301
|
Network approach of the conformational change of c-Src, a tyrosine kinase, by molecular dynamics simulation. Sci Rep 2018; 8:5673. [PMID: 29618744 PMCID: PMC5884825 DOI: 10.1038/s41598-018-23964-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
Non-receptor tyrosine kinase c-Src plays a critical role in numerous cellular signalling pathways. Activation of c-Src from its inactive to the active state involves large-scale conformational changes, and is controlled by the phosphorylation state of two major phosphorylation sites, Tyr416 and Tyr527. A detailed mechanism for the entire conformational transition of c-Src via phosphorylation control of Tyr416 and Tyr527 is still elusive. In this study, we investigated the inactive-to-active conformational change of c-Src by targeted molecular dynamics simulation. Based on the simulation, we proposed a dynamical scenario for the activation process of c-Src. A detailed study of the conformational transition pathway based on network analysis suggests that Lys321 plays a key role in the c-Src activation process.
Collapse
|
302
|
Kieken F, Loth K, van Nuland N, Tompa P, Lenaerts T. Chemical shift assignments of the partially deuterated Fyn SH2-SH3 domain. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:117-122. [PMID: 29224116 DOI: 10.1007/s12104-017-9792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1H, 15N and 13C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.
Collapse
Affiliation(s)
- Fabien Kieken
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussel, Belgium
- AI-lab, Vakgroep Computerwetenschappen, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), ULB-VUB, La Plaine Campus, Boulevard du Triomphe, CP 263, 1050, Brussels, Belgium
| | - Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS) UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans Cedex 2, France
- Collegium Sciences et Techniques, Université d'Orléans, rue de Chartres, 45100, Orléans, France
| | - Nico van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussel, Belgium
| | - Peter Tompa
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussel, Belgium
| | - Tom Lenaerts
- AI-lab, Vakgroep Computerwetenschappen, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Interuniversity Institute of Bioinformatics in Brussels (IB2), ULB-VUB, La Plaine Campus, Boulevard du Triomphe, CP 263, 1050, Brussels, Belgium.
- MLG, Départment d'Informatique, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212, 1050, Brussels, Belgium.
| |
Collapse
|
303
|
Yin X, Feng L, Ma D, Yin P, Wang X, Hou S, Hao Y, Zhang J, Xin M, Feng J. Roles of astrocytic connexin-43, hemichannels, and gap junctions in oxygen-glucose deprivation/reperfusion injury induced neuroinflammation and the possible regulatory mechanisms of salvianolic acid B and carbenoxolone. J Neuroinflammation 2018; 15:97. [PMID: 29587860 PMCID: PMC5872583 DOI: 10.1186/s12974-018-1127-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Glia-mediated neuroinflammation is related to brain injury exacerbation after cerebral ischemia/reperfusion (I/R) injury. Astrocytic hemichannels or gap junctions, which were mainly formed by connexin-43, have been implicated in I/R damage. However, the exact roles of astrocytic hemichannels and gap junction in neuroinflammatory responses induced by I/R injury remain unknown. Methods Primary cultured astrocytes were subjected to OGD/R injury, an in vitro model of I/R injury. Salvianolic acid B (SalB) or carbenoxolone (CBX) were applied for those astrocytes. Besides, Cx43 mimetic peptides Gap19 or Gap26 were also applied during OGD/R injury; Cx43 protein levels were determined by western blot and cytoimmunofluorescene staining, hemichannel activities by Ethidium bromide uptake and ATP concentration detection, and gap junction intercellular communication (GJIC) permeability by parachute assay. Further, astrocyte-conditioned medium (ACM) was collected and incubated with microglia. Meanwhile, ATP or apyrase were applied to explore the role of ATP during OGD/R injury. Microglial activation, M1/M2 phenotypes, and M1/M2-related cytokines were detected. Also, microglia-conditioned medium (MEM) was collected and incubated with astrocytes to further investigate its influence on astrocytic hemichannel activity and GJIC permeability. Lastly, effects of ACM and MCM on neuronal viability were detected by flow cytometry. Results We found that OGD/R induced abnormally opened hemichannels with increased ATP release and EtBr uptake but reduced GJIC permeability. WB tests showed decreased astrocytic plasma membrane’s Cx43, while showing an increase in cytoplasma. Treating OGD/R-injured microglia with ATP or OGD/R-ACM induced further microglial activation and secondary pro-inflammatory cytokine release, with the M1 phenotype predominating. Conversely, astrocytes incubated with OGD/R-MCM exhibited increased hemichannel opening but reduced GJIC coupling. Both SalB and CBX inhibited abnormal astrocytic hemichannel opening and ATP release and switched the activated microglial phenotype from M1 to M2, thus providing effective neuroprotection. Application of Gap19 or Gap26 showed similar results with CBX. We also found that OGD/R injury caused both plasma membrane p-Cx43(Ser265) and p-Src(Tyr416) significantly upregulated; application of SalB may be inhibiting Src kinase and attenuating Cx43 internalization. Meanwhile, CBX treatment induced obviously downregulation of p-Cx43(Ser368) and p-PKC(Ser729) protein levels in plasma membrane. Conclusions We propose a vicious cycle exists between astrocytic hemichannel and microglial activation after OGD/R injury, which would aggravate neuroinflammatory responses and neuronal damage. Astrocytic Cx43, hemichannels, and GJIC play critical roles in OGD/R injury-induced neuroinflammatory responses; treatment differentially targeting astrocytic Cx43, hemichannels, and GJIC may provide novel avenues for therapeutics during cerebral I/R injury. Electronic supplementary material The online version of this article (10.1186/s12974-018-1127-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiang Yin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Di Ma
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Ping Yin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Xinyu Wang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Jingdian Zhang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Meiying Xin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China.
| |
Collapse
|
304
|
Petrilli AM, Garcia J, Bott M, Klingeman Plati S, Dinh CT, Bracho OR, Yan D, Zou B, Mittal R, Telischi FF, Liu XZ, Chang LS, Welling DB, Copik AJ, Fernández-Valle C. Ponatinib promotes a G1 cell-cycle arrest of merlin/NF2-deficient human schwann cells. Oncotarget 2018; 8:31666-31681. [PMID: 28427224 PMCID: PMC5458238 DOI: 10.18632/oncotarget.15912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/20/2017] [Indexed: 02/04/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a genetic syndrome that predisposes individuals to multiple benign tumors of the central and peripheral nervous systems, including vestibular schwannomas. Currently, there are no FDA approved drug therapies for NF2. Loss of function of merlin encoded by the NF2 tumor suppressor gene leads to activation of multiple mitogenic signaling cascades, including platelet-derived growth factor receptor (PDGFR) and SRC in Schwann cells. The goal of this study was to determine whether ponatinib, an FDA-approved ABL/SRC inhibitor, reduced proliferation and/or survival of merlin-deficient human Schwann cells (HSC). Merlin-deficient HSC had higher levels of phosphorylated PDGFRα/β, and SRC than merlin-expressing HSC. A similar phosphorylation pattern was observed in phospho-protein arrays of human vestibular schwannoma samples compared to normal HSC. Ponatinib reduced merlin-deficient HSC viability in a dose-dependent manner by decreasing phosphorylation of PDGFRα/β, AKT, p70S6K, MEK1/2, ERK1/2 and STAT3. These changes were associated with decreased cyclin D1 and increased p27Kip1levels, leading to a G1 cell-cycle arrest as assessed by Western blotting and flow cytometry. Ponatinib did not modulate ABL, SRC, focal adhesion kinase (FAK), or paxillin phosphorylation levels. These results suggest that ponatinib is a potential therapeutic agent for NF2-associated schwannomas and warrants further in vivo investigation.
Collapse
Affiliation(s)
- Alejandra M Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Jeanine Garcia
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Marga Bott
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Stephani Klingeman Plati
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Christine T Dinh
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Olena R Bracho
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Denise Yan
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Bing Zou
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Rahul Mittal
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Fred F Telischi
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Xue-Zhong Liu
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - D Bradley Welling
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Current Affiliation: Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital and Harvard University, Boston, MA 02114, USA
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| |
Collapse
|
305
|
Bhoir S, Shaik A, Thiruvenkatam V, Kirubakaran S. High yield bacterial expression, purification and characterisation of bioactive Human Tousled-like Kinase 1B involved in cancer. Sci Rep 2018; 8:4796. [PMID: 29555908 PMCID: PMC5859067 DOI: 10.1038/s41598-018-22744-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
Human Tousled-like kinases (TLKs) are highly conserved serine/threonine protein kinases responsible for cell proliferation, DNA repair, and genome surveillance. Their possible involvement in cancer via efficient DNA repair mechanisms have made them clinically relevant molecular targets for anticancer therapy. Innovative approaches in chemical biology have played a key role in validating the importance of kinases as molecular targets. However, the detailed understanding of the protein structure and the mechanisms of protein-drug interaction through biochemical and biophysical techniques demands a method for the production of an active protein of exceptional stability and purity on a large scale. We have designed a bacterial expression system to express and purify biologically active, wild-type Human Tousled-like Kinase 1B (hTLK1B) by co-expression with the protein phosphatase from bacteriophage λ. We have obtained remarkably high amounts of the soluble and homogeneously dephosphorylated form of biologically active hTLK1B with our unique, custom-built vector design strategy. The recombinant hTLK1B can be used for the structural studies and may further facilitate the development of new TLK inhibitors for anti-cancer therapy using a structure-based drug design approach.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Dicipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Althaf Shaik
- Dicipline of Chemistry, Indian Institute of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Vijay Thiruvenkatam
- Dicipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355, Gujarat, India.
- Dicipline of Physics, Indian Institute of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355, Gujarat, India.
| | - Sivapriya Kirubakaran
- Dicipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355, Gujarat, India.
