE. Magnolia Extract, Magnolol, and Metabolites: Activation of Cannabinoid CB2 Receptors and Blockade of the Related GPR55. ACS Med Chem Lett 2013; 4:41-5. [PMID: 24900561 DOI: 10.1021/ml300235q] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/14/2012] [Indexed: 01/08/2023] Open
Abstract
The bark of Magnolia officinalis is used in Asian traditional medicine for the treatment of anxiety, sleeping disorders, and allergic diseases. We found that the extract and its main bioactive constituents, magnolol and honokiol, can activate cannabinoid (CB) receptors. In cAMP accumulation studies, magnolol behaved as a partial agonist (EC50 = 3.28 μM) with selectivity for the CB2 subtype, while honokiol was less potent showing full agonistic activity at CB1 and antagonistic properties at CB2. We subsequently synthesized the major metabolites of magnolol and found that tetrahydromagnolol (7) was 19-fold more potent than magnolol (EC50 CB2 = 0.170 μM) exhibiting high selectivity versus CB1. Additionally, 7 behaved as an antagonist at GPR55, a CB-related orphan receptor (K B = 13.3 μM, β-arrestin translocation assay). Magnolol and its metabolites may contribute to the biological activities of Magnolia extract via the observed mechanisms of action. Furthermore, the biphenylic compound magnolol provides a simple novel lead structure for the development of agonists for CB receptors and antagonists for the related GPR55.
Collapse
Affiliation(s)
- Viktor Rempel
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Alexander Fuchs
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Tadeusz Karcz
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Hittorfstrasse 58-62,
D-48149 Münster, Germany
| | - Uwe Koetter
- CH-8592 Uttwil, Oberdorfstrasse 14, Switzerland
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
307
|
JJK694, a synthesized obovatol derivative, inhibits platelet activation by suppressing cyclooxygenase and lipoxygenase activities. Biosci Biotechnol Biochem 2012; 76:2038-43. [PMID: 23132562 DOI: 10.1271/bbb.120369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obovatol has various biological activities, including anti-proliferative, neurotrophic, anti-fibrillogenic, anti-platelet, anti-fungal and anti-inflammatory activities. In this study, we investigated the effects of JJK694, a synthesized obovatol derivative, on rabbit platelet activation and its molecular mechanisms. JJK694 significantly inhibited washed rabbit platelet aggregation and serotonin secretion induced by collagen and arachidonic acid, but had little effect on thrombin- or U46619-induced aggregation. These results suggest that JJK694 selectively inhibits collagen- and arachidonic acid-mediated signaling. JJK694 also showed a concentration-dependent decrease in cytosolic Ca(2+) mobilization, but it had no effect on arachidonic acid liberation. On the other hand, it significantly inhibited the formation of arachidonic acid metabolites, including thromboxane A(2) (TXA(2)), prostaglandin D(2), and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE), by suppression of cyclooxygenase (COX)-1 and lipoxygenase (LOX) activities. These results indicate that JJK694 hasanti-platelet activities through inhibition of arachidonic acid metabolite production by suppression of COX-1 and LOX activities.
