301
|
Yeo JP, Toh BH. Cell cycle-associated autoantibodies: markers for autoimmunity and probes for molecular cell biology. Autoimmunity 1994; 18:291-300. [PMID: 7858115 DOI: 10.3109/08916939409009531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antinuclear autoantibodies are useful diagnostic markers for systemic autoimmune diseases and as probes for the molecular cell biology of nuclear proteins. Here, we review a subset of autoantibodies to nuclear and cytoplasmic proteins involved in the cell cycle. We propose a classification of these autoantibodies into S-phase (DNA Synthesis) and M-phase (Mitosis) autoantibodies. S-phase autoantibodies are represented by autoantibodies to PCNA (Proliferating Cell Nuclear Antigen), the auxiliary protein of DNA polymerase delta. M-phase autoantibodies are represented by autoantibodies to mitotic spindle components viz. centrosomes, condensed chromosomes, centromeres, mitotic spindle proper and intercellular bridge. We have included autoantibodies to nuclear lamins as M-phase autoantibodies as lamins play a key role in reversible breakdown and reformation of nuclear membranes during mitosis. The usefulness of these autoantibodies as diagnostic markers in systemic autoimmune disease is tempered by their presence in patients with "atypical" autoimmune diseases and in normal individuals. However, as molecular probes, they have proven to be unique and invaluable tools for shedding new light on the workings of the cell cycle.
Collapse
Affiliation(s)
- J P Yeo
- Department of Pathology and Immunology, Monash University Medical School, Prahran, Victoria, Australia
| | | |
Collapse
|
302
|
Strunnikov AV, Larionov VL, Koshland D. SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J Biophys Biochem Cytol 1993; 123:1635-48. [PMID: 8276886 PMCID: PMC2290909 DOI: 10.1083/jcb.123.6.1635] [Citation(s) in RCA: 235] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The smc1-1 mutant was identified initially as a mutant of Saccharomyces cerevisiae that had an elevated rate of minichromosome nondisjunction. We have cloned the wild-type SMC1 gene. The sequence of the SMC1 gene predicts that its product (Smc1p) is a 141-kD protein, and antibodies against Smc1 protein detect a protein with mobility of 165 kD. Analysis of the primary and putative secondary structure of Smc1p suggests that it contains two central coiled-coil regions flanked by an amino-terminal nucleoside triphosphate (NTP)-binding head and a conserved carboxy-terminal tail. These analyses also indicate that Smc1p is an evolutionary conserved protein and is a member of a new family of proteins ubiquitous among prokaryotes and eukaryotes. The SMC1 gene is essential for viability. Several phenotypic characteristics of the mutant alleles of smc1 gene indicate that its product is involved in some aspects of nuclear metabolism, most likely in chromosome segregation. The smc1-1 and smc1-2 mutants have a dramatic increase in mitotic loss of a chromosome fragment and chromosome III, respectively, but have no increase in mitotic recombination. Depletion of SMC1 function in the ts mutant, smc1-2, causes a dramatic mitosis-related lethality. Smc1p-depleted cells have a defect in nuclear division as evidenced by the absence of anaphase cells. This phenotype of the smc1-2 mutant is not RAD9 dependent. Based upon the facts that Smc1p is a member of a ubiquitous family, and it is essential for yeast nuclear division, we propose that Smc1p and Smc1p-like proteins function in a fundamental aspect of prokaryotic and eukaryotic cell division.