- Dicipline of Chemistry, Indian Institute of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
306
|
Roskoski R. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol Res 2018; 129:65-83. [DOI: 10.1016/j.phrs.2018.01.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/15/2022]
|
307
|
Zheng Z, Wang F, Aweya JJ, Li R, Yao D, Zhong M, Li S, Zhang Y. Comparative transcriptomic analysis of shrimp hemocytes in response to acute hepatopancreas necrosis disease (AHPND) causing Vibrio parahemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 74:10-18. [PMID: 29277694 DOI: 10.1016/j.fsi.2017.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
The recent emergence of acute hepatopancreas necrosis disease (AHPND) in shrimps has posed a major challenge in the shrimp aquaculture industry. The Pir toxin proteins carried by some strains of Vibrio parahaemolyticus are believed to play essential roles in the pathogenesis of AHPND. However, few studies have so far explored how the host immune system responds to these bacteria. In this study, AHPND V. parahaemolyticus (with Pir) and non-AHPND V. parahaemolyticus (without Pir) were injected into two groups of shrimps, and the hemocytes collected for comparative transcriptomic analyses. A total of 1064 differentially expressed genes (DEGs) were identified, of which 910 were up-regulated and 154 were down-regulated. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that many DEGs were involved in a number of biological processes such as cellular process, metabolic process and single-organism process in the AHPND V. parahaemolyticus injected group than the non-AHPND V. parahaemolyticus injected group. Among these, major metabolic processes such as carbohydrate metabolism, lipid metabolism and amino acid metabolism were further identified as the major responsive gene groups. We observed that genes involved in cell growth and anti-apoptosis including src, iap2, cas2, cytochrome P450, gst and cytochromecoxidase were strongly activated in the AHPND V. parahaemolyticus group than in the non-AHPND V. parahaemolyticus group. Collectively, our results unveiled that shrimp hemocytes respond to AHPND related strain of Vibrio parahaemolyticus infection at the transcriptional level, which is useful in furthering our understanding of AHPND.
Collapse
Affiliation(s)
- Zhihong Zheng
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | - Fan Wang
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | - Jude Juventus Aweya
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | - Ruiwei Li
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | - Defu Yao
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | - Mingqi Zhong
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | - Shengkang Li
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | - Yueling Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
308
|
Li H, Wang Y, Chen Z, Lu J, Pan J, Yu Y, Zhao Y, Zhang H, Hu T, Liu Q, Yang J. Novel multiple tyrosine kinase inhibitor ponatinib inhibits bFGF-activated signaling in neuroblastoma cells and suppresses neuroblastoma growth in vivo. Oncotarget 2018; 8:5874-5884. [PMID: 27564113 PMCID: PMC5351597 DOI: 10.18632/oncotarget.11580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common pediatric malignancies in children. Abnormal activation of receptor tyrosine kinases contributes to the pathological development of NB. Therefore, targeting tyrosine kinase receptors to cure NB is a promising strategy. Here, we report that a multi-targeted tyrosine kinase inhibitor ponatinib inhibited NB cell proliferation and induced NB cell apoptosis in a dose-dependent manner. In addition, ponatinib suppressed the colony formation ability of NB cells. Mechanistically, ponatinib effectively inhibited the FGFR1-activated signaling pathway. Ponatinib also enhanced the cytotoxic effects of doxorubicin on NB cells. Furthermore, ponatinib demonstrated anti-tumor efficacy in vivo by inhibiting tumor growth in an orthotopic xenograft NB mouse model. In summary, our results showed that ponatinib inhibited NB growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.,The Institute of Skull Base Surgery and Neurooncology at Hunan Province, 410008, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yongfeng Wang
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhenghu Chen
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jessie Pan
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ting Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.,The Institute of Skull Base Surgery and Neurooncology at Hunan Province, 410008, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.,The Institute of Skull Base Surgery and Neurooncology at Hunan Province, 410008, China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
309
|
Agarwal S, Ghosh R, Chen Z, Lakoma A, Gunaratne PH, Kim ES, Shohet JM. Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma. Oncotarget 2018; 7:24018-26. [PMID: 26993602 PMCID: PMC5029681 DOI: 10.18632/oncotarget.8116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
(NB) is the most common extracranial pediatric solid tumor with high mortality rates. The tyrosine kinase c-Src has been known to play an important role in differentiation of NB cells, but the mechanism of c-Src regulation has not been defined. Here, we characterize PAG1 (Cbp, Csk binding protein), a central inhibitor of c-Src and other Src family kinases, as a novel tumor suppressor in NB. Clinical cohort analysis demonstrate that low expression of PAG1 is a significant prognostic factor for high stage disease, increased relapse, and worse overall survival for children with NB. PAG1 knockdown in NB cells promotes proliferation and anchorage-independent colony formation with increased activation of AKT and ERK downstream of c-Src, while PAG1 overexpression significantly rescues these effects. In vivo, PAG1 overexpression significantly inhibits NB tumorigenicity in an orthotopic xenograft model. Our results establish PAG1 as a potent tumor suppressor in NB by inhibiting c-Src and downstream effector pathways. Thus, reactivation of PAG1 and inhibition of c-Src kinase activity represents an important novel therapeutic approach for high-risk NB.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rajib Ghosh
- Department of Biology & Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Zaowen Chen
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Anna Lakoma
- Michael E. DeBakey, Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Preethi H Gunaratne
- Department of Biology & Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Eugene S Kim
- Michael E. DeBakey, Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Surgery, Division of Pediatric Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
310
|
Perez M, Lucena-Cacace A, Marín-Gómez LM, Padillo-Ruiz J, Robles-Frias MJ, Saez C, Garcia-Carbonero R, Carnero A. Dasatinib, a Src inhibitor, sensitizes liver metastatic colorectal carcinoma to oxaliplatin in tumors with high levels of phospho-Src. Oncotarget 2018; 7:33111-24. [PMID: 27105527 PMCID: PMC5078079 DOI: 10.18632/oncotarget.8880] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
Despite the development of new antineoplastic agents for the treatment of colorectal cancer (CRC), oxaliplatin and fluoropyrimidines remain the most commonly employed drugs for the treatment of both early and advanced disease. Intrinsic or acquired resistance is, however, an important limitation to pharmacological therapy, and the development of chemosensitization strategies constitute a major goal with important clinical implications. In the present work, we determined that high levels of activated Src kinase, measured as phospho-Src at the Tyr419 residue in CRC cell lines, can promote colorectal carcinoma cell resistance to oxaliplatin, but not to 5-fluorouracil (5FU), and that inhibition of this protein restores sensitivity to oxaliplatin. Similar results were observed with in vivo patient-derived xenograft (PDX) models that were orthotopically grown in murine livers. In PDX tumor lines derived from human CRC liver metastasis, dasatinib, a Src inhibitor, increases sensitivity to oxaliplatin only in tumors with high p-Src. However, dasatinib did not modify sensitivity to 5FU in any of the models. Our data suggest that chemoresistance induced by p-Src is specific to oxaliplatin, and that p-Src levels can be used to identify patients who may benefit from this combination therapy. These results are relevant for clinicians as they identify a novel biomarker of drug resistance that is suitable to pharmacological manipulation.
Collapse
Affiliation(s)
- Marco Perez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Luis Miguel Marín-Gómez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain.,Department of General Surgery, Virgen del Rocío University Hospital, Seville, Spain
| | - Javier Padillo-Ruiz
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain.,Department of General Surgery, Virgen del Rocío University Hospital, Seville, Spain
| | - Maria Jose Robles-Frias
- Department of Pathology, Virgen del Rocío University Hospital, Seville, Spain.,Present address: HUVR-IBiS Biobank, Virgen del Rocío University Hospital, Seville, Spain
| | - Carmen Saez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain.,Department of Pathology, Virgen del Rocío University Hospital, Seville, Spain
| | - Rocio Garcia-Carbonero
- Department of Medical Oncology, Virgen del Rocío University Hospital, Seville, Spain.,Present address: Department of Medical Oncology, 12 of October University Hospital, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
311
|
Silencing of peroxiredoxin II by promoter methylation is necessary for the survival and migration of gastric cancer cells. Exp Mol Med 2018; 50:e443. [PMID: 29422545 PMCID: PMC5903821 DOI: 10.1038/emm.2017.267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
Peroxiredoxin (Prx), a family of ubiquitous thiol peroxidases, functions as a redox signaling regulator that controls cellular H2O2 in mammalian cells and has recently received attention for being overexpressed in various cancer types. In this study, we show that Prx type II (PrxII) is rather silenced in gastric cancer cells. PrxII expression is severely downregulated in 9 out of the 28 gastric cancer cell lines. Strikingly, PrxII expression is completely lost in three cell lines, MKN28, MKN74 and SNU484. Loss of PrxII expression is due to DNA methyltransferase 1-dependent methylation at the promoter region of the PrxII gene. Restoration of PrxII expression using a retroviral system markedly reduces the colony-forming ability and migratory activity of both MKN28 and SNU484 cells by inhibiting Src kinase. Mechanistically, PrxII peroxidase activity is essential for regulating gastric cancer cell migration. Bioinformatics analysis from The Cancer Genome Atlas stomach cancer data (STAD) revealed significantly low PrxII expression in gastric cancer patients and a negative correlation between PrxII expression and methylation levels. More importantly, low PrxII expression also strongly correlates with poor survival in cancer patients. Thus our study suggests that PrxII may be the first thiol peroxidase that simultaneously regulates both survival and metastasis in gastric cancer cells with high clinical relevance.