Collapse
|
308
|
The antiplatelet activity of magnolol is mediated by PPAR-β/γ. Biochem Pharmacol 2012; 84:793-803. [PMID: 22750553 DOI: 10.1016/j.bcp.2012.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/13/2012] [Accepted: 06/21/2012] [Indexed: 11/20/2022]
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR) isoforms (α, β/δ, and γ) is known to inhibit platelet aggregation. In the present study, we examined whether PPARs-mediated pathways contribute to the antiplatelet activity of magnolol, a compound purified from Magnolia officinalis. Magnolol (20-60 μM) dose-dependently enhanced the activity and intracellular level of PPAR-β/γ in platelets. In the presence of selective PPAR-β antagonist (GSK0660) or PPAR-γ antagonist (GW9662), the inhibition of magnolol on collagen-induced platelet aggregation and intracellular Ca(2+) mobilization was significantly reversed. Moreover, magnolol-mediated up-regulation of NO/cyclic GMP/PKG pathway and Akt phosphorylation leading to increase of eNOS activity were markedly abolished by blocking PPAR-β/γ activity. Additionally, magnolol significantly inhibited collagen-induced PKCα activation through a PPAR-β/γ and PKCα interaction manner. The arachidonic acid (AA) or collagen-induced thromboxane B(2) formation and elevation of COX-1 activity caused by AA were also markedly attenuated by magnolol. However, these above effects of magnolol on platelet responses were strongly reduced by simultaneous addition of GSK0660 or GW9662, suggesting that PPAR-β/γ-mediated processes may account for magnolol-regulated antiplatelet mechanisms. Similarly, administration of PPAR-β/γ antagonists remarkably abolished the actions of magnolol in preventing platelet plug formation and prolonging bleeding time in mice. Taken together, we demonstrate for the first time that the antiplatelet and anti-thrombotic activities of magnolol are modulated by up-regulation of PPAR-β/γ-dependent pathways.
Collapse
|
309
|
Ellis LD, Soanes KH. A larval zebrafish model of bipolar disorder as a screening platform for neuro-therapeutics. Behav Brain Res 2012; 233:450-7. [PMID: 22677277 DOI: 10.1016/j.bbr.2012.05.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022]
Abstract
Modelling neurological diseases has proven extraordinarily difficult due to the phenotypic complexity of each disorder. The zebrafish has become a useful model system with which to study abnormal neurological and behavioural activity and holds promise as a model of human disease. While most of the disease modelling using zebrafish has made use of adults, larvae hold tremendous promise for the high-throughput screening of potential therapeutics. The further development of larval disease models will strengthen their ability to contribute to the drug screening process. Here we have used zebrafish larvae to model the symptoms of bipolar disorder by treating larvae with sub-convulsive concentrations of the GABA antagonist pentylenetetrazol (PTZ). A number of therapeutics that act on different targets, in addition to those that have been used to treat bipolar disorder, were tested against this model to assess its predictive value. Carbamazepine, valproic acid, baclofen and honokiol, were found to oppose various aspects of the PTZ-induced changes in activity. Lidocaine and haloperidol exacerbated the PTZ-induced activity changes and sulpiride had no effect. By comparing the degree of phenotypic rescue with the mechanism of action of each therapeutic we have shown that the low-concentration PTZ model can produce a number of intermediate phenotypes that model symptoms of bipolar disorder, may be useful in modelling other disease states, and will help predict the efficacy of novel therapeutics.
Collapse
Affiliation(s)
- Lee David Ellis
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | | |
Collapse
|
310
|
Honokiol inhibits HIF pathway and hypoxia-induced expression of histone lysine demethylases. Biochem Biophys Res Commun 2012; 422:369-74. [DOI: 10.1016/j.bbrc.2012.04.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 04/26/2012] [Indexed: 01/10/2023]
|
311
|
Lee YJ, Choi DY, Yun YP, Han SB, Kim HM, Lee K, Choi SH, Yang MP, Jeon HS, Jeong JH, Oh KW, Hong JT. Ethanol Extract of Magnolia officinalis
Prevents Lipopolysaccharide-Induced Memory Deficiency via Its Antineuroinflammatory and Antiamyloidogenic Effects. Phytother Res 2012; 27:438-47. [DOI: 10.1002/ptr.4740] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Young-Jung Lee
