301
|
Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B. Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 2011; 475:510-3. [PMID: 21796210 PMCID: PMC3167384 DOI: 10.1038/nature10183] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 05/06/2011] [Indexed: 11/09/2022]
Abstract
Membrane-bound receptors often form large assemblies resulting from binding to soluble ligands, cell-surface molecules on other cells and extracellular matrix proteins. For example, the association of membrane proteins with proteins on different cells (trans-interactions) can drive the oligomerization of proteins on the same cell (cis-interactions). A central problem in understanding the molecular basis of such phenomena is that equilibrium constants are generally measured in three-dimensional solution and are thus difficult to relate to the two-dimensional environment of a membrane surface. Here we present a theoretical treatment that converts three-dimensional affinities to two dimensions, accounting directly for the structure and dynamics of the membrane-bound molecules. Using a multiscale simulation approach, we apply the theory to explain the formation of ordered, junction-like clusters by classical cadherin adhesion proteins. The approach features atomic-scale molecular dynamics simulations to determine interdomain flexibility, Monte Carlo simulations of multidomain motion and lattice simulations of junction formation. A finding of general relevance is that changes in interdomain motion on trans-binding have a crucial role in driving the lateral, cis-, clustering of adhesion receptors.
Collapse
Affiliation(s)
- Yinghao Wu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
302
|
Vunnam N, Pedigo S. Prolines in βA-sheet of neural cadherin act as a switch to control the dynamics of the equilibrium between monomer and dimer. Biochemistry 2011; 50:6959-65. [PMID: 21721556 DOI: 10.1021/bi2007788] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural cadherins dimerize through the formation of calcium-dependent strand-crossover structures. Dimerization of cadherins leads to cell-cell adhesion in multicellular organisms. Strand-crossover dimer forms exclusively between the first N-terminal extracellular modules (EC1) of the adhesive partners via swapping of their βA-sheets and docking of tryptophan-2 in the hydrophobic pocket. In the apo-state wild-type cadherin is predominantly monomer, which indicates that the dimerization is energetically unfavorable in the absence of calcium. Addition of calcium favors dimer formation by creating strain in the monomer and lowering the energetic barrier between monomer and dimer. Dynamics of the monomer-dimer equilibrium is vital for plasticity of synapses. Prolines recurrently occur in proteins that form strand-crossover dimer and are believed to be the source of the strain in the monomer. N-cadherins have two proline residues in the βA-sheet. We focused our studies on the role of these two prolines in calcium-dependent dimerization. Spectroscopic, electrophoretic, and chromatopgraphic studies showed that mutations of both prolines to alanines increased the dimerization affinity by ~20-fold and relieved the requirement of calcium in dimerization. The P5A and P6A mutant formed very stable dimers that required denaturation of protein to disassemble in the apo conditions. In summary, the proline residues act as a switch to control the dynamics of the equilibrium between monomer and dimer which is crucial for the plasticity of synapses.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | | |
Collapse
|
303
|
Vendome J, Posy S, Jin X, Bahna F, Ahlsen G, Shapiro L, Honig B. Molecular design principles underlying β-strand swapping in the adhesive dimerization of cadherins. Nat Struct Mol Biol 2011; 18:693-700. [PMID: 21572446 PMCID: PMC3113550 DOI: 10.1038/nsmb.2051] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/24/2011] [Indexed: 02/02/2023]
Abstract
Cell adhesion by classical cadherins is mediated by dimerization of their EC1 domains through the 'swapping' of N-terminal β-strands. We use molecular simulations, measurements of binding affinities and X-ray crystallography to provide a detailed picture of the structural and energetic factors that control the adhesive dimerization of cadherins. We show that strand swapping in EC1 is driven by conformational strain in cadherin monomers that arises from the anchoring of their short N-terminal strand at one end by the conserved Trp2 and at the other by ligation to Ca(2+) ions. We also demonstrate that a conserved proline-proline motif functions to avoid the formation of an overly tight interface where affinity differences between different cadherins, crucial at the cellular level, are lost. We use these findings to design site-directed mutations that transform a monomeric EC2-EC3 domain cadherin construct into a strand-swapped dimer.