Collapse
|
312
|
Bureau JF, Cassonnet P, Grange L, Dessapt J, Jones L, Demeret C, Sakuntabhai A, Jacob Y. The SRC-family tyrosine kinase HCK shapes the landscape of SKAP2 interactome. Oncotarget 2018; 9:13102-13115. [PMID: 29568343 PMCID: PMC5862564 DOI: 10.18632/oncotarget.24424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022] Open
Abstract
The SRC Kinase Adaptor Phosphoprotein 2 (SKAP2) is a broadly expressed adaptor associated with the control of actin-polymerization, cell migration, and oncogenesis. After activation of different receptors at the cell surface, this dimeric protein serves as a platform for assembling other adaptors such as FYB and some SRC family kinase members, although these mechanisms are still poorly understood. The goal of this study is to map the SKAP2 interactome and characterize which domains or binding motifs are involved in these interactions. This is a prerequisite to finely analyze how these pathways are integrated in the cell machinery and to study their role in cancer and other human diseases when this network of interactions is perturbed. In this work, the domain and the binding motif of fourteen proteins interacting with SKAP2 were precisely defined and a new interactor, FAM102A was discovered. Herein, a fine-tuning between the binding of SRC kinases and their activation was identified. This last process, which depends on SKAP2 dimerization, indirectly affects the binding of FYB protein. Analysis of conformational changes associated with activation/inhibition of SRC family members, presently limited to their effect on kinase activity, is extended to their interactive network, which paves the way for therapeutic development.
Collapse
Affiliation(s)
- Jean-François Bureau
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Patricia Cassonnet
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Laura Grange
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Julien Dessapt
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Louis Jones
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Caroline Demeret
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Anavaj Sakuntabhai
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| |
Collapse
|
313
|
Wang X, Wei X, Yuan Y, Sun Q, Zhan J, Zhang J, Tang Y, Li F, Ding L, Ye Q, Zhang H. Src-mediated phosphorylation converts FHL1 from tumor suppressor to tumor promoter. J Cell Biol 2018; 217:1335-1351. [PMID: 29434030 PMCID: PMC5881501 DOI: 10.1083/jcb.201708064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
FHL1 has been recognized for a long time as a tumor suppressor protein that associates with both the actin cytoskeleton and the transcriptional machinery. We present in this study a paradigm that phosphorylated FHL1 functions as an oncogenic protein by promoting tumor cell proliferation. The cytosolic tyrosine kinase Src interacts with and phosphorylates FHL1 at Y149 and Y272, which switches FHL1 from a tumor suppressor to a cell growth accelerator. Phosphorylated FHL1 translocates into the nucleus, where it binds to the transcription factor BCLAF1 and promotes tumor cell growth. Importantly, the phosphorylation of FHL1 is increased in tissues from lung adenocarcinoma patients despite the down-regulation of total FHL1 expression. Kindlin-2 was found to interact with FHL1 and recruit FHL1 to focal adhesions. Kindlin-2 competes with Src for binding to FHL1 and suppresses Src-mediated FHL1 phosphorylation. Collectively, we demonstrate that FHL1 can either suppress or promote tumor cell growth depending on the status of the sites for phosphorylation by Src.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Xiaofan Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yang Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Qingrui Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Feng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| |
Collapse
|
314
|
Wang X, Zhao X, Yi Z, Ma B, Wang H, Pu Y, Wang J, Wang S. WNT5A promotes migration and invasion of human osteosarcoma cells via SRC/ERK/MMP-14 pathway. Cell Biol Int 2018; 42:598-607. [PMID: 29345412 DOI: 10.1002/cbin.10936] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/13/2018] [Indexed: 01/01/2023]
Abstract
WNT5A, a representative ligand of activating several non-canonical WNT signal pathways, plays significant roles in oncogenesis and tumor inhibition. It has been shown that the non-receptor tyrosine kinase SRC is required for WNT5A-induced invasion of osteosarcoma cells. However, the precise molecular mechanism underlying WNT5A/SRC-mediated osteosarcoma cells invasion remains poorly defined. The study was designed to explore the role of ERK1/2 in WNT5A/SRC-induced osteosarcoma cells invasion and the downstream target of the SRC/ERK1/2 signalings. We found that WNT5A (100 ng/mL) remarkably stimulated migration and invasion of human osteosarcoma MG-63 cells, whereas inhibiting either SRC kinase activity by siRNA-mediated SRC silence or ERK1/2 phosphorylation by PD98059 treatment suppressed these effects, which suggested that the activation of SRC and ERK1/2 is essential for WNT5A-induced MG-63 cells migration and invasion. Furthermore, ERK1/2 phosphorylation induced by WNT5A was dramatically blocked by SRC siRNA. Additionally, our study further demonstrated that MMP-14 was upregulated after exposure to WNT5A in MG-63 cells, and the increased expression was blocked by SRC siRNA or PD98059. Collectively, these results indicate that WNT5A activates SRC/ERK1/2 signal pathway, leading to the upregulation of MMP-14 expression and MG-63 cells migration and invasion.
Collapse
Affiliation(s)
- Xingwen Wang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Xin Zhao
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Zhigang Yi
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Bing Ma
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Hong Wang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Yanchuan Pu
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Jing Wang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| | - Shuanke Wang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
315
|
Sousa S, Clézardin P. Bone-Targeted Therapies in Cancer-Induced Bone Disease. Calcif Tissue Int 2018; 102:227-250. [PMID: 29079995 DOI: 10.1007/s00223-017-0353-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2017] [Indexed: 01/14/2023]
Abstract
Cancer-induced bone disease is a major source of morbidity and mortality in cancer patients. Thus, effective bone-targeted therapies are essential to improve disease-free, overall survival and quality of life of cancer patients with bone metastases. Depending of the cancer-type, bone metastases mainly involve the modulation of osteoclast and/or osteoblast activity by tumour cells. To inhibit metastatic bone disease effectively, it is imperative to understand its underlying mechanisms and identify the target cells for therapy. If the aim is to prevent bone metastasis, it is essential to target not only bone metastatic features in the tumour cells, but also tumour-nurturing bone microenvironment properties. The currently available bone-targeted agents mainly affect osteoclasts, inhibiting bone resorption (e.g. bisphosphonates, denosumab). Some agents targeting osteoblasts begin to emerge which target osteoblasts (e.g. romosozumab), activating bone formation. Moreover, certain drugs initially thought to target only osteoclasts are now known to have a dual action (activating osteoblasts and inhibiting osteoclasts, e.g. proteasome inhibitors). This review will focus on the evolution of bone-targeted therapies for the treatment of cancer-induced bone disease, summarizing preclinical and clinical findings obtained with anti-resorptive and bone anabolic therapies.
Collapse
Affiliation(s)
- Sofia Sousa
- National Institute of Health and Medical Research (INSERM), UMR 1033, 69372, Lyon, France.
- Faculty of Medicine Laennec, University of Lyon-1, 69372, Villeurbanne, France.
| | - Philippe Clézardin
- National Institute of Health and Medical Research (INSERM), UMR 1033, 69372, Lyon, France
- Faculty of Medicine Laennec, University of Lyon-1, 69372, Villeurbanne, France
- European Cancer and Bone Metastasis Laboratory, Department of Bone Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
316
|
Li L, Tong M, Zhao YT, He Y, Zhou HY, Zhang GF, Zhang YJ. Membrane translocation of Bruton kinase in multiple myeloma cells is associated with osteoclastogenic phenotype in bone metastatic lesions. Medicine (Baltimore) 2018; 97:e9482. [PMID: 29480835 PMCID: PMC5943844 DOI: 10.1097/md.0000000000009482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Using bone biopsy samples, we examined whether osteolytic cytokine profile is changed in situ in bone samples of metastatic multiple myeloma, and whether this creates an environment of lysis within the bone to which it has spread. This also produces the clinical features of increased circulating plasma calcium, and deleterious effects on the kidney.Using multiple myeloma biopsy and cell extracts from bone metastatic lesions, Bruton kinase, a tyrosine kinase, was demonstrated to be translocated to the membrane. Several transcription factors were upregulated included activin A, inflammatory transcription activator like such as nuclear factor kappa B, and specific bone lytic factor such as receptor activator of nuclear factor kappa-B ligand that is known to drive osteoclastogenesis as opposed to a osteogenic environment. The transcript for Bruton kinase was also elevated in its expression.Cytokines that support osteolytic activity such as a proliferation-inducing ligand, RANTES (regulated on activation, normal T cell expressed and secreted), interleukin-8, and activin A were upregulated. Tartrate resistant acid phosphatase (TRAP)-positive osteoclastic enzymatic activity was significantly elevated in the bone microenvironment in metastatic multiple myeloma. Several tyrosine kinase inhibitors, including inhibitors for Bruton kinase such as ibrutinib have been developed. The results of the present study provide evidence that multiple myeloma possess signal transduction mechanisms to support a bone lytic environment.The results provide a preliminary molecular basis to design specific inhibitors for management of bone metastasis of multiple myeloma.
Collapse
Affiliation(s)
- Li Li
- Department of Orthopedics, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi
| | - Min Tong
- Department of Orthopedics, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi
| | - Yi-ting Zhao
- Department of Clinical Laboratory, The Sixth Clinical Hospital of The Xinjiang Medical University, Xinjiang
| | - Yun He
- Department of Orthopedics, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi
| | - Hong-yu Zhou
- Department of Orthopedics, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi
| | - Guo-fu Zhang
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Yuan-jin Zhang
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| |
Collapse
|
317
|
Heusschen R, Muller J, Binsfeld M, Marty C, Plougonven E, Dubois S, Mahli N, Moermans K, Carmeliet G, Léonard A, Baron F, Beguin Y, Menu E, Cohen-Solal M, Caers J. SRC kinase inhibition with saracatinib limits the development of osteolytic bone disease in multiple myeloma. Oncotarget 2017; 7:30712-29. [PMID: 27095574 PMCID: PMC5058712 DOI: 10.18632/oncotarget.8750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
Multiple myeloma (MM)-associated osteolytic bone disease is a major cause of morbidity and mortality in MM patients and the development of new therapeutic strategies is of great interest. The proto-oncogene SRC is an attractive target for such a strategy. In the current study, we investigated the effect of treatment with the SRC inhibitor saracatinib (AZD0530) on osteoclast and osteoblast differentiation and function, and on the development of MM and its associated bone disease in the 5TGM.1 and 5T2MM murine MM models. In vitro data showed an inhibitory effect of saracatinib on osteoclast differentiation, polarization and resorptive function. In osteoblasts, collagen deposition and matrix mineralization were affected by saracatinib. MM cell proliferation and tumor burden remained unaltered following saracatinib treatment and we could not detect any synergistic effects with drugs that are part of standard care in MM. We observed a marked reduction of bone loss after treatment of MM-bearing mice with saracatinib as reflected by a restoration of trabecular bone parameters to levels observed in naive control mice. Histomorphometric analyses support that this occurs through an inhibition of bone resorption. In conclusion, these data further establish SRC inhibition as a promising therapeutic approach for the treatment of MM-associated osteolytic bone disease.