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- Medical Research Center; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- CBITRC; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Dong-Young Choi
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- Medical Research Center; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- CBITRC; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Yeo-Pyo Yun
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- Medical Research Center; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- CBITRC; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Sang Bae Han
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- Medical Research Center; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- CBITRC; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Hwan Mook Kim
- College of Pharmacy; Gachon University of Medicine and Science; Incheon 406-799 Korea
| | - Kiho Lee
- College of Pharmacy; Korea University; Jochiwon Chungnam 339-700 Korea
| | - Seok Hwa Choi
- College of Veterinary Medicine; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Mhan-Pyo Yang
- College of Veterinary Medicine; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Hyun Soo Jeon
- Department of Obstetrics and Gynecology, School of Medicine; Konkuk University, Chungju Hospital; Chungju Korea
| | - Jea-Hwang Jeong
- Department of Biosciences and Biomedicine; Chungbuk Provincial College; Okcheongun Chungbuk 373-807 Korea
| | - Ki-Wan Oh
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Jin Tae Hong
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- Medical Research Center; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- CBITRC; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| |
Collapse
|
312
|
Zhu L, Ge G, Liu Y, He G, Liang S, Fang Z, Dong P, Cao Y, Yang L. Potent and selective inhibition of magnolol on catalytic activities of UGT1A7 and 1A9. Xenobiotica 2012; 42:1001-8. [DOI: 10.3109/00498254.2012.681814] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
313
|
Lee B, Kwak JH, Huang SW, Jang JY, Lim S, Kwak YS, Lee K, Kim HS, Han SB, Hong JT, Lee H, Song S, Seo SY, Jung JK. Design and synthesis of 4-O-methylhonokiol analogs as inhibitors of cyclooxygenase-2 (COX-2) and PGF₁ production. Bioorg Med Chem 2012; 20:2860-8. [PMID: 22494844 DOI: 10.1016/j.bmc.2012.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 11/28/2022]
Abstract
A series of novel 4-O-methylhonokiol analogs were synthesized in light of revealing structure-activity relationship for inhibitory effect of COX-2 enzyme. The key strategy of the molecular design was oriented towards modification of the potential metabolic soft spots (e.g., phenol and olefin) or by altering the polar surface area via incorporating heterocycles such as isoxazole and triazole. Most of all exhibited the inhibitory effects on COX-2 and PGF(1) production but not macrophage NO production. Especially, aryl carbamates 10 and 11 exhibited more potent inhibitory activity against COX-2 and PGF(1) production.
Collapse
Affiliation(s)
- Bit Lee
- College of Pharmacy, Woosuk University, Wanju, Jeonbuk 565-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Lee YJ, Choi DY, Han SB, Kim YH, Kim KH, Hwang BY, Kang JK, Lee BJ, Oh KW, Hong JT. Inhibitory effect of ethanol extract of Magnolia officinalis on memory impairment and amyloidogenesis in a transgenic mouse model of Alzheimer's disease via regulating β-secretase activity. Phytother Res 2012; 26:1884-92. [PMID: 22431473 DOI: 10.1002/ptr.4643] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/22/2011] [Accepted: 01/26/2012] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by deposition of amyloid beta (Aβ) in the brain. The components of the herb Magnolia officinalis are known to have antiinflammatory, antioxidative and neuroprotective activities. In this study we investigated the effects of ethanol extract of M. officinalis on memory dysfunction and amyloidogenesis in a transgenic mouse model of AD. Oral pretreatment of ethanol extract of M. officinalis (10 mg/kg in 0.05% ethanol) into drinking water for 3 months inhibited memory impairment and Aβ deposition in the brain of Tg2576 mice. Ethanol extract of M. officinalis also decreased activity of β-secretase, cleaving Aβ from amyloid precursor protein (APP), and expression of β-site APP cleaving enzyme 1 (BACE1), APP and its product, C99. Our results showed that ethanol extract of M. officinalis effectively prevented memory impairment via down-regulating β-secretase activity.