Collapse
Affiliation(s)
- A V Strunnikov
- Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210
| | | | | |
Collapse
|
303
|
Rodionov VI, Gelfand VI, Borisy GG. Kinesin-like molecules involved in spindle formation. J Cell Sci 1993; 106 ( Pt 4):1179-88. [PMID: 8126099 DOI: 10.1242/jcs.106.4.1179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the possible involvement of kinesin-like molecules in mitosis a polyclonal antibody against the head domain of Drosophila kinesin heavy chain (HD antibody) was microinjected into PtK1 cells at the prophase-prometaphase transition. Progress of the cell through mitosis was recorded for subsequent detailed analysis. Cells injected with pre-immune IgG progressed through mitosis at rates similar to those for noninjected cells. After HD antibody injections, chromosomes failed to congress to an equatorial plane and cells failed to form a bipolar spindle. Rather, the spindle poles came together, resulting in a monopolar-like configuration with chromosomes arranged about the poles in a rosette. Sometimes the monopolar array moved to the margin of the cell in a way similar to anaphase B movement in normal cells. Antibody-injected cells progressed into the next cell cycle as evidenced by chromosome decondensation and nuclear envelope reformation. Anti-tubulin immunofluorescence confirmed the presence of a radial monopolar array of microtubules in injected cells. HD antibody stained in a punctate pattern in interphase and the spindle region in mitotic PtK1 cells. The antibody also reacted with spindle fibers of isolated mitotic CHO spindles and with kinetochores of isolated CHO chromosomes. Immunoblotting indicated that the major component recognized by the antibody is the 120 kDa kinesin heavy chain. At higher protein loads the antibody recognized also a 34 kDa polypeptide in PtK1 cell extracts, a 135 kDa polypeptide in a preparation of CHO spindles and a 300 kDa polypeptide in a preparation of CHO mitotic chromosomes. We conclude that a kinesin-like molecule is important for the formation and/or maintenance of the structure of mitotic spindle.
Collapse
Affiliation(s)
- V I Rodionov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | |
Collapse
|
304
|
Abstract
Eukaryotic cells utilize a microtubular spindle to segregate chromosomes during mitosis. Chromosome segregation requires the timely separation of the mitotic spindle poles to which the chromosomes are attached. Recent studies at the molecular and cellular levels have provided new insights into the mechanism and regulation of this process. On the one hand, the process now seems more complex, as redundant mechanisms apparently overlap in function during cell division. On the other hand, some of these processes may be acting continuously during the various stages of spindle pole separation, suggesting an underlying simplicity.
Collapse
Affiliation(s)
- W S Saunders
- Department of Biology, Mudd Hall, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| |
Collapse
|
305
|
Wiemann S, Voss H, Schwager C, Rupp T, Stegemann J, Zimmermann J, Grothues D, Sensen C, Erfle H, Hewitt N. Sequencing and analysis of 51.6 kilobases on the left arm of chromosome XI from Saccharomyces cerevisiae reveals 23 open reading frames including the FAS1 gene. Yeast 1993; 9:1343-8. [PMID: 8154185 DOI: 10.1002/yea.320091208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have sequenced two segments containing a total of 51.6 kb of the left arm from chromosome XI of Saccharomyces cerevisiae. The first segment of 38.5 kb contains 18 open reading frames (ORFs) of more than 100 amino acid residues. Five ORFs encode known yeast genes, including the fatty acid synthase gene (FAS1). Three new yeast genes were discovered with homologies to non-yeast genes and ten new genes without homologies to any known sequences. The second segment of 13 kb contains five ORFs with two known yeast genes and three unknown genes. The sequences from cosmid pUKG041 were obtained entirely with the walking primer strategy resulting in a very low overall sequence redundancy of 2.8 and an average reading length of 443 bases.