Collapse
Affiliation(s)
- Roy Heusschen
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Joséphine Muller
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Marilène Binsfeld
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Caroline Marty
- INSERM-UMR-1132, Hôpital Lariboisière and Université Paris Diderot, Paris, France
| | - Erwan Plougonven
- Department of Chemical Engineering, PEPs (Products, Environments, Processes), University of Liège, Liège, Belgium
| | - Sophie Dubois
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Nadia Mahli
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Karen Moermans
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Angélique Léonard
- Department of Chemical Engineering, PEPs (Products, Environments, Processes), University of Liège, Liège, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, University and CHU of Liège, Liège, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, University and CHU of Liège, Liège, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martine Cohen-Solal
- INSERM-UMR-1132, Hôpital Lariboisière and Université Paris Diderot, Paris, France
| | - Jo Caers
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, University and CHU of Liège, Liège, Belgium
| |
Collapse
|
318
|
Roskoski R, Sadeghi-Nejad A. Role of RET protein-tyrosine kinase inhibitors in the treatment RET-driven thyroid and lung cancers. Pharmacol Res 2017; 128:1-17. [PMID: 29284153 DOI: 10.1016/j.phrs.2017.12.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/10/2023]
Abstract
RET is a transmembrane receptor protein-tyrosine kinase that is required for the development of the nervous system and several other tissues. The mechanism of activation of RET by its glial-cell derived neurotrophic factor (GDNF) ligands differs from that of all other receptor protein-tyrosine kinases owing to the requirement for additional GDNF family receptor-α (GFRα) co-receptors (GFRα1/2/3/4). RET point mutations have been reported in multiple endocrine neoplasia (MEN2A, MEN2B) and medullary thyroid carcinoma. In contrast, RET fusion proteins have been reported in papillary thyroid and non-small cell lung adenocarcinomas. More than a dozen fusion partners of RET have been described in papillary thyroid carcinomas, most frequently CCDC6-RET and NCOA4-RET. RET-fusion proteins, commonly KIF5B-RET, have also been found in non-small cell lung cancer (NSCLC). Several drugs targeting RET have been approved by the FDA for the treatment of cancer: (i) cabozantinib and vandetanib for medullary thyroid carcinomas and (ii) lenvatinib and sorafenib for differentiated thyroid cancers. In addition, alectinib and sunitinib are approved for the treatment of other neoplasms. Each of these drugs is a multikinase inhibitor that has activity against RET. Previous X-ray studies indicated that vandetanib binds within the ATP-binding pocket and forms a hydrogen bond with A807 within the RET hinge and it makes hydrophobic contact with L881 of the catalytic spine which occurs in the floor of the adenine-binding pocket. Our molecular modeling studies indicate that the other antagonists bind in a similar fashion. All of these antagonists bind to the active conformation of RET and are therefore classified as type I inhibitors. The drugs also make variable contacts with other residues of the regulatory and catalytic spines. None of these drugs was designed to bind preferentially to RET and it is hypothesized that RET-specific antagonists might produce even better clinical outcomes. Currently the number of new cases of neoplasms bearing RET mutations or RET-fusion proteins is estimated to be about 10,000 per year in the United States. This is about the same as the incidence of chronic myelogenous leukemia for which imatinib and second and third generation BCR-Abl non-receptor protein-tyrosine kinase antagonists have proven clinically efficacious and which are commercially successful. These findings warrant the continued development of specific antagonists targeting RET-driven neoplasms.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742-8814, United States.
| | - Abdollah Sadeghi-Nejad
- Department of Pediatrics, Tufts Medical Center, Tufts University School of Medicine, 800 Washington Street, Boston, MA 02111-1552, United States.
| |
Collapse
|
319
|
|
320
|
Atsmon-Raz Y, Tieleman DP. Parameterization of Palmitoylated Cysteine, Farnesylated Cysteine, Geranylgeranylated Cysteine, and Myristoylated Glycine for the Martini Force Field. J Phys Chem B 2017; 121:11132-11143. [PMID: 29144135 DOI: 10.1021/acs.jpcb.7b10175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peripheral membrane proteins go through various post-translational modifications that covalently bind fatty acid tails to specific amino acids. These post-translational modifications significantly alter the lipophilicity of the modified proteins and allow them to anchor to biological membranes. Over 1000 different proteins have been identified to date that require such membrane-protein interactions to carry out their biological functions, including members of the Src and Ras superfamilies that play key roles in cell signaling and carcinogenesis. We have used all-atom simulations with the CHARMM36 force field to parameterize four of the most common post-translational modifications for the Martini 2.2 force field: palmitoylated cysteine, farnesylated cysteine, geranylgeranylated cysteine, and myristoylated glycine. The parameters reproduce the key features of clusters of configurations of the different anchors in lipid membranes as well as the water-octanol partitioning free energies of the anchors, which are crucial for the correct reproduction of the expected biophysical behavior of peripheral membrane proteins at the membrane-water interface. Implementation in existing Martini setup tools facilitates the use of the new parameters.
Collapse
Affiliation(s)
- Yoav Atsmon-Raz
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary , 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - D Peter Tieleman
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary , 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
321
|
Tornin J, Hermida-Prado F, Padda RS, Gonzalez MV, Alvarez-Fernandez C, Rey V, Martinez-Cruzado L, Estupiñan O, Menendez ST, Fernandez-Nevado L, Astudillo A, Rodrigo JP, Lucien F, Kim Y, Leong HS, Garcia-Pedrero JM, Rodriguez R. FUS-CHOP Promotes Invasion in Myxoid Liposarcoma through a SRC/FAK/RHO/ROCK-Dependent Pathway. Neoplasia 2017; 20:44-56. [PMID: 29190494 PMCID: PMC5747526 DOI: 10.1016/j.neo.2017.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/13/2023] Open
Abstract
Deregulated SRC/FAK signaling leads to enhanced migration and invasion in many types of tumors. In myxoid and round cell liposarcoma (MRCLS), an adipocytic tumor characterized by the expression of the fusion oncogene FUS-CHOP, SRC have been found as one of the most activated kinases. Here we used a cell-of-origin model of MRCLS and an MRCLS cell line to thoroughly characterize the mechanisms of cell invasion induced by FUS-CHOP using in vitro (3D spheroid invasion assays) and in vivo (chicken chorioallantoic membrane model) approaches. FUS-CHOP expression activated SRC-FAK signaling and increased the invasive ability of MRCLS cells. In addition, FAK expression was found to significantly correlate with tumor aggressiveness in sarcoma patient samples. The involvement of SRC/FAK activation in FUS-CHOP-mediated invasion was further confirmed using the SRC inhibitor dasatinib, the specific FAK inhibitor PF-573228, and FAK siRNA. Notably, dasatinib and PF573228 could also efficiently block the invasion of cancer stem cell subpopulations. Downstream of SRC/FAK signaling, we found that FUS-CHOP expression increases the levels of the RHO/ROCK downstream effector phospho-MLC2 (T18/S19) and that this activation was prevented by dasatinib or PF573228. Moreover, the ROCK inhibitor RKI-1447 was able to completely abolish invasion in FUS-CHOP-expressing cells. These data uncover the involvement of SRC/FAK/RHO/ROCK signaling axis in FUS-CHOP-mediated invasion, thus providing a rationale for testing inhibitors of this pathway as potential novel antimetastatic agents for MRCLS treatment.
Collapse
Affiliation(s)
- Juan Tornin
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Francisco Hermida-Prado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Ranjit Singh Padda
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada
| | - M Victoria Gonzalez
- CIBER de Cáncer (CIBERONC), Madrid, Spain; Departamento de Cirugía, Universidad de Oviedo and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Veronica Rey
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Oscar Estupiñan
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Sofia T Menendez
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Lucia Fernandez-Nevado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan P Rodrigo
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | | | - Yohan Kim
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada; Department of Urology, Mayo Clinic, Rochester, MN
| | - Hon S Leong
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada; Department of Urology, Mayo Clinic, Rochester, MN
| | - Juana Maria Garcia-Pedrero
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain.
| | - Rene Rodriguez
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
322
|
Meijer M, Dörr B, Lammertse HC, Blithikioti C, van Weering JR, Toonen RF, Söllner TH, Verhage M. Tyrosine phosphorylation of Munc18-1 inhibits synaptic transmission by preventing SNARE assembly. EMBO J 2017; 37:300-320. [PMID: 29150433 PMCID: PMC5770875 DOI: 10.15252/embj.201796484] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022] Open
Abstract
Tyrosine kinases are important regulators of synaptic strength. Here, we describe a key component of the synaptic vesicle release machinery, Munc18‐1, as a phosphorylation target for neuronal Src family kinases (SFKs). Phosphomimetic Y473D mutation of a SFK phosphorylation site previously identified by brain phospho‐proteomics abolished the stimulatory effect of Munc18‐1 on SNARE complex formation (“SNARE‐templating”) and membrane fusion in vitro. Furthermore, priming but not docking of synaptic vesicles was disrupted in hippocampal munc18‐1‐null neurons expressing Munc18‐1Y473D. Synaptic transmission was temporarily restored by high‐frequency stimulation, as well as by a Munc18‐1 mutation that results in helix 12 extension, a critical conformational step in vesicle priming. On the other hand, expression of non‐phosphorylatable Munc18‐1 supported normal synaptic transmission. We propose that SFK‐dependent Munc18‐1 phosphorylation may constitute a potent, previously unknown mechanism to shut down synaptic transmission, via direct occlusion of a Synaptobrevin/VAMP2 binding groove and subsequent hindrance of conformational changes in domain 3a responsible for vesicle priming. This would strongly interfere with the essential post‐docking SNARE‐templating role of Munc18‐1, resulting in a largely abolished pool of releasable synaptic vesicles.