Collapse
Affiliation(s)
- Young-Jung Lee
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Alexeev M, Grosenbaugh DK, Mott DD, Fisher JL. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABA(A) receptors. Neuropharmacology 2012; 62:2507-14. [PMID: 22445602 DOI: 10.1016/j.neuropharm.2012.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/01/2012] [Indexed: 12/16/2022]
Abstract
The National Center for Complementary and Alternative Medicine (NCCAM) estimates that nearly 40% of adults in the United States use alternative medicines, often in the form of an herbal supplement. Extracts from the tree bark of magnolia species have been used for centuries in traditional Chinese and Japanese medicines to treat a variety of neurological diseases, including anxiety, depression, and seizures. The active ingredients in the extracts have been identified as the bi-phenolic isomers magnolol and honokiol. These compounds were shown to enhance the activity of GABA(A) receptors, consistent with their biological effects. The GABA(A) receptors exhibit substantial subunit heterogeneity, which influences both their functional and pharmacological properties. We examined the activity of magnolol and honokiol at different populations of both neuronal and recombinant GABA(A) receptors to characterize their mechanism of action and to determine whether sensitivity to modulation was dependent upon the receptor's subunit composition. We found that magnolol and honokiol enhanced both phasic and tonic GABAergic neurotransmission in hippocampal dentate granule neurons. In addition, all recombinant receptors examined were sensitive to modulation, regardless of the identity of the α, β, or γ subunit subtype, although the compounds showed particularly high efficacy at δ-containing receptors. This direct positive modulation of both synaptic and extra-synaptic populations of GABA(A) receptors suggests that supplements containing magnolol and/or honokiol would be effective anxiolytics, sedatives, and anti-convulsants. However, significant side-effects and risk of drug interactions would also be expected.
Collapse
Affiliation(s)
- Mikhail Alexeev
- Honors College, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
316
|
Yu SX, Yan RY, Liang RX, Wang W, Yang B. Bioactive polar compounds from stem bark of Magnolia officinalis. Fitoterapia 2012; 83:356-61. [DOI: 10.1016/j.fitote.2011.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/20/2011] [Accepted: 11/20/2011] [Indexed: 11/28/2022]
|
317
|
Wang JH, Shih KS, Liou JP, Wu YW, Chang ASY, Wang KL, Tsai CL, Yang CR. Anti-arthritic effects of magnolol in human interleukin 1β-stimulated fibroblast-like synoviocytes and in a rat arthritis model. PLoS One 2012; 7:e31368. [PMID: 22359588 PMCID: PMC3281074 DOI: 10.1371/journal.pone.0031368] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/09/2012] [Indexed: 12/11/2022] Open
Abstract
Fibroblast-like synoviocytes (FLS) play an important role in the pathologic processes of destructive arthritis by producing a number of catabolic cytokines and metalloproteinases (MMPs). The expression of these mediators is controlled at the transcriptional level. The purposes of this study were to evaluate the anti-arthritic effects of magnolol (5,5'-Diallyl-biphenyl-2,2'-diol), the major bioactive component of the bark of Magnolia officinalis, by examining its inhibitory effects on inflammatory mediator secretion and the NF-κB and AP-1 activation pathways and to investigate its therapeutic effects on the development of arthritis in a rat model. The in vitro anti-arthritic activity of magnolol was tested on interleukin (IL)-1β-stimulated FLS by measuring levels of IL-6, cyclooxygenase-2, prostaglandin E(2), and matrix metalloproteinases (MMPs) by ELISA and RT-PCR. Further studies on how magnolol inhibits IL-1β-stimulated cytokine expression were performed using Western blots, reporter gene assay, electrophoretic mobility shift assay, and confocal microscope analysis. The in vivo anti-arthritic effects of magnolol were evaluated in a Mycobacterium butyricum-induced arthritis model in rats. Magnolol markedly inhibited IL-1β (10 ng/mL)-induced cytokine expression in a concentration-dependent manner (2.5-25 µg/mL). In clarifying the mechanisms involved, magnolol was found to inhibit the IL-1β-induced activation of the IKK/IκB/NF-κB and MAPKs pathways by suppressing the nuclear translocation and DNA binding activity of both transcription factors. In the animal model, magnolol (100 mg/kg) significantly inhibited paw swelling and reduced serum cytokine levels. Our results demonstrate that magnolol inhibits the development of arthritis, suggesting that it might provide a new therapeutic approach to inflammatory arthritis diseases.