Collapse
Affiliation(s)
- S Wiemann
- Biochemical Instrumentation, EMBL, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Casiano CA, Landberg G, Ochs RL, Tan EM. Autoantibodies to a novel cell cycle-regulated protein that accumulates in the nuclear matrix during S phase and is localized in the kinetochores and spindle midzone during mitosis. J Cell Sci 1993; 106 ( Pt 4):1045-56. [PMID: 7907337 DOI: 10.1242/jcs.106.4.1045] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have employed human autoantibodies to characterize a novel cell cycle-regulated nuclear protein, provisionally designated p330d (doublet polypeptide of 330 kDa). The expression and intracellular distribution of this protein was followed throughout the cell cycle using immunofluorescence microscopy, laser confocal microscopy, immunoelectron microscopy and flow cytometry. p330d was expressed only in proliferating cells and began accumulating in the nucleus during early S phase. The protein reached maximum expression levels during G2/M. In situ extractions with detergent, salt and nucleases failed to abolish the nuclear staining of interphase cells, suggesting a tight binding of p330d to the nuclear matrix during interphase. p330d was concentrated in the kinetochores during prophase but was relocated to the spindle midzone at the onset of anaphase. By late telophase, it was localized predominantly in the intercellular bridge regions flanking the midbody and disappeared gradually as the daughter cells separated. Immunoblotting analysis showed that the autoimmune sera recognized a doublet of 330 kDa, and affinity-purified antibodies from this doublet reproduced the fluorescence staining pattern of the whole serum. We propose that p330d is a novel member of the class of ‘chromosomal passenger’ proteins, which are associated transiently with centromeres during early mitosis and are then redistributed to other sites of the mitotic apparatus after the metaphase/anaphase transition. Possible in vivo functions for p330d and related proteins might include roles in centromere/kinetochore maturation and assembly, chromosome segregation, central spindle stabilization and cytokinesis.
Collapse
Affiliation(s)
- C A Casiano
- W. M. Keck Autoimmune Disease Center, Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | | | | | | |
Collapse
|
307
|
Heck MM, Pereira A, Pesavento P, Yannoni Y, Spradling AC, Goldstein LS. The kinesin-like protein KLP61F is essential for mitosis in Drosophila. J Cell Biol 1993; 123:665-79. [PMID: 8227131 PMCID: PMC2200134 DOI: 10.1083/jcb.123.3.665] [Citation(s) in RCA: 248] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We report here that disruption of a recently discovered kinesin-like protein in Drosophila melanogaster, KLP61F, results in a mitotic mutation lethal to the organism. We show that in the absence of KLP61F function, spindle poles fail to separate, resulting in the formation of monopolar mitotic spindles. The resulting phenotype of metaphase arrest with polyploid cells is reminiscent of that seen in the fungal bimC and cut7 mutations, where it has also been shown that spindle pole bodies are not segregated. KLP61F is specifically expressed in proliferating tissues during embryonic and larval development, consistent with a primary role in cell division. The structural and functional homology of the KLP61F, bimC, cut7, and Eg5 kinesin-like proteins demonstrates the existence of a conserved family of kinesin-like molecules important for spindle pole separation and mitotic spindle dynamics.
Collapse
Affiliation(s)
- M M Heck
- Johns Hopkins University, School of Medicine, Department of Cell Biology and Anatomy, Baltimore, Maryland 21205
| | | | | | | | | | | |
Collapse
|
308
|
Mackay AM, Eckley DM, Chue C, Earnshaw WC. Molecular analysis of the INCENPs (inner centromere proteins): separate domains are required for association with microtubules during interphase and with the central spindle during anaphase. J Cell Biol 1993; 123:373-85. [PMID: 8408220 PMCID: PMC2119831 DOI: 10.1083/jcb.123.2.373] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
It has recently been proposed that mitotic chromosomes transport certain cytoskeletal proteins to the metaphase plate so that these proteins are able to subsequently participate in the assembly of the anaphase spindle and the cleavage furrow. To understand how such proteins accomplish their dual chromosomal: cytoskeletal role, we have begun a molecular and functional analysis of the inner centromere proteins (INCENPs), founder members of the class of "chromosome passenger proteins". cDNA clones encoding the open reading frames of the two chicken INCENPs were recovered. The predicted proteins, class I INCENP (96,357 D) and class II INCENP (100,931 D) are novel, and differ from each other by the inclusion of a 38-codon insert within the class II coding region. Transient expression of the chicken INCENPs in mammalian cells confirms that the signals and structures required for the transfer of these proteins from chromosomes to cytoskeleton are evolutionarily conserved. Furthermore, these studies reveal that INCENP association with the cytoskeleton is complex. The amino-terminal 42-amino acid residues are required for transfer of the INCENPs from the chromosomes to the mitotic spindle at anaphase, but not for binding of INCENPs to cytoplasmic microtubules. In contrast, an internal 200 amino acid coiled-coil domain was required for association with microtubules, but dispensable for spindle association. These experiments suggest that proteins required for assembly of specialized cytoskeletal structures during mitosis from anaphase onwards might be sequestered in the nucleus throughout interphase to keep them from disrupting the interphase cytoskeleton, and to ensure their correct positioning during mitosis.