Collapse
Affiliation(s)
- Marieke Meijer
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Medical Center, Amsterdam, The Netherlands
| | - Bernhard Dörr
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Hanna Ca Lammertse
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Amsterdam, Amsterdam, The Netherlands
| | - Chrysanthi Blithikioti
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan Rt van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Medical Center, Amsterdam, The Netherlands
| | - Ruud Fg Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Amsterdam, Amsterdam, The Netherlands
| | - Thomas H Söllner
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Medical Center, Amsterdam, The Netherlands .,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
323
|
Laschi M, Bernardini G, Geminiani M, Manetti F, Mori M, Spreafico A, Campanacci D, Capanna R, Schenone S, Botta M, Santucci A. Differentially activated Src kinase in chemo-naïve human primary osteosarcoma cells and effects of a Src kinase inhibitor. Biofactors 2017; 43:801-811. [PMID: 28786551 DOI: 10.1002/biof.1382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Abstract
The therapeutic treatment of osteosarcoma (OS), a rare malignant teenage cancer of the skeletal system, still represents a great challenge as patient survival after conventional protocol chemotherapy treatment has not improved in the last four decades leaving poor patient prognoses. Therefore, many efforts have been done to find increasingly reliable OS cell models and to identify "druggable" targets in OS, in order to identify novel effective therapeutic approaches and treatment strategies. In this contest, the more successful use of patient-derived cell cultures in respect to human commercial lines and findings of Src kinase deregulation in cancer, prompted us to study for the first time the activation state of Src and the potential activity of our Src inhibitor SI-83 in a number of chemo-naïve patient-derived primary OS cells. We here demonstrate that Src is hyperactivated in OS cells in respect to the nonmalignant counterpart and that SI-83 is able to strongly decrease cell viability, proliferation, Src416 phosphorylation, and cell migration. © 2017 BioFactors, 43(6):801-811, 2017.
Collapse
Affiliation(s)
- Marcella Laschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Michela Geminiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Adriano Spreafico
- Immunoematologia Trasfusionale, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, strada delle Scotte14, Siena, 53100, Italy
| | - Domenico Campanacci
- Dipartimento di Chirurgia e Medicina Traslazionale (DCMT), Università degli Studi di Firenze, Ortopedia Largo Palagi, Firenze, 1 50139, Italy
| | - Rodolfo Capanna
- Dipartimento di Ortopedia, Oncologica e Chirurgia Ricostruttiva, Azienda Ospedaliera Universitaria Careggi, largo Brambilla 3, Firenze, 50134, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, Genova, 16132, Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
324
|
Inchingolo R, Condoluci C, Smargiassi A, Mastrobattista A, Boccabella C, Comes A, Golfi N, Richeldi L. Are newly launched pharmacotherapies efficacious in treating idiopathic pulmonary fibrosis? Or is there still more work to be done? Expert Opin Pharmacother 2017; 18:1583-1594. [DOI: 10.1080/14656566.2017.1383382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Riccardo Inchingolo
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carola Condoluci
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Smargiassi
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Cristina Boccabella
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessia Comes
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicoletta Golfi
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
325
|
An iterative compound screening contest method for identifying target protein inhibitors using the tyrosine-protein kinase Yes. Sci Rep 2017; 7:12038. [PMID: 28931921 PMCID: PMC5607274 DOI: 10.1038/s41598-017-10275-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
We propose a new iterative screening contest method to identify target protein inhibitors. After conducting a compound screening contest in 2014, we report results acquired from a contest held in 2015 in this study. Our aims were to identify target enzyme inhibitors and to benchmark a variety of computer-aided drug discovery methods under identical experimental conditions. In both contests, we employed the tyrosine-protein kinase Yes as an example target protein. Participating groups virtually screened possible inhibitors from a library containing 2.4 million compounds. Compounds were ranked based on functional scores obtained using their respective methods, and the top 181 compounds from each group were selected. Our results from the 2015 contest show an improved hit rate when compared to results from the 2014 contest. In addition, we have successfully identified a statistically-warranted method for identifying target inhibitors. Quantitative analysis of the most successful method gave additional insights into important characteristics of the method used.
Collapse
|
326
|
Boyango I, Barash U, Fux L, Naroditsky I, Ilan N, Vlodavsky I. Targeting heparanase to the mammary epithelium enhances mammary gland development and promotes tumor growth and metastasis. Matrix Biol 2017; 65:91-103. [PMID: 28916201 DOI: 10.1016/j.matbio.2017.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
Heparanase is an endoglucuronidase that uniquely cleaves the heparan sulfate side chains of heparan sulfate proteoglycans. This activity ultimately alters the structural integrity of the ECM and basement membrane that becomes more prone to cellular invasion by metastatic cancer cells and cells of the immune system. In addition, enzymatically inactive heparanase was found to facilitate the proliferation and survival of cancer cells by activation of signaling molecules such as Akt, Src, signal transducer and activation of transcription (Stat), and epidermal growth factor receptor. This function is thought to be executed by the C-terminal domain of heparanase (8c), because over expression of this domain in cancer cells accelerated signaling cascades and tumor growth. We have used the regulatory elements of the mouse mammary tumor virus (MMTV) to direct the expression heparanase and the C-domain (8c) to the mammary gland epithelium of transgenic mice. Here, we report that mammary gland branching morphogenesis is increased in MMTV-heparanase and MMTV-8c mice, associating with increased Akt, Stat5 and Src phosphorylation. Furthermore, we found that the growth of tumors generated by mouse breast cancer cells and the resulting lung metastases are enhanced in MMTV-heparanase mice, thus supporting the notion that heparanase contributed by the tumor microenvironment (i.e., normal mammary epithelium) plays a decisive role in tumorigenesis. Remarkably, MMTV-8c mice develop spontaneous tumors in their mammary and salivary glands. Although this occurs at low rates and requires long latency, it demonstrates decisively the pro-tumorigenic capacity of heparanase signaling.
Collapse
Affiliation(s)
- Ilanit Boyango
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Uri Barash
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Liat Fux
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Inna Naroditsky
- Department of Pathology, Ramabm Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| |
Collapse
|
327
|
Aguilera KY, Huang H, Du W, Hagopian MM, Wang Z, Hinz S, Hwang TH, Wang H, Fleming JB, Castrillon DH, Ren X, Ding K, Brekken RA. Inhibition of Discoidin Domain Receptor 1 Reduces Collagen-mediated Tumorigenicity in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2017; 16:2473-2485. [PMID: 28864681 DOI: 10.1158/1535-7163.mct-16-0834] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/04/2017] [Accepted: 07/28/2017] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM), a principal component of pancreatic ductal adenocarcinoma (PDA), is rich in fibrillar collagens that facilitate tumor cell survival and chemoresistance. Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that specifically binds fibrillar collagens and has been implicated in promoting cell proliferation, migration, adhesion, ECM remodeling, and response to growth factors. We found that collagen-induced activation of DDR1 stimulated protumorigenic signaling through protein tyrosine kinase 2 (PYK2) and pseudopodium-enriched atypical kinase 1 (PEAK1) in pancreatic cancer cells. Pharmacologic inhibition of DDR1 with an ATP-competitive orally available small-molecule kinase inhibitor (7rh) abrogated collagen-induced DDR1 signaling in pancreatic tumor cells and consequently reduced colony formation and migration. Furthermore, the inhibition of DDR1 with 7rh showed striking efficacy in combination with chemotherapy in orthotopic xenografts and autochthonous pancreatic tumors where it significantly reduced DDR1 activation and downstream signaling, reduced primary tumor burden, and improved chemoresponse. These data demonstrate that targeting collagen signaling in conjunction with conventional cytotoxic chemotherapy has the potential to improve outcome for pancreatic cancer patients. Mol Cancer Ther; 16(11); 2473-85. ©2017 AACR.