Collapse
Affiliation(s)
- Jyh-Horng Wang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Kao-Shang Shih
- Orthopedic Department, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Wu
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Kang-Li Wang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Lin Tsai
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
318
|
Choi DY, Lee JW, Peng J, Lee YJ, Han JY, Lee YH, Choi IS, Han SB, Jung JK, Lee WS, Lee SH, Kwon BM, Oh KW, Hong JT. Obovatol improves cognitive functions in animal models for Alzheimer's disease. J Neurochem 2012; 120:1048-59. [PMID: 22212065 DOI: 10.1111/j.1471-4159.2011.07642.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Etiology of Alzheimer's disease (AD) is obscure, but neuroinflammation and accumulation of β-amyloid (Aβ) are implicated in pathogenesis of AD. We have shown anti-inflammatory and neurotrophic properties of obovatol, a biphenolic compound isolated from Magnolia obovata. In this study, we examined the effect of obovatol on cognitive deficits in two separate AD models: (i) mice that received intracerebroventricular (i.c.v.) infusion of Aβ(1-42) (2.0 μg/mouse) and (ii) Tg2576 mice-expressing mutant human amyloid precursor protein (K670N, M671L). Injection of Aβ(1-42) into lateral ventricle caused memory impairments in the Morris water maze and passive avoidance tasks, being associated with neuroinflammation. Aβ(1-42) -induced abnormality was significantly attenuated by administration of obovatol. When we analyzed with Tg2576 mice, long-term treatment of obovatol (1 mg/kg/day for 3 months) significantly improved cognitive function. In parallel with the improvement, treatment suppressed astroglial activation, BACE1 expression and NF-κB activity in the transgenic mice. Furthermore, obovatol potently inhibited fibrillation of Aβin vitro in a dose-dependent manner, as determined by Thioflavin T fluorescence and electron microscopic analysis. In conclusion, our data demonstrated that obovatol prevented memory impairments in experimental AD models, which could be attributable to amelioration of neuroinflammation and amyloidogenesis by inhibition of NF-κB signaling pathway and anti-fibrillogenic activity of obovatol.
Collapse
Affiliation(s)
- Dong-Young Choi
- College of Pharmacy and MRC, Chungbuk National University, Heungduk-gu, Cheongju, Chungbuk, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Ponnurangam S, Mammen JMV, Ramalingam S, He Z, Zhang Y, Umar S, Subramaniam D, Anant S. Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Mol Cancer Ther 2012; 11:963-72. [PMID: 22319203 DOI: 10.1158/1535-7163.mct-11-0999] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancer stem cells are implicated in resistance to ionizing radiation (IR) and chemotherapy. Honokiol, a biphenolic compound has been used in traditional Chinese medicine for treating various ailments. In this study, we determined the ability of honokiol to enhance the sensitivity of colon cancer stem cells to IR. The combination of honokiol and IR suppressed proliferation and colony formation while inducing apoptosis of colon cancer cells in culture. There were also reduced numbers and size of spheroids, which was coupled with reduced expression of cancer stem cell marker protein DCLK1. Flow cytometry studies confirmed that the honokiol-IR combination reduced the number of DCLK1+ cells. In addition, there were reduced levels of activated Notch-1, its ligand Jagged-1, and the downstream target gene Hes-1. Furthermore, expression of components of the Notch-1 activating γ-secretase complex, presenilin 1, nicastrin, Pen2, and APH-1 was also suppressed. On the other hand, the honokiol effects were mitigated when the Notch intracellular domain was expressed. To determine the effect of honokiol-IR combination on tumor growth in vivo, nude mice tumor xenografts were administered honokiol intraperitoneally and exposed to IR. The honokiol-IR combination significantly inhibited tumor xenograft growth. In addition, there were reduced levels of DCLK1 and the Notch signaling-related proteins in the xenograft tissues. Together, these data suggest that honokiol is a potent inhibitor of colon cancer growth that targets the stem cells by inhibiting the γ-secretase complex and the Notch signaling pathway. These studies warrant further clinical evaluation for the combination of honokiol and IR for treating colon cancers.