Collapse
Affiliation(s)
- A M Mackay
- Department of Cell Biology and Anatomy, Johns Hopkins School of Medicine, Baltimore, Maryland 21205-2196
| | | | | | | |
Collapse
|
309
|
Abstract
Yeast centromere DNA (CEN) affinity column chromatography has been used to purify several putative centromere and kinetochore proteins from yeast chromatin extracts. The single yeast gene (CBF5) specifying one of the major low-affinity centromere-binding proteins (p64'/CBF5p) has been cloned and shown to be essential for viability of Saccharomyces cerevisiae. CBF5 specifies a 55-kDa highly charged protein that contains a repeating KKD/E sequence domain near the C terminus, similar to known microtubule-binding domains in microtubule-associated proteins 1A and 1B, CBF5p, obtained by overexpression in bacterial cells, binds microtubules in vitro, whereas C-terminal deleted proteins lacking the (KKD/E)n domain do not. Dividing yeast cells containing a C-terminal truncated CBF5 gene, producing CBF5p containing only three copies of the KKD/E repeat, delay with replicated genomes at the G2/M phase of the cell cycle, while depletion of CBF5p arrests most cells in G1/S. Overproduction of CBF5p in S. cerevisiae complements a temperature sensitivity mutation in the gene (CBF2) specifying the 110-kDa subunit of the high-affinity CEN DNA-binding factor CBF3, suggesting in vivo interaction of CBF5p and CBF3. A second low-affinity centromere-binding factor has been identified as topoisomerase II.
Collapse
|
310
|
Skibbens RV, Skeen VP, Salmon ED. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol 1993; 122:859-75. [PMID: 8349735 PMCID: PMC2119582 DOI: 10.1083/jcb.122.4.859] [Citation(s) in RCA: 312] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Most models of mitotic congression and segregation assume that only poleward pulling forces occur at kinetochores. However, there are reports for several different cell types that both mono-oriented and bi-oriented chromosomes oscillate toward and away from the pole throughout mitosis. We used new methods of high resolution video microscopy and computer-assisted tracking techniques to measure the positions over time of individual kinetochores with respect to their poles during mitosis in living newt lung cells. The results show that kinetochores oscillate throughout mitosis when they are tethered to spindle poles by attachment to the plus-ends of kinetochore microtubules (kMTs). Oscillations were not sinusoidal. Instead, kinetochores abruptly (as quick as 6 s or less) switched between persistent (approximately 1.5 min average duration) phases of poleward (P) and away from the pole (AP) movement. This kinetochore "directional instability" was a property of motility at the plus-ends of kMTs since fluorescent marks on the lattice of kMTs have previously been observed to exhibit only relatively slow P movement. Each P and AP phase consisted of one or a few constant velocity domains (approximately 1.7 microns/min average velocity). Velocities of P and AP phases were similar from prometaphase through mid-anaphase. Kinetochores occasionally switched to an indeterminant (N) phase of no or confused motion, which was usually brief compared to the durations of P and AP phases. Net chromosome displacements that occurred during congression to the equator or poleward movement during anaphase were primarily generated by differences in the durations and not the velocities of P and AP movements. Careful analysis of centromere deformation showed that kinetochore P movement produced pulling forces while kinetochore AP movement produced pushing forces. These data show that kinetochore directional instability is fundamental to the processes of chromosome congression and segregation. We argue that tension at the kinetochore attachment site is a key factor which controls the switching between P and AP phases of kinetochore motion.