Collapse
Affiliation(s)
- Kristina Y Aguilera
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
| | - Huocong Huang
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
| | - Wenting Du
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
| | - Moriah M Hagopian
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
| | - Zhen Wang
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Stefan Hinz
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
| | - Tae Hyun Hwang
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Huamin Wang
- Department of Pathology, UT MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Diego H Castrillon
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, Texas
| | - Xiaomei Ren
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Ke Ding
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas. .,Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
328
|
Hara R, Onizuka M, Matsusita E, Kikkawa E, Nakamura Y, Matsushita H, Ohgiya D, Murayama H, Machida S, Ohmachi K, Shirasugi Y, Ogawa Y, Kawada H, Ando K. NKG2D gene polymorphisms are associated with disease control of chronic myeloid leukemia by dasatinib. Int J Hematol 2017; 106:666-674. [DOI: 10.1007/s12185-017-2294-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
|
329
|
Advani G, Lim YC, Catimel B, Lio DSS, Ng NLY, Chüeh AC, Tran M, Anasir MI, Verkade H, Zhu HJ, Turk BE, Smithgall TE, Ang CS, Griffin M, Cheng HC. Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Cell Commun Signal 2017; 15:29. [PMID: 28784162 PMCID: PMC5547543 DOI: 10.1186/s12964-017-0186-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background C-terminal Src kinase (Csk) and Csk-homologous kinase (Chk) are the major endogenous inhibitors of Src-family kinases (SFKs). They employ two mechanisms to inhibit SFKs. First, they phosphorylate the C-terminal tail tyrosine which stabilizes SFKs in a closed inactive conformation by engaging the SH2 domain in cis. Second, they employ a non-catalytic inhibitory mechanism involving direct binding of Csk and Chk to the active forms of SFKs that is independent of phosphorylation of their C-terminal tail. Csk and Chk are co-expressed in many cell types. Contributions of the two mechanisms towards the inhibitory activity of Csk and Chk are not fully clear. Furthermore, the determinants in Csk and Chk governing their inhibition of SFKs by the non-catalytic inhibitory mechanism are yet to be defined. Methods We determined the contributions of the two mechanisms towards the inhibitory activity of Csk and Chk both in vitro and in transduced colorectal cancer cells. Specifically, we assayed the catalytic activities of Csk and Chk in phosphorylating a specific peptide substrate and a recombinant SFK member Src. We employed surface plasmon resonance spectroscopy to measure the kinetic parameters of binding of Csk, Chk and their mutants to a constitutively active mutant of the SFK member Hck. Finally, we determined the effects of expression of recombinant Chk on anchorage-independent growth and SFK catalytic activity in Chk-deficient colorectal cancer cells. Results Our results revealed Csk as a robust enzyme catalysing phosphorylation of the C-terminal tail tyrosine of SFKs but a weak non-catalytic inhibitor of SFKs. In contrast, Chk is a poor catalyst of SFK tail phosphorylation but binds SFKs with high affinity, enabling it to efficiently inhibit SFKs with the non-catalytic inhibitory mechanism both in vitro and in transduced colorectal cancer cells. Further analyses mapped some of the determinants governing this non-catalytic inhibitory mechanism of Chk to its kinase domain. Conclusions SFKs are activated by different upstream signals to adopt multiple active conformations in cells. SFKs adopting these conformations can effectively be constrained by the two complementary inhibitory mechanisms of Csk and Chk. Furthermore, the lack of this non-catalytic inhibitory mechanism accounts for SFK overactivation in the Chk-deficient colorectal cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0186-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gahana Advani
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia.,Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ya Chee Lim
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Bruno Catimel
- Walter and Eliza Hall Institute for Medical Research and Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daisy Sio Seng Lio
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia.,Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nadia L Y Ng
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia.,Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anderly C Chüeh
- Walter and Eliza Hall Institute for Medical Research and Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mai Tran
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mohd Ishtiaq Anasir
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Heather Verkade
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3052, Australia
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ching-Seng Ang
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael Griffin
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia. .,Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC, 3010, Australia. .,Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
330
|
Yu L, Ye J, Liu Q, Feng J, Gu X, Sun Q, Lu G. c‑Maf inducing protein inhibits cofilin‑1 activity and alters podocyte cytoskeleton organization. Mol Med Rep 2017; 16:4955-4963. [PMID: 28791377 DOI: 10.3892/mmr.2017.7156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/06/2017] [Indexed: 11/05/2022] Open
Abstract
The glomerular visceral epithelial cells, also termed podocytes, are key in maintaining the normal renal filtration barrier. Although it has been demonstrated that stimulation of c‑Maf inducing protein (CMIP) expression is involved in podocyte damage, the molecular events during this process remain unclear. In the current study, CMIP‑induced proximal signaling was investigated by focusing on its effect on cofilin‑1 activity in puromycin aminonucleoside (PA)‑damaged podocytes. An obvious elevation of CMIP expression and phosphorylated (p) cofilin‑1 levels was detected in cultured podocytes treated with PA and in glomeruli isolated from PA‑induced nephropathy rats. Stable knockdown of CMIP prevented upregulation of p‑cofilin‑1 and reorganization of actin cytoskeleton in PA‑treated podocytes. The activity of the Src family kinase Fyn was reduced, whereas small GTPase Ras homolog gene family, member A (RhoA) activity was increased in PA‑treated podocytes. Stimulation of CMIP expression inhibited Fyn activation and decreased the expression level of p‑p190RhoGAP, a negative regulator of RhoA activity. The level of p‑LIM domain kinase 1 (LIMK1), a downstream effector of RhoA, increased significantly in PA‑treated podocytes. Notably, the applications of RhoA inhibitor or knockdown of LIMK prevented increase of the p‑cofilin‑1 level in PA‑treated podocytes. Thus, the current data provided evidence that the CMIP/Fyn/RhoA/cofilin‑1 signaling pathway may be associated with actin disorganization and podocyte foot process spreading following podocyte injury.
Collapse
Affiliation(s)
- Lixia Yu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianming Ye
- Department of Nephrology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, P.R. China
| | - Qifeng Liu
- Department of Nephrology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, P.R. China
| | - Jianhua Feng
- Department of Nephrology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, P.R. China
| | - Xiaoxia Gu
- Department of Nephrology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, P.R. China
| | - Qiang Sun
- Department of Nephrology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, P.R. China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
331
|
Cui Z, Chen S, Wang Y, Gao C, Chen Y, Tan C, Jiang Y. Design, synthesis and evaluation of azaacridine derivatives as dual-target EGFR and Src kinase inhibitors for antitumor treatment. Eur J Med Chem 2017; 136:372-381. [DOI: 10.1016/j.ejmech.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/28/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
|
332
|
E-Cadherin–Mediated Cell Contact Controls the Epidermal Damage Response in Radiation Dermatitis. J Invest Dermatol 2017; 137:1731-1739. [DOI: 10.1016/j.jid.2017.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 11/23/2022]
|
333
|
Wang J, Zhuang S. Src family kinases in chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F721-F728. [PMID: 28615246 PMCID: PMC5625110 DOI: 10.1152/ajprenal.00141.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
Src family kinases (SFKs) belong to nonreceptor protein tyrosine kinases and have been implicated in the regulation of numerous cellular processes, including cell proliferation, differentiation, migration and invasion, and angiogenesis. The role and mechanisms of SFKs in tumorgenesis have been extensively investigated, and some SFK inhibitors are currently under clinical trials for tumor treatment. Recent studies have also demonstrated the importance of SFKs in regulating the development of various fibrosis-related chronic diseases (e.g., idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, and systemic sclerosis). In this article, we summarize the roles of SFKs in various chronic kidney diseases, including glomerulonephritis, diabetic nephropathy, human immunodeficiency virus-associated nephropathy, autosomal dominant form of polycystic kidney disease, and obesity-associated kidney disease, and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Jun Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and .,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
334
|
Su PH, Hsu YW, Huang RL, Weng YC, Wang HC, Chen YC, Tsai YJ, Yuan CC, Lai HC. Methylomics of nitroxidative stress on precancerous cells reveals DNA methylation alteration at the transition from in situ to invasive cervical cancer. Oncotarget 2017; 8:65281-65291. [PMID: 29029430 PMCID: PMC5630330 DOI: 10.18632/oncotarget.18370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/26/2017] [Indexed: 12/30/2022] Open
Abstract
Epigenetic dysregulation is important in cervical cancer development, but the underlying mechanism is largely unknown. Increasing evidence indicates that DNA methylation is sensitive to changes in microenvironmental factors, such as nitric oxide (NO) in the chronic inflammatory cervix. However, the epigenomic effects of NO in cancer have not been investigated. In this study, we explored the methylomic effects of nitroxidative stress in HPV-immortalized precancerous cells. Chronic NO exposure promoted the acquisition of malignant phenotypes such as cell growth, migration, invasion, and anchorage-independent growth. Epigenetic analysis confirmed hypermethylation of PTPRR. Whole-genome methylation analysis showed BOLA2B, FGF8, HSPA6, LYPD2, and SHE were hypermethylated in cells. The hypermethylation BOLA2B, FGF8, HSPA6, and SHE was confirmed in cervical scrapings from invasive cancer, but not in CIN3/CIS, CIN2 and CIN1 (p=0.019, 0.023, 0.023 and 0.027 respectively), suggesting the role in the transition from in situ to invasive process. Our results reveal that nitroxidative stress causes epigenetic changes in HPV-infected cells. Investigation of these methylation changes in persistent HPV infection may help identify new biomarkers of DNA methylation for cervical cancer screening, especially for precancerous lesions.
Collapse
Affiliation(s)
- Po-Hsuan Su
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Wen Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Weng
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hui-Chen Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Chen
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yueh-Ju Tsai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Chung Yuan
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Cheng Lai
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| |
Collapse
|
335
|
Pool M, de Boer HR, Hooge MNLD, van Vugt MA, de Vries EG. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine. Theranostics 2017; 7:2111-2133. [PMID: 28638489 PMCID: PMC5479290 DOI: 10.7150/thno.17934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.
Collapse
Affiliation(s)
- Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. Rudolf de Boer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N. Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A.T.M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G.E. de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
336
|
Okumu DO, East MP, Levine M, Herring LE, Zhang R, Gilbert TSK, Litchfield DW, Zhang Y, Graves LM. BIRC6 mediates imatinib resistance independently of Mcl-1. PLoS One 2017; 12:e0177871. [PMID: 28520795 PMCID: PMC5433768 DOI: 10.1371/journal.pone.0177871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Baculoviral IAP repeat containing 6 (BIRC6) is a member of the inhibitors of apoptosis proteins (IAPs), a family of functionally and structurally related proteins that inhibit apoptosis. BIRC6 has been implicated in drug resistance in several different human cancers, however mechanisms regulating BIRC6 have not been extensively explored. Our phosphoproteomic analysis of an imatinib-resistant chronic myelogenous leukemia (CML) cell line (MYL-R) identified increased amounts of a BIRC6 peptide phosphorylated at S480, S482, and S486 compared to imatinib-sensitive CML cells (MYL). Thus we investigated the role of BIRC6 in mediating imatinib resistance and compared it to the well-characterized anti-apoptotic protein, Mcl-1. Both BIRC6 and Mcl-1 were elevated in MYL-R compared to MYL cells. Lentiviral shRNA knockdown of BIRC6 in MYL-R cells increased imatinib-stimulated caspase activation and resulted in a ~20-25-fold increase in imatinib sensitivity, without affecting Mcl-1. Treating MYL-R cells with CDK9 inhibitors decreased BIRC6 mRNA, but not BIRC6 protein levels. By contrast, while CDK9 inhibitors reduced Mcl-1 mRNA and protein, they did not affect imatinib sensitivity. Since the Src family kinase Lyn is highly expressed and active in MYL-R cells, we tested the effects of Lyn inhibition on BIRC6 and Mcl-1. RNAi-mediated knockdown or inhibition of Lyn (dasatinib/ponatinib) reduced BIRC6 protein stability and increased caspase activation. Inhibition of Lyn also increased formation of an N-terminal BIRC6 fragment in parallel with reduced amount of the BIRC6 phosphopeptide, suggesting that Lyn may regulate BIRC6 phosphorylation and stability. In summary, our data show that BIRC6 stability is dependent on Lyn, and that BIRC6 mediates imatinib sensitivity independently of Mcl-1 or CDK9. Hence, BIRC6 may be a novel target for the treatment of drug-resistant CML where Mcl-1 or CDK9 inhibitors have failed.