Collapse
Affiliation(s)
- Jeremie Vendome
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Center for Computational Biology and Bioinformatics, Columbia University, Room 815, 1130 St. Nicholas Avenue, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| | - Shoshana Posy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Center for Computational Biology and Bioinformatics, Columbia University, Room 815, 1130 St. Nicholas Avenue, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| | - Xiangshu Jin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| | - Fabiana Bahna
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| | - Goran Ahlsen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032 USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Center for Computational Biology and Bioinformatics, Columbia University, Room 815, 1130 St. Nicholas Avenue, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| |
Collapse
|
304
|
Calcium-dependent dynamics of cadherin interactions at cell-cell junctions. Proc Natl Acad Sci U S A 2011; 108:9857-62. [PMID: 21613566 DOI: 10.1073/pnas.1019003108] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherins play a key role in the dynamics of cell-cell contact formation and remodeling of junctions and tissues. Cadherin-cadherin interactions are gated by extracellular Ca(2+), which serves to rigidify the cadherin extracellular domains and promote trans junctional interactions. Here we describe the direct visualization and quantification of spatiotemporal dynamics of N-cadherin interactions across intercellular junctions in living cells using a genetically encodable FRET reporter system. Direct measurements of transjunctional cadherin interactions revealed a sudden, but partial, loss of homophilic interactions (τ = 1.17 ± 0.06 s(-1)) upon chelation of extracellular Ca(2+). A cadherin mutant with reduced adhesive activity (W2A) exhibited a faster, more substantial loss of homophilic interactions (τ = 0.86 ± 0.02 s(-1)), suggesting two types of native cadherin interactions--one that is rapidly modulated by changes in extracellular Ca(2+) and another with relatively stable adhesive activity that is Ca(2+) independent. The Ca(2+)-sensitive dynamics of cadherin interactions were transmitted to the cell interior where β-catenin translocated to N-cadherin at the junction in both cells. These data indicate that cadherins can rapidly convey dynamic information about the extracellular environment to both cells that comprise a junction.
Collapse
|
305
|
Hong S, Troyanovsky RB, Troyanovsky SM. Cadherin exits the junction by switching its adhesive bond. ACTA ACUST UNITED AC 2011; 192:1073-83. [PMID: 21422232 PMCID: PMC3063135 DOI: 10.1083/jcb.201006113] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intercellular traction forces or lateral alignment of cadherin molecules can influence adherens junction dynamics by altering the cadherin dimerization interface. The plasticity of cell–cell adhesive structures is crucial to all normal and pathological morphogenetic processes. The molecular principles of this plasticity remain unknown. Here we study the roles of two dimerization interfaces, the so-called strand-swap and X dimer interfaces of E-cadherin, in the dynamic remodeling of adherens junctions using photoactivation, calcium switch, and coimmunoprecipitation assays. We show that the targeted inactivation of the X dimer interface blocks the turnover of catenin-uncoupled cadherin mutants in the junctions of A-431 cells. In contrast, the junctions formed by strand-swap dimer interface mutants exhibit high instability. Collectively, our data demonstrate that the strand-swap interaction is a principal cadherin adhesive bond that keeps cells in firm contact. However, to leave the adherens junction, cadherin reconfigures its adhesive bond from the strand swap to the X dimer type. Such a structural transition, controlled by intercellular traction forces or by lateral cadherin alignment, may be the key event regulating adherens junction dynamics.
Collapse
Affiliation(s)
- Soonjin Hong
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
306
|
Brasch J, Harrison OJ, Ahlsen G, Carnally SM, Henderson RM, Honig B, Shapiro L. Structure and binding mechanism of vascular endothelial cadherin: a divergent classical cadherin. J Mol Biol 2011; 408:57-73. [PMID: 21269602 PMCID: PMC3084036 DOI: 10.1016/j.jmb.2011.01.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Vascular endothelial cadherin (VE-cadherin), a divergent member of the type II classical cadherin family of cell adhesion proteins, mediates homophilic adhesion in the vascular endothelium. Previous investigations with a bacterially produced protein suggested that VE-cadherin forms cell surface trimers that bind between apposed cells to form hexamers. Here we report studies of mammalian-produced VE-cadherin ectodomains suggesting that, like other classical cadherins, VE-cadherin forms adhesive trans dimers between monomers located on opposing cell surfaces. Trimerization of the bacterially produced protein appears to be an artifact that arises from a lack of glycosylation. We also present the 2.1-Å-resolution crystal structure of the VE-cadherin EC1-2 adhesive region, which reveals homodimerization via the strand-swap mechanism common to classical cadherins. In common with type II cadherins, strand-swap binding involves two tryptophan anchor residues, but the adhesive interface resembles type I cadherins in that VE-cadherin does not form a large nonswapped hydrophobic surface. Thus, VE-cadherin is an outlier among classical cadherins, with characteristics of both type I and type II subfamilies.
Collapse
Affiliation(s)
- Julia Brasch
- Department of Biochemistry and Molecular Biophysics, Columbia University, 635 West 165 Street, New York, NY 10033, USA
| | - Oliver J. Harrison
- Department of Biochemistry and Molecular Biophysics, Columbia University, 635 West 165 Street, New York, NY 10033, USA
- Howard Hughes Medical Institute, Columbia University, 1130 St Nicholas Avenue, New York, NY 10032, USA
| | - Goran Ahlsen
- Department of Biochemistry and Molecular Biophysics, Columbia University, 635 West 165 Street, New York, NY 10033, USA
| | - Stewart M. Carnally
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Robert M. Henderson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, 635 West 165 Street, New York, NY 10033, USA
- Howard Hughes Medical Institute, Columbia University, 1130 St Nicholas Avenue, New York, NY 10032, USA
- Center for Computational Biology and Bioinformatics, Columbia University, 1130 St Nicholas Avenue, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, 635 West 165 Street, New York, NY 10033, USA
- Edward S. Harkness Eye Institute, Columbia University in the City of New York, New York, USA
| |
Collapse
|