Collapse
Affiliation(s)
- R V Skibbens
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | |
Collapse
|
311
|
Jiang W, Middleton K, Yoon HJ, Fouquet C, Carbon J. An essential yeast protein, CBF5p, binds in vitro to centromeres and microtubules. Mol Cell Biol 1993; 13:4884-93. [PMID: 8336724 PMCID: PMC360124 DOI: 10.1128/mcb.13.8.4884-4893.1993] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Yeast centromere DNA (CEN) affinity column chromatography has been used to purify several putative centromere and kinetochore proteins from yeast chromatin extracts. The single yeast gene (CBF5) specifying one of the major low-affinity centromere-binding proteins (p64'/CBF5p) has been cloned and shown to be essential for viability of Saccharomyces cerevisiae. CBF5 specifies a 55-kDa highly charged protein that contains a repeating KKD/E sequence domain near the C terminus, similar to known microtubule-binding domains in microtubule-associated proteins 1A and 1B, CBF5p, obtained by overexpression in bacterial cells, binds microtubules in vitro, whereas C-terminal deleted proteins lacking the (KKD/E)n domain do not. Dividing yeast cells containing a C-terminal truncated CBF5 gene, producing CBF5p containing only three copies of the KKD/E repeat, delay with replicated genomes at the G2/M phase of the cell cycle, while depletion of CBF5p arrests most cells in G1/S. Overproduction of CBF5p in S. cerevisiae complements a temperature sensitivity mutation in the gene (CBF2) specifying the 110-kDa subunit of the high-affinity CEN DNA-binding factor CBF3, suggesting in vivo interaction of CBF5p and CBF3. A second low-affinity centromere-binding factor has been identified as topoisomerase II.
Collapse
Affiliation(s)
- W Jiang
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | | | | | |
Collapse
|
312
|
Kingsbury J, Koshland D. Centromere function on minichromosomes isolated from budding yeast. Mol Biol Cell 1993; 4:859-70. [PMID: 8241571 PMCID: PMC300998 DOI: 10.1091/mbc.4.8.859] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Centromeres are a complex of centromere DNA (CEN DNA) and specific factors that help mediate microtubule-dependent movement of chromosomes during mitosis. Minichromosomes can be isolated from budding yeast in a way that their centromeres retain the ability to bind microtubules in vitro. Here, we use the binding of these minichromosomes to microtubules to gain insight into the properties of centromeres assembled in vivo. Our results suggest that neither chromosomal DNA topology nor proximity of telomeres influence the cell's ability to assemble centromeres with microtubule-binding activity. The microtubule-binding activity of the minichromosome's centromere is stable in the presence of competitor CEN DNA, suggesting that the complex between the minichromosome CEN DNA and proteins directly bound to it is very stable. The efficiency of centromere binding to microtubules is dependent upon the concentration of microtubule polymer and is inhibited by ATP. These properties are similar to those exhibited by mechanochemical motors. The binding of minichromosomes to microtubules can be inactivated by the presence of 0.2 M NaCl and then reactivated by restoring NaCl to 0.1 M. In 0.2 M NaCl, some centromere factor(s) bind to microtubules, whereas other(s) apparently remain bound to the minichromosome's CEN DNA. Therefore, the yeast centromere appears to consist of two domains: the first consists of a stable core containing CEN DNA and CEN DNA-binding proteins; the second contains a microtubule-binding component(s). The molecular functions of this second domain are discussed.
