301
|
|
302
|
|
303
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and 2945=2945#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
304
|
|
305
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 having 1479=1479-- weoe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
306
|
Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol 2015; 94:1-11. [PMID: 25562745 DOI: 10.1016/j.bcp.2014.12.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022]
Abstract
Cell death plays an essential role in the development of organs, homeostasis, and cancer. Apoptosis and programmed necrosis are two major types of cell death, characterized by different cell morphology and pathways. Accumulating evidence shows autophagy as a new alternative target to treat tumor resistance. Besides its well-known pro-survival role, autophagy can be a physiological cell death process linking apoptosis and programmed necrosis cell death pathways, by various molecular mediators. Here, we summarize the effects of pharmacologically active compounds as modulators of different types of cancer cell death depending on the cellular context. Indeed, current findings show that both natural and synthetic compounds regulate the interplay between apoptosis, autophagy and necroptosis stimulating common molecular mediators and sharing common organelles. In response to specific stimuli, the same death signal can cause cells to switch from one cell death modality to another depending on the cellular setting. The discovery of important interconnections between the different cell death mediators and signaling pathways, regulated by pharmacologically active compounds, presents novel opportunities for the targeted treatment of cancer. The aim of this review is to highlight the potential role of these compounds for context-specific anticancer therapy.
Collapse
Affiliation(s)
- Flavia Radogna
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
307
|
Abstract
Cellular FLICE-inhibitory protein (cFLIP) is structurally related to caspase-8, but lacks its protease activity. Cflip gene encodes several splicing variants including short form (cFLIPs) and long form (cFLIPL). cFLIPL is composed of two death effector domains at the N terminus and a C-terminal caspase-like domain, and cFLIPs lacks the caspase-like domain. Our studies reveal that cFLIP plays a central role in NF-κB-dependent survival signals that control apoptosis and programmed necrosis. Germline deletion of Cflip results in embryonic lethality due to enhanced apoptosis and programmed necrosis; however, the combined deletion of the death-signaling regulators, Fadd and Ripk3, prevents embryonic lethality in Cflip-deficient mice. Moreover, tissue-specific deletion of Cflip reveals cFLIP as a crucial regulator that maintains tissue homeostasis of immune cells, hepatocytes, intestinal epithelial cells, and epidermal cells by preventing apoptosis and programmed necrosis.
Collapse
|
308
|
RIP1 modulates death receptor mediated apoptosis and autophagy in macrophages. Mol Oncol 2014; 9:806-17. [PMID: 25583602 DOI: 10.1016/j.molonc.2014.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/01/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022] Open
Abstract
Macrophages are responsible for defending against diverse pathogens and play a crucial role in the innate immune system. Macrophage's lifespan is determined by homeostatic balance between survival and apoptosis. Here we report that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers both apoptosis and autophagy in human U937 cells. Inhibition of autophagy facilitates TRAIL-induced apoptosis, suggesting that autophagy of macrophages protects against TRAIL-induced apoptosis. TRAIL treatment influences the expression of death receptors, indicating that TRAIL-induced apoptosis and autophagy are mediated by death receptors. RIP1 ubiquitination and expression regulate apoptosis and autophagy. Furthermore, expression and bioactivity of the p43/41-caspase-8 variant are critical to TRAIL-induced autophagy and apoptosis. Knockdown of RIP1 suppresses autophagy in macrophage. These data demonstrate that RIP1 is essential for the regulation of death receptor mediated autophagy and apoptosis. The results in this study contribute to understanding the regulation of autophagy and apoptosis in macrophages, and shed lights on death receptor-targeted therapy for cancer, inflammation and autoimmune diseases.
Collapse
|
309
|
Abstract
Cell proliferation and cell death are integral elements in maintaining homeostatic balance in metazoans. Disease pathologies ensue when these processes are disturbed. A plethora of evidence indicates that malfunction of cell death can lead to inflammation, autoimmunity, or immunodeficiency. Programmed necrosis or necroptosis is a form of nonapoptotic cell death driven by the receptor interacting protein kinase 3 (RIPK3) and its substrate, mixed lineage kinase domain-like (MLKL). RIPK3 partners with its upstream adaptors RIPK1, TRIF, or DAI to signal for necroptosis in response to death receptor or Toll-like receptor stimulation, pathogen infection, or sterile cell injury. Necroptosis promotes inflammation through leakage of cellular contents from damaged plasma membranes. Intriguingly, many of the signal adaptors of necroptosis have dual functions in innate immune signaling. This unique signature illustrates the cooperative nature of necroptosis and innate inflammatory signaling pathways in managing cell and organismal stresses from pathogen infection and sterile tissue injury.
Collapse
Affiliation(s)
- Francis Ka-Ming Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | | | | |
Collapse
|
310
|
Blander JM. A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 2014; 14:601-18. [PMID: 25145756 DOI: 10.1038/nri3720] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Historically, cell death and inflammation have been closely linked, but the necessary divergence of the fields in the past few decades has enriched our molecular understanding of the signalling pathways that mediate various programmes of cell death and multiple types of inflammatory responses. The fields have now come together again demonstrating a surprising level of integration. Intimate interconnections at multiple levels are revealed between the cell death and inflammatory signal transduction pathways that are mobilized in response to the engagement of pattern recognition receptors during microbial infection. Molecules such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, FAS-associated death domain protein (FADD), FLICE-like inhibitory protein (FLIP) and caspase 8 - which are associated with different forms of cell death - are incorporated into compatible and exceedingly dynamic Toll-like receptor, NOD-like receptor and RIG-I-like receptor signalling modules. These signalling modules have a high capacity to switch from inflammation to cell death, or a programmed execution of both, all in an orchestrated battle for host defence and survival.
Collapse
Affiliation(s)
- J Magarian Blander
- Immunology Institute and Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
311
|
Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, Ouellette M, King BW, Wisnoski D, Lakdawala AS, DeMartino MP, Casillas LN, Haile PA, Sehon CA, Marquis RW, Upton J, Daley-Bauer LP, Roback L, Ramia N, Dovey CM, Carette JE, Chan FKM, Bertin J, Gough PJ, Mocarski ES, Kaiser WJ. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell 2014; 56:481-95. [PMID: 25459880 DOI: 10.1016/j.molcel.2014.10.021] [Citation(s) in RCA: 594] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/11/2014] [Accepted: 10/17/2014] [Indexed: 11/17/2022]
Abstract
Receptor-interacting protein kinase 3 (RIP3 or RIPK3) has emerged as a central player in necroptosis and