Collapse
Affiliation(s)
- Denis O. Okumu
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael P. East
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Merlin Levine
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Laura E. Herring
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Michael Hooker Proteomics Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Raymond Zhang
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Thomas S. K. Gilbert
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Michael Hooker Proteomics Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David W. Litchfield
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Yanping Zhang
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lee M. Graves
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Michael Hooker Proteomics Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
337
|
Nakashima K, Uekita T, Yano S, Kikuchi JI, Nakanishi R, Sakamoto N, Fukumoto K, Nomoto A, Kawamoto K, Shibahara T, Yamaguchi H, Sakai R. Novel small molecule inhibiting CDCP1-PKCδ pathway reduces tumor metastasis and proliferation. Cancer Sci 2017; 108:1049-1057. [PMID: 28256037 PMCID: PMC5448658 DOI: 10.1111/cas.13218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022] Open
Abstract
CUB domain‐containing protein‐1 (CDCP1) is a trans‐membrane protein predominantly expressed in various cancer cells and involved in tumor progression. CDCP1 is phosphorylated at tyrosine residues in the intracellular domain by Src family kinases and recruits PKCδ to the plasma membrane through tyrosine phosphorylation‐dependent association with the C2 domain of PKCδ, which in turn induces a survival signal in an anchorage‐independent condition. In this study, we used our cell‐free screening system to identify a small compound, glycoconjugated palladium complex (Pd‐Oqn), which significantly inhibited the interaction between the C2 domain of PKCδ and phosphorylated CDCP1. Immunoprecipitation assays demonstrated that Pd‐Oqn hindered the intercellular interaction of phosphorylated CDCP1 with PKCδ and also suppressed the phosphorylation of PKCδ but not that of ERK or AKT. In addition, Pd‐Oqn inhibited the colony formation of gastric adenocarcinoma 44As3 cells in soft agar as well as their invasion. In mouse models, Pd‐Oqn markedly reduced the peritoneal dissemination of gastric adenocarcinoma cells and the tumor growth of pancreatic cancer orthotopic xenografts. These results suggest that the novel compound Pd‐Oqn reduces tumor metastasis and growth by inhibiting the association between CDCP1 and PKCδ, thus potentially representing a promising candidate among therapeutic reagents targeting protein–protein interaction.
Collapse
Affiliation(s)
- Katsuhiko Nakashima
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Tokyo, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Japan
| | - Shigenobu Yano
- Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, Japan
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, Japan
| | - Ruri Nakanishi
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Tokyo, Japan
| | - Nozomi Sakamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Keisuke Fukumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Keisuke Kawamoto
- Department of Chemistry, Graduate School of Natural Science, Kanazawa University, Kanazawa, Japan
| | - Takashi Shibahara
- Department of Chemistry, Okayama University of Science, Okayama, Japan
| | - Hideki Yamaguchi
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryuichi Sakai
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Tokyo, Japan.,Division of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
338
|
Roskoski R. ROS1 protein-tyrosine kinase inhibitors in the treatment of ROS1 fusion protein-driven non-small cell lung cancers. Pharmacol Res 2017; 121:202-212. [PMID: 28465216 DOI: 10.1016/j.phrs.2017.04.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
ROS1 protein-tyrosine kinase fusion proteins are expressed in 1-2% of non-small cell lung cancers. The ROS1 fusion partners include CD74, CCDC6, EZR, FIG, KDELR2, LRIG3, MSN, SDC4, SLC34A2, TMEM106B, TMP3, and TPD52L1. Physiological ROS1 is closely related to the ALK, LTK, and insulin receptor protein-tyrosine kinases. ROS1 is a so-called orphan receptor because the identity of its activating ligand, if any, is unknown. The receptor is expressed during development, but little is expressed in adults and its physiological function is unknown. The human ROS1 gene encodes 2347 amino acid residues and ROS1 is the largest protein-tyrosine kinase receptor protein. Unlike the ALK fusion proteins that are activated by the dimerization induced by their amino-terminal portions, the amino-terminal domains of several of its fusion proteins including CD74 apparently lack the ability to induce dimerization so that the mechanism of constitutive protein kinase activation is unknown. Downstream signaling from the ROS1 fusion protein leads to the activation of the Ras/Raf/MEK/ERK1/2 cell proliferation module, the phosphatidyl inositol 3-kinase cell survival pathway, and the Vav3 cell migration pathway. Moreover, several of the ROS1 fusion proteins are implicated in the pathogenesis of a very small proportion of other cancers including glioblastoma, angiosarcoma, and cholangiocarcinoma as well as ovarian, gastric, and colorectal carcinomas. The occurrence of oncogenic ROS1 fusion proteins, particularly in non-small cell lung cancer, has fostered considerable interest in the development of ROS1 inhibitors. Although the percentage of lung cancers driven by ROS1 fusion proteins is low, owing to the large number of new cases of non-small cell lung cancer per year, the number of new cases of ROS1-positive lung cancers is significant and ranges from 2000 to 4000 per year in the United States and 10,000-15,000 worldwide. Crizotinib was the first inhibitor approved by the US Food and Drug Administration for the treatment of ROS1-positive non-small cell lung cancer in 2016. Other drugs that are in clinical trials for the treatment of these lung cancers include ceritinib, cabozantinib, entrectinib, and lorlatinib. Crizotinib forms a complex within the front cleft between the small and large lobes of an active ROS1 protein-kinase domain and it is classified as type I inhibitor.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
339
|
Calpain inhibition prevents flotillin re-ordering and Src family activation during capacitation. Cell Tissue Res 2017; 369:395-412. [DOI: 10.1007/s00441-017-2591-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/17/2017] [Indexed: 01/08/2023]
|
340
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2017; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
341
|
Kashima D, Kawade R, Nagamune T, Kawahara M. A Chemically Inducible Helper Module for Detecting Protein–Protein Interactions with Tunable Sensitivity Based on KIPPIS. Anal Chem 2017; 89:4824-4830. [DOI: 10.1021/acs.analchem.6b04063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daiki Kashima
- Department of Chemistry and
Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Raiji Kawade
- Department of Chemistry and
Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and
Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiro Kawahara
- Department of Chemistry and
Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
342
|
Noguchi S, Shibutani S, Fukushima K, Mori T, Igase M, Mizuno T. Bosutinib, an SRC inhibitor, induces caspase-independent cell death associated with permeabilization of lysosomal membranes in melanoma cells. Vet Comp Oncol 2017; 16:69-76. [DOI: 10.1111/vco.12312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/15/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022]
Affiliation(s)
- S. Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Osaka Japan
- Biomedical Science Center for Translational Research, The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - S. Shibutani
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine; Yamaguchi University; Yamaguchi Japan
| | - K. Fukushima
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine; Yamaguchi University; Yamaguchi Japan
| | - T. Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences; Gifu University; Gifu Japan
| | - M. Igase
- The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - T. Mizuno
- Biomedical Science Center for Translational Research, The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine; Yamaguchi University; Yamaguchi Japan
| |
Collapse
|
343
|
Roskoski R. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res 2017; 120:116-132. [PMID: 28330784 DOI: 10.1016/j.phrs.2017.03.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/12/2022]
Abstract
One Von Hippel-Lindau (VHL) tumor suppressor gene is lost in most renal cell carcinomas while the nondeleted allele exhibits hypermethylation-induced inactivation or inactivating somatic mutations. As a result of these genetic modifications, there is an increased production of VEGF-A and pro-angiogenic growth factors in this disorder. The important role of angiogenesis in the pathogenesis of renal cell carcinomas and other tumors has focused the attention of investigators on the biology of VEGFs and VEGFR1-3 and to the development of inhibitors of the intricate and multifaceted angiogenic pathways. VEGFR1-3 contain an extracellular segment with seven immunoglobulin-like domains, a transmembrane segment, a juxtamembrane segment, a protein kinase domain with an insert of about 70 amino acid residues, and a C-terminal tail. VEGF-A stimulates the activation of preformed VEGFR2 dimers by the auto-phosphorylation of activation segment tyrosines followed by the phosphorylation of additional protein-tyrosines that recruit phosphotyrosine binding proteins thereby leading to signalling by the ERK1/2, AKT, Src, and p38 MAP kinase pathways. VEGFR1 modulates the activity of VEGFR2, which is the chief pathway in vasculogenesis and angiogenesis. VEGFR3 and its ligands (VEGF-C and VEGF-D) are involved primarily in lymphangiogenesis. Small molecule VEGFR1/2/3 inhibitors including axitinib, cabozantinib, lenvatinib, sorafenib, sunitinib, and pazopanib are approved by the FDA for the treatment of renal cell carcinomas. Most of these agents are type II inhibitors of VEGFR2 and inhibit the so-called DFG-Aspout inactive enzyme conformation. These drugs are steady-state competitive inhibitors with respect to ATP and like ATP they form hydrogen bonds with the hinge residues that connect the small and large protein kinase lobes. Bevacizumab, a monoclonal antibody that binds to VEGF-A, is also approved for the treatment of renal cell carcinomas. Resistance to these agents invariably occurs within one year of treatment and clinical studies are underway to determine the optimal sequence of treatment with these anti-angiogenic agents. The nivolumab immune checkpoint inhibitor is also approved for the second-line treatment of renal cell carcinomas. Owing to the resistance of renal cell carcinomas to cytotoxic drugs and radiation therapy, the development of these agents has greatly improved the therapeutic options in the treatment of these malignancies.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
344
|
Hsp90 dependence of a kinase is determined by its conformational landscape. Sci Rep 2017; 7:43996. [PMID: 28290541 PMCID: PMC5349555 DOI: 10.1038/srep43996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/03/2017] [Indexed: 01/05/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is an abundant molecular chaperone, involved in the folding and activation of 60% of the human kinome. The oncogenic tyrosine kinase v-Src is one of the most stringent client proteins of Hsp90, whereas its almost identical homolog c-Src is only weakly affected by the chaperone. Here, we perform atomistic molecular simulations and in vitro kinase assays to explore the mechanistic differences in the activation of v-Src and c-Src. While activation in c-Src is strictly controlled by ATP-binding and phosphorylation, we find that activating conformational transitions are spontaneously sampled in Hsp90-dependent Src mutants. Phosphorylation results in an enrichment of the active conformation and in an increased affinity for Hsp90. Thus, the conformational landscape of the mutated kinase is reshaped by a broken “control switch”, resulting in perturbations of long-range electrostatics, higher activity and increased Hsp90-dependence.