Collapse
Affiliation(s)
- Sivapriya Ponnurangam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
320
|
Choi DY, Lee JW, Lin G, Lee YK, Lee YH, Choi IS, Han SB, Jung JK, Kim YH, Kim KH, Oh KW, Hong JT, Lee MS. Obovatol attenuates LPS-induced memory impairments in mice via inhibition of NF-κB signaling pathway. Neurochem Int 2012; 60:68-77. [DOI: 10.1016/j.neuint.2011.11.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/18/2011] [Accepted: 11/08/2011] [Indexed: 01/22/2023]
|
321
|
Zhu L, Ge G, Zhang H, Liu H, He G, Liang S, Zhang Y, Fang Z, Dong P, Finel M, Yang L. Characterization of hepatic and intestinal glucuronidation of magnolol: application of the relative activity factor approach to decipher the contributions of multiple UDP-glucuronosyltransferase isoforms. Drug Metab Dispos 2011; 40:529-38. [PMID: 22180045 DOI: 10.1124/dmd.111.042192] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnolol is a food additive that is often found in mints and gums. Human exposure to this compound can reach a high dose; thus, characterization of magnolol disposition in humans is very important. Previous studies indicated that magnolol can undergo extensive glucuronidation in humans in vivo. In this study, in vitro assays were used to characterize the glucuronidation pathway in human liver and intestine. Assays with recombinant human UDP-glucuronosyltransferase enzymes (UGTs) revealed that multiple UGT isoforms were involved in magnolol glucuronidation, including UGT1A1, -1A3, -1A7, -1A8, -1A9, -1A10, and -2B7. Magnolol glucuronidation by human liver microsomes (HLM), human intestine microsomes (HIM), and most recombinant UGTs exhibited strong substrate inhibition kinetics. The degree of substrate inhibition was relatively low in the case of UGT1A10, whereas the reaction catalyzed by UGT1A9 followed biphasic kinetics. Chemical inhibition studies and the relative activity factor (RAF) approach were used to identify the individual UGTs that played important roles in magnolol glucuronidation in HLM and HIM. The results indicate that UGT2B7 is mainly responsible for the reaction in HLM, whereas UGT2B7 and UGT1A10 are significant contributors in HIM. In summary, the current study clarifies the glucuronidation pathway of magnolol and demonstrates that the RAF approach can be used as an efficient method for deciphering the roles of individual UGTs in a given glucuronidation pathway in the native tissue that is catalyzed by multiple isoforms with variable and atypical kinetics.
Collapse
Affiliation(s)
- Liangliang Zhu
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian, 116023 China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Chirumbolo S. Plant-derived extracts in the neuroscience of anxiety on animal models: biases and comments. Int J Neurosci 2011; 122:177-88. [PMID: 22050267 DOI: 10.3109/00207454.2011.635829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Generalized anxiety disorders probably represent one of the world's biggest mental health problems. A large number of studies have also shown that anxiety disorders and depression are often associated with quality of life impairments. As anxiety represents a big concern in public health, a substantial literature supports clinically important associations between psychiatric illness and chronic medical conditions. Actually, most research focuses on depression, finding that depression can adversely affect self-care and increase the risk of incident medical illness, complications, and mortality. Anxiety disorders are less well studied, but robust epidemiological and clinical evidences show that they play an equally important role. Recent reported articles have raised a debate about the effectiveness of some plant-derived extracts in anxiety-like models in mice. Biases about several aspects related with experimental setting, animal selection, environments, operators and investigators, selection and performance of behavioral tests, controls, results managing, and statistics are here discussed.
