301
|
Li G, Wang Q, Liu J, Wu M, Ji H, Qin Y, Zhou X, Wu L. Innovative strategies for enhanced tumor photodynamic therapy. J Mater Chem B 2021; 9:7347-7370. [PMID: 34382629 DOI: 10.1039/d1tb01466h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is an approved and promising treatment approach that utilizes a photosensitizer (PS) to produce cytotoxic reactive oxygen species (ROS) through irradiation to achieve tumor noninvasive therapy. However, the limited singlet oxygen generation, the nonspecific uptake of PS in normal cells, and tumor hypoxia have become major challenges in conventional PDT, impeding its development and further clinical application. This review summarizes an overview of recent advances for the enhanced PDT. The development of PDT with innovative strategies, including molecular engineering and heavy atom-free photosensitizers is presented and future directions in this promising field are also provided. This review aims to highlight the recent advances in PDT and discuss the potential strategies that show promise in overcoming the challenges of PDT.
Collapse
Affiliation(s)
- Guo Li
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Qi Wang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Jinxia Liu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Mingmin Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Haiwei Ji
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Yuling Qin
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Xiaobo Zhou
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Li Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| |
Collapse
|
302
|
Zhou LL, Guan Q, Li WY, Zhang Z, Li YA, Dong YB. A Ferrocene-Functionalized Covalent Organic Framework for Enhancing Chemodynamic Therapy via Redox Dyshomeostasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101368. [PMID: 34216420 DOI: 10.1002/smll.202101368] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2 O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH-induced cellular damage by CDT, a covalent organic framework (COF)-based, ferrocene (Fc)- and glutathione peroxidase 4 (GPX4) inhibitor-loaded nanodrug, RSL3@COF-Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton-like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species-mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF-based nanomedicine.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhiyong Zhang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, P. R. China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
303
|
Chen W, Sun Z, Jiang C, Sun W, Yu B, Wang W, Lu L. An All‐in‐One Organic Semiconductor for Targeted Photoxidation Catalysis in Hypoxic Tumor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Wenbo Sun
- College of Materials Science and Engineering College of Chemistry and Chemical Engineering Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials Instrumental Analysis Center of Qingdao University Qingdao University Qingdao 266071 China
| | - Bin Yu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Wei Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| |
Collapse
|
304
|
Cheng Q, Zhou T, Xia Q, Lu X, Xu H, Hu M, Jing S. Design of ferrocenylseleno-dopamine derivatives to optimize the Fenton-like reaction efficiency and antitumor efficacy. RSC Adv 2021; 11:25477-25483. [PMID: 35478891 PMCID: PMC9036967 DOI: 10.1039/d1ra03537a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
In the current study, six ferrocenylseleno-dopamine derivatives with different structural parameters were designed. Among these derivatives, F4b, containing two ferrocene units and a tertiary amine, showed in vitro anticancer activity with IC50 = 2.4 ± 0.4 μM for MGC-803 cells, and its in vivo studies suggested effective antitumor activity in mice bearing an MGC-803 tumor xenograft. Mechanistic study revealed that the cytotoxicity of these ferrocenylseleno-dopamine derivatives is mainly related to the Fenton-like reaction under physiological conditions, and the tertiary amine in F4b can facilitate the H2O2 decomposition to generate toxic ˙OH which induces apoptosis through CDK-2 inactivation.