Collapse
Affiliation(s)
- J Kingsbury
- Department of Embryology, Carnegie Institute of Washington, Baltimore, Maryland 21210
| | | |
Collapse
|
313
|
Hogan CJ, Wein H, Wordeman L, Scholey JM, Sawin KE, Cande WZ. Inhibition of anaphase spindle elongation in vitro by a peptide antibody that recognizes kinesin motor domain. Proc Natl Acad Sci U S A 1993; 90:6611-5. [PMID: 8341676 PMCID: PMC46982 DOI: 10.1073/pnas.90.14.6611] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Isolated central spindles or spindles in detergent-permeabilized cells from the diatom Cylindrotheca fusiformis can undergo ATP-dependent reactivation of spindle elongation in vitro. We have used a peptide antibody raised against a 10-amino acid portion common to the kinesin superfamily motor domain to look for kinesin-like motor activity during anaphase B of mitosis. The peptide antibody localizes to central spindles. Upon ATP reactivation of spindle elongation, antigens recognized by the antibody are associated exclusively with the central spindle midzone where antiparallel microtubules of each half-spindle overlap. The antibody recognizes several polypeptides by immunoblot using isolated spindle extracts. One of these polypeptides behaves like kinesin with respect to nucleotide-specific binding to and release from taxol-stabilized microtubules. Preincubation of the spindle model with the peptide antibody inhibits subsequent ATP reactivation of spindle elongation. Coincubation of the peptide antibody with peptide antigen rescues spindle function. These results support a role for kinesin-related protein(s) in spindle elongation (anaphase B) of mitosis and suggest that one or several polypeptides that we have identified in spindle extracts may fulfill this function.
Collapse
Affiliation(s)
- C J Hogan
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | | | |
Collapse
|
314
|
Abstract
The DNA sequences that are necessary for the formation of a functional mammalian chromosome are thought to be the origins of replication, the telomeres and the centromere. Telomere structure is now well understood, with the functional element characterized as the motif (TTAGGG)n. The structures of the DNA regions that contain origins of replication and a centromere are known, but the functionally important elements within these regions are still only poorly defined.
Collapse
Affiliation(s)
- C Tyler-Smith
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
315
|
Abstract
A framework for understanding the complex movements of mitosis and meiosis has been provided by the recent discovery of microtubule motor proteins, required for the proper distribution of chromosomes or the structural integrity of the mitotic or meiotic spindle. Although overall features of mitosis and meiosis are often assumed to be similar in mechanism, it is now clear that they differ in several important aspects. These include spindle structure and assembly, and timing of chromosome segregation to opposite poles. Here we review progress in the functional characterization of several newly identified microtubule motor proteins, emphasizing their possible roles in spindle structure and function.
Collapse
Affiliation(s)
- K E Sawin
- Department of Biochemistry and Biophysics, University of California School of Medicine, San Francisco 94143-0448
| | | |
Collapse
|
316
|
Bloom K. The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell 1993; 73:621-4. [PMID: 8500159 DOI: 10.1016/0092-8674(93)90242-i] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- K Bloom
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| |
Collapse
|
317
|
Jiang W, Lechner J, Carbon J. Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J Cell Biol 1993; 121:513-9. [PMID: 8486733 PMCID: PMC2119569 DOI: 10.1083/jcb.121.3.513] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have cloned and determined the nucleotide sequence of the gene (CBF2) specifying the large (110 kD) subunit of the 240-kD multisubunit yeast centromere binding factor CBF3, which binds selectively in vitro to yeast centromere DNA and contains a minus end-directed microtubule motor activity. The deduced amino acid sequence of CBF2p shows no sequence homologies with known molecular motors, although a consensus nucleotide binding site is present. The CBF2 gene is essential for viability of yeast and is identical to NDC10, in which a conditional mutation leads to a defect in chromosome segregation (Goh, P.-Y., and J. V. Kilmartin, in this issue of The Journal of Cell Biology). The combined in vitro and in vivo evidence indicate that CBF2p is a key component of the budding yeast kinetochore.