Collapse
|
323
|
Kwak JH, Cho YA, Jang JY, Seo SY, Lee H, Hong JT, Han SB, Lee K, Kwak YS, Jung JK. Expedient synthesis of 4-O-methylhonokiol via Suzuki–Miyaura cross-coupling. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
324
|
Chen YH, Huang PH, Lin FY, Chen WC, Chen YL, Yin WH, Man KM, Liu PL. Magnolol: A multifunctional compound isolated from the Chinese medicinal plant Magnolia officinalis. Eur J Integr Med 2011. [DOI: 10.1016/j.eujim.2011.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
325
|
Choi DY, Lee YJ, Hong JT, Lee HJ. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer's disease. Brain Res Bull 2011; 87:144-53. [PMID: 22155297 DOI: 10.1016/j.brainresbull.2011.11.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/06/2011] [Accepted: 11/17/2011] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and most common cause of dementia. However, there is no known way to halt or cure the neurodegenerative disease. Oxidative stress is a cardinal hallmark of the disease and has been considered as therapeutic target for AD treatment. Several factors may contribute to oxidative stress in AD brains. First, mitochondrion is a key player that produces reactive oxygen species (ROS). Mitochondrial dysfunction found in AD patients may exaggerate generation of ROS and oxidative stress. Second, amyloid-beta peptide generates ROS in the presence of metal ions such as Fe(2+) and Cu(2+). Third, activated glial cells in AD brains may produce excessive amount of superoxide and nitric oxide through NADPH oxidase and inducible nitric oxide synthase, respectively. Increased ROS can cause damage to protein, lipid and nucleic acids. Numerous studies demonstrated that natural polyphenolic compounds protect against various neurotoxic insults in vitro and in vivo AD models. In these studies, dietary polyphenolic compounds exhibit neuroprotective effects through scavenging free radicals and increasing antioxidant capacity. Furthermore, they could facilitate the endogenous antioxidant system by stimulating transcription. Some epidemiological and clinical studies highlighted their therapeutic potential for AD treatment. In this review, we will briefly discuss causes of oxidative stress in AD brains, and describe antioxidant neuroprotective effects and therapeutic potential for AD of selected natural polyphenolic compounds.
Collapse
Affiliation(s)
- Dong-Young Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | |
Collapse
|
326
|
He Z, Subramaniam D, Ramalingam S, Dhar A, Postier RG, Umar S, Zhang Y, Anant S. Honokiol radiosensitizes colorectal cancer cells: enhanced activity in cells with mismatch repair defects. Am J Physiol Gastrointest Liver Physiol 2011; 301:G929-37. [PMID: 21836060 PMCID: PMC3220322 DOI: 10.1152/ajpgi.00159.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/04/2011] [Indexed: 01/31/2023]
Abstract
DNA mismatch repair is required for correcting any mismatches that are created during replication and recombination, and a defective mismatch repair system contributes to DNA damage-induced growth arrest. The colorectal cancer cell line HCT116 is known to have a mutation in the hMLH1 mismatch repair gene resulting in microsatellite instability and defective mismatch repair. Honokiol is a biphenolic compound that has been used in traditional Chinese medicine for treating various ailments including cancer. This study was designed to test the hypothesis that honokiol enhances the radiosensitivity of cancer cells with mismatch repair defect (HCT116) compared with those that are mismatch repair proficient (HCT116-CH3). We first determined that the combination of honokiol and γ-irradiation treatment resulted in dose-dependent inhibition of proliferation and colony formation in both cell lines. However, the effects were more pronounced in HCT116 cells. Similarly, the combination induced higher levels of apoptosis (caspase 3 activation, Bax to Bcl2 ratio) in the HCT116 cells compared with HCT116-CH3 cells. Cell cycle analyses revealed higher levels of dead cells in HCT116 cells. The combination treatment reduced expression of cyclin A1 and D1 and increased phosphorylated p53 in both cell lines, although there were significantly lower amounts of phosphorylated p53 in the HCT116-CH3 cells, suggesting that high levels of hMLH1 reduce radiosensitivity. These data demonstrate that honokiol is highly effective in radiosensitizing colorectal cancer cells, especially those with a mismatch repair defect.
Collapse
Affiliation(s)
- Zhiyun He
- Department of Medicine, Lanzhou University Second Hospital, Gansu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Comparison of antioxidant abilities of magnolol and honokiol to scavenge radicals and to protect DNA. Biochimie 2011; 93:1755-60. [DOI: 10.1016/j.biochi.2011.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/10/2011] [Indexed: 11/22/2022]
|