Collapse
Affiliation(s)
- Qianya Cheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Tong Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Qing Xia
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xiulian Lu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Heng Xu
- Jiangsu Province Institute of Materia Medica, Nanjing Tech University Nanjing 211816 China
| | - Ming Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
305
|
He Y, Jin X, Guo S, Zhao H, Liu Y, Ju H. Conjugated Polymer-Ferrocence Nanoparticle as an NIR-II Light Powered Nanoamplifier to Enhance Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31452-31461. [PMID: 34197086 DOI: 10.1021/acsami.1c06613] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT) is a promising therapeutic modality with transition metal ions and endogenous H2O2 as reagents, but its efficiency is impaired by low endogenous H2O2 levels and nonregeneration of metal ions. Most intracellular H2O2 supplement strategies use oxidases and are intensively dependent on oxygen participation. The hypoxia microenvironments of solid tumors weaken their performance. Here, we develop a near-infrared II light powered nanoamplifier to improve the local oxygen level and to enhance CDT. The nanoamplifier CPNP-Fc/Pt consists of ferrocene (Fc)- and cisplatin prodrug (Pt(IV))-modified conjugated polymer nanoparticles (CPNPs). CPNP has a donor-acceptor structure and demonstrates a good photothermal effect under 1064 nm light irradiation, which accelerates blood flow and efficiently elevates the local oxygen content. In response to intracellular glutathione, Pt(II) is released from CPNP-Fc/Pt and triggers enzymatic cascade reactions with nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) and superoxide dismutase to convert oxygen into H2O2. The enhanced oxygen level results in efficient intracellular H2O2 supply. Fc is reacted with H2O2 and converted to Fc+ via the Fenton reaction, with the generation of hydroxyl radicals for CDT. Unlike free metal ions, the Fe(III) in Fc+ is reduced to Fe(II) by intracellular NAD(P)H, which achieves the regeneration of Fc. The sufficient intracellular H2O2 supply and efficient Fc regeneration effectively enhance the Fenton reaction and demonstrate good in vivo CDT results with tumor growth suppression. This design offers a promising strategy to enhance CDT efficiency in the hypoxia microenvironment of solid tumors.
Collapse
Affiliation(s)
- Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinyu Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuwen Guo
- State Key Laboratory of Quality Research in Chinese Medic, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
306
|
Chen W, Sun Z, Jiang C, Sun W, Yu B, Wang W, Lu L. An All-in-One Organic Semiconductor for Targeted Photoxidation Catalysis in Hypoxic Tumor. Angew Chem Int Ed Engl 2021; 60:16641-16648. [PMID: 33880849 DOI: 10.1002/anie.202105206] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Tumor hypoxia severely limits the therapeutic effects of photodynamic therapy (PDT). Although many methods for oxygen generation exist, substantial safety concerns, spatiotenporal uncontrollability, limited efficacy, and complicated procedures have compromised their practical application. Here, we demonstrate a biocompatiable all-in-one organic semiconductor to provide a photoxidation catalysis mechanism of action. A facile method is developed to produce gram-level C5 N2 nanoparticles (NPs)-based organic semiconductor. Under 650 nm laser irradiation, the semiconductor split water to generate O2 and simultaneously produce singlet oxygen (1 O2 ), showing that the photocatalyst for O2 evolution and the photosensitizer (PS) for 1 O2 generation could be synchronously achieved in one organic semiconductor. The inherent nucleus targeting capacity endows it with direct and efficient DNA photocleavage. These findings pave the way for developing organic semiconductor-based cancer therapeutic agents.
Collapse
Affiliation(s)
- Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Wenbo Sun
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Bin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Wei Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| |
Collapse
|
307
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark‐Hypoxia by Catalytic Microenvironment‐Tailored Nanoreactors for NIR‐II Fluorescence‐Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 117597 Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
308
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark-Hypoxia by Catalytic Microenvironment-Tailored Nanoreactors for NIR-II Fluorescence-Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021; 60:15006-15012. [PMID: 33871140 DOI: 10.1002/anie.202102097] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Singlet oxygen (1 O2 ) has a potent anticancer effect, but photosensitized generation of 1 O2 is inhibited by tumor hypoxia and limited light penetration depth. Despite the potential of chemodynamic therapy (CDT) to circumvent these issues by exploration of 1 O2 -producing catalysts, engineering efficient CDT agents is still a formidable challenge since most catalysts require specific pH to function and become inactivated upon chelation by glutathione (GSH). Herein, we present a catalytic microenvironment-tailored nanoreactor (CMTN), constructed by encapsulating MoO4 2- catalyst and alkaline sodium carbonate within liposomes, which offers a favorable pH condition for MoO4 2- -catalyzed generation of 1 O2 from H2 O2 and protects MoO4 2- from GSH chelation owing to the impermeability of liposomal lipid membrane to ions and GSH. H2 O2 and 1 O2 can freely cross the liposomal membrane, allowing CMTN with a built-in NIR-II ratiometric fluorescent 1 O2 sensor to achieve monitored tumor CDT.
Collapse
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
309
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
310
|
Dai Y, Ding Y, Li L. Nanozymes for regulation of reactive oxygen species and disease therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|