Collapse
Affiliation(s)
- W Jiang
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
318
|
Goh PY, Kilmartin JV. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J Biophys Biochem Cytol 1993; 121:503-12. [PMID: 8486732 PMCID: PMC2119568 DOI: 10.1083/jcb.121.3.503] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A mutant, ndc10-1, was isolated by anti-tubulin staining of temperature-sensitive mutant banks of budding yeast. ndc10-1 has a defect chromosome segregation since chromosomes remains at one pole of the anaphase spindle. This produces one polyploid cell and one aploid cell, each containing a spindle pole body (SPD. NDC10 was cloned and sequenced and is identical to CBF2 (Jiang, W., J. Lechnermn and J. Carbon. 1993. J. Cell Biol. 121:513) which is the 110-kD component of a centromere DNA binding complex (Lechner, J., and J. Carbon. 1991. Cell. 61:717-725). NDC10 is an essential gene. Antibodies to Ndc10p labeled the SPB region in nearly all the cells examined including nonmitotic cells. In some cells with short spindles which may be in metaphase, staining was also observed along the spindle. The staining pattern and the phenotype of ndc10-1 are consistent with Cbf2p/Ndc10p being a kinetochore protein, and provide in vivo evidence for its role in the attachment of chromosomes to the spindle.
Collapse
Affiliation(s)
- P Y Goh
- MRC Laboratory of Molecular Biology, Cambridge, England
| | | |
Collapse
|
319
|
Abstract
New studies on mitosis demonstrate the complexity of interactions that contribute to chromosome motion and spindle assembly. Genetic and immunological approaches reveal the requirement for kinesin-related proteins during cell division in diverse cells. Observations of the dynamic behavior of microtubules demonstrate that their disassembly can produce sufficient force to move chromosomes in vitro, that their poleward movement, or flux, contributes to anaphase motion, and that the direction of anaphase motion can be reversed by induction of kinetochore microtubule elongation.
Collapse
Affiliation(s)
- P Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst 01003
| |
Collapse
|
320
|
Abstract
Recently, proteins have been identified that are required for proper distribution of chromosomes in meiosis and mitosis. Unexpectedly, several of these are microtubule motor proteins. This finding has prompted further investigation into the basis of meiotic and mitotic chromosome movement. The claret protein, or ncd, is one of the new motor proteins that may perform several functions in meiosis and early mitosis in Drosophila.
Collapse
Affiliation(s)
- S A Endow
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
321
|
Abstract
A multitude of microtubule-based motors drives diverse forms of intracellular transport and generates forces for maintaining the dynamic structural organization of cytoplasm. Recent work has illuminated the functions and mechanisms of action of some microtubule motors, and appears to have uncovered unforseen functional interactions between tubulin-based and actin-based systems.
Collapse
Affiliation(s)
- D A Skoufias
- Division of Biological Sciences, University of California, Davis 95616
| | | |
Collapse
|
322
|
Rattner JB, Rao A, Fritzler MJ, Valencia DW, Yen TJ. CENP-F is a .ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization. CELL MOTILITY AND THE CYTOSKELETON 1993; 26:214-26. [PMID: 7904902 DOI: 10.1002/cm.970260305] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have identified a novel .ca 400 kDa cell-cycle dependent kinetochore associated protein in human cells, designated CENP-F, using human autoimmune serum. Immunofluorescence staining using the native serum, affinity purified antibodies, or antibodies raised against a cloned portion of CENP-F first reveals CENP-F homogeneously distributed throughout the nucleus of HeLa cells in the G2 stage of the cell cycle. Progression into prophase is accompanied by the localization of CENP-F to all the kinetochore regions of the karyotype. Kinetochore association is maintained throughout metaphase, but at the onset of anaphase CENP-F is no longer detected in association with the kinetochore but is found at the spindle mid-zone. By telophase, it is concentrated into a narrow band on either side of the midbody. Studies of the interaction of CENP-F with the kinetochore indicate that this protein associates with the kinetochore independent of tubulin and dissociation is dependent on events connected with the onset of anaphase. Nuclease digestion studies and immunoelectron-microscopy indicate that CENP-F is localized to the kinetochore plates and specifically to the outer surface of the outer kinetochore plate. The distribution of CENP-F closely parallels that of another high molecular weight kinetochore associated protein, CENP-E. Comparative studies indicate that there are antibodies in the CENP-F reactive autoimmune serum that recognize determinants present in the central helical rod domain of CENP-E. Immune depletion experiments confirm that CENP-F exhibits the distribution pattern in cells that was seen with the native autoimmune serum.