Collapse
|
345
|
Roskoski R. Allosteric MEK1/2 inhibitors including cobimetanib and trametinib in the treatment of cutaneous melanomas. Pharmacol Res 2017; 117:20-31. [PMID: 27956260 DOI: 10.1016/j.phrs.2016.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023]
Abstract
The Ras-Raf-MEK-ERK (Map kinase) cellular pathway is a highly conserved eukaryotic signaling module that transduces extracellular signals from growth factors and cytokines into intracellular regulatory events that are involved in cell growth and proliferation or the contrary pathway of cell differentiation. Dysregulation of this pathway occurs in more than one-third of all malignancies, a process that has fostered the development of targeted Map kinase pathway inhibitors. Cutaneous melanomas, which arise from skin melanocytes, are the most aggressive form of skin cancer. Mutations that activate the Map kinase pathway occur in more than 90% of these melanomas. This has led to the development of the combination of dabrafenib and trametinib or vemurafenib and cobimetanib for the treatment of BRAF V600E mutant melanomas. Dabrafenib and vemurafenib target V600E/K BRAF mutants while trametinib and cobimetanib target MEK1/2. The latter two agents bind to MEK1/2 at a site that is adjacent to, but separate from, the ATP-binding site and are therefore classified as type III allosteric protein kinase inhibitors. These agents form a hydrogen bond with a conserved β3-lysine and they make numerous hydrophobic contacts with residues within the αC-helix, the β5 strand, and within the activation segment, regions of the protein kinase domain that exhibit greater diversity than those found within the ATP-binding site. One advantage of such allosteric inhibitors is that they do not have to compete with millimolar concentrations of cellular ATP, which most FDA-approved small molecule competitive inhibitors such as imatinib must do. Owing to the wide spread activation of this pathway in numerous neoplasms, trametinib and cobimetinib are being studied in combination with other targeted and cytotoxic drugs in a variety of clinical situations. Except for BRAF and NRAS mutations, there are no other biomarkers correlated with treatment responses following MEK1/2 inhibition and the discovery of such biomarkers would represent an important therapeutic breakthrough.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
346
|
Roskoski R. Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK-driven lung cancers. Pharmacol Res 2017; 117:343-356. [DOI: 10.1016/j.phrs.2017.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/24/2022]
|
347
|
Hanold LE, Fulton MD, Kennedy EJ. Targeting kinase signaling pathways with constrained peptide scaffolds. Pharmacol Ther 2017; 173:159-170. [PMID: 28185915 DOI: 10.1016/j.pharmthera.2017.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kinases are amongst the largest families in the human proteome and serve as critical mediators of a myriad of cell signaling pathways. Since altered kinase activity is implicated in a variety of pathological diseases, kinases have become a prominent class of proteins for targeted inhibition. Although numerous small molecule and antibody-based inhibitors have already received clinical approval, several challenges may still exist with these strategies including resistance, target selection, inhibitor potency and in vivo activity profiles. Constrained peptide inhibitors have emerged as an alternative strategy for kinase inhibition. Distinct from small molecule inhibitors, peptides can provide a large binding surface area that allows them to bind shallow protein surfaces rather than defined pockets within the target protein structure. By including chemical constraints within the peptide sequence, additional benefits can be bestowed onto the peptide scaffold such as improved target affinity and target selectivity, cell permeability and proteolytic resistance. In this review, we highlight examples of diverse chemistries that are being employed to constrain kinase-targeting peptide scaffolds and highlight their application to modulate kinase signaling as well as their potential clinical implications.
Collapse
Affiliation(s)
- Laura E Hanold
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
348
|
Sicklick JK, Fanta PT, Shimabukuro K, Kurzrock R. Genomics of gallbladder cancer: the case for biomarker-driven clinical trial design. Cancer Metastasis Rev 2017; 35:263-75. [PMID: 26857926 DOI: 10.1007/s10555-016-9602-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Gallbladder carcinoma is a rare, aggressive malignancy of the biliary tract associated with a poor prognosis. Despite the deployment of targeted therapies that have demonstrated marked survival benefits in many tumor types, traditional cytotoxic chemotherapy has remained the mainstay of treatment for unresectable and metastatic gallbladder cancer. METHODS Systematic review of ongoing and prior clinical studies shows a paucity of biomarker-driven therapeutic trials using targeted agents in gallbladder cancer. In fact, over the past 6 years, of the 38 therapeutic biliary tract protocols listed on clinicaltrials.gov, only 6 (21 %) utilized targeted therapies based upon tumor biomarkers or genomics. Now that we have entered the era of next-generation sequencing and precision medicine, we are beginning to identify common and specific genetic alterations in gallbladder carcinomas. RESULTS A review of the literature reveals alterations in ARID1A, BRAF, CDKN2A/B, EGFR, ERBB2-4, HKN-RAS, PIK3CA, PBRM1, and TP53. Given the widespread use of tumor genomic profiling and the fact that most of the aforementioned alterations are pharmacologically tractable, these observations suggest the potential for new therapeutic strategies in this aggressive malignancy. CONCLUSIONS Taken together, further understanding of the genomic landscape of gallbladder cancer coupled with biomarker-driven clinical trials that match therapies to targets are urgently needed.
Collapse
Affiliation(s)
- Jason K Sicklick
- Center for Personalized Cancer Therapy, San Diego, CA, USA. .,Division of Surgical Oncology, Department of Surgery, University of California, San Diego Moores Cancer Center, 3855 Health Sciences Drive, MC 0987, La Jolla, CA, 92093-0987, USA.
| | - Paul T Fanta
- Center for Personalized Cancer Therapy, San Diego, CA, USA.,Division of Hematology and Oncology, University of California, San Diego Moores Cancer Center, 3855 Health Sciences Drive, MC 0987, La Jolla, 92093-0987, CA, USA
| | - Kelly Shimabukuro
- Center for Personalized Cancer Therapy, San Diego, CA, USA.,Division of Hematology and Oncology, University of California, San Diego Moores Cancer Center, 3855 Health Sciences Drive, MC 0987, La Jolla, 92093-0987, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, San Diego, CA, USA.,Division of Hematology and Oncology, University of California, San Diego Moores Cancer Center, 3855 Health Sciences Drive, MC 0987, La Jolla, 92093-0987, CA, USA
| |
Collapse
|
349
|
Dopamine promotes NMDA receptor hypofunction in the retina through D 1 receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation. Sci Rep 2017; 7:40912. [PMID: 28098256 PMCID: PMC5241882 DOI: 10.1038/srep40912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
Dopamine and glutamate are critical neurotransmitters involved in light-induced synaptic activity in the retina. In brain neurons, dopamine D1 receptors (D1Rs) and the cytosolic protein tyrosine kinase Src can, independently, modulate the behavior of NMDA-type glutamate receptors (NMDARs). Here we studied the interplay between D1Rs, Src and NMDARs in retinal neurons. We reveal that dopamine-mediated D1R stimulation provoked NMDAR hypofunction in retinal neurons by attenuating NMDA-gated currents, by preventing NMDA-elicited calcium mobilization and by decreasing the phosphorylation of NMDAR subunit GluN2B. This dopamine effect was dependent on upregulation of the canonical D1R/adenylyl cyclase/cAMP/PKA pathway, of PKA-induced activation of C-terminal Src kinase (Csk) and of Src inhibition. Accordingly, knocking down Csk or overexpressing a Csk phosphoresistant Src mutant abrogated the dopamine-induced NMDAR hypofunction. Overall, the interplay between dopamine and NMDAR hypofunction, through the D1R/Csk/Src/GluN2B pathway, might impact on light-regulated synaptic activity in retinal neurons.
Collapse
|
350
|
Gross SM, Rotwein P. Quantification of growth factor signaling and pathway cross talk by live-cell imaging. Am J Physiol Cell Physiol 2017; 312:C328-C340. [PMID: 28100485 DOI: 10.1152/ajpcell.00312.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/20/2023]
Abstract
Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor-receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras-Raf-Mek-ERK and phosphatidylinositol (PI) 3-kinase-Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas
| |
Collapse
|