Collapse
Affiliation(s)
- J B Rattner
- Department of Anatomy, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
323
|
Mack G, Rattner JB. Centrosome repositioning immediately following karyokinesis and prior to cytokinesis. CELL MOTILITY AND THE CYTOSKELETON 1993; 26:239-47. [PMID: 8293479 DOI: 10.1002/cm.970260307] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The behaviour of the centrosome immediately following cell division in tissue culture cells has been investigated. We find that following karyokinesis, but preceding cytokinesis, sister centrosomes relocate from the spindle poles to a position adjacent to the intercellular bridge. This repositioning is accompanied by the appearance of a microtubule bundle that extends from the poleward region of the cell to the centrosome and increases in length as the centrosome approaches the intercellular bridge. Disruption of this bundle with colcemid interrupts centrosome repositioning. In contrast, centrosome repositioning persists in late mitotic cells grown in the presence of cytochalasin D. However, the position of the microtubule-centrosome complex within the cell is randomized suggesting that the path, but not the process, of centrosome repositioning is dependent on an intact actin filament network. This study points out, for the first time, that the complex migration of the centrosome preceding mitosis is paralleled by an equally complex set of events following cell division. We suggest that post-mitotic centrosome repositioning may play a role in ensuring that daughter cells have equal but opposite polarity and may reflect an interrelationship between the establishment of the interphase cytoskeleton and the completion of cytokinesis.
Collapse
Affiliation(s)
- G Mack
- Department of Anatomy, University of Calgary, Alberta, Canada
| | | |
Collapse
|
324
|
Vale RD, Malik F, Brown D. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins. J Cell Biol 1992; 119:1589-96. [PMID: 1469050 PMCID: PMC2289742 DOI: 10.1083/jcb.119.6.1589] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kinesin and dynein are motor proteins that move in opposite directions along microtubules. In this study, we examine the consequences of having kinesin and dynein (ciliary outer arm or cytoplasmic) bound to glass surfaces interacting with the same microtubule in vitro. Although one might expect a balance of opposing forces to produce little or no net movement, we find instead that microtubules move unidirectionally for several microns (corresponding to hundreds of ATPase cycles by a motor) but continually switch between kinesin-directed and dynein-directed transport. The velocities in the plus-end (0.2-0.3 microns/s) and minus-end (3.5-4 microns/s) directions were approximately half those produced by kinesin (0.5 microns/s) and ciliary dynein (6.7 microns/s) alone, indicating that the motors not contributing to movement can interact with and impose a drag upon the microtubule. By comparing two dyneins with different duty ratios (percentage of time spent in a strongly bound state during the ATPase cycle) and varying the nucleotide conditions, we show that the microtubule attachment times of the two opposing motors as well as their relative numbers determine which motor predominates in this assay. Together, these findings are consistent with a model in which kinesin-induced movement of a microtubule induces a negative strain in attached dyneins which causes them to dissociate before entering a force-generating state (and vice versa); reversals in the direction of transport may require the temporary dissociation of the transporting motor from the microtubule. The bidirectional movements described here are also remarkably similar to the back-and-forth movements of chromosomes during mitosis and membrane vesicles in fibroblasts. These results suggest that the underlying mechanical properties of motor proteins, at least in part, may be responsible for reversals in microtubule-based transport observed in cells.
Collapse
Affiliation(s)
- R D Vale
- Department of Pharmacology, University of California, San Francisco 94143
| | | | | |
Collapse
|
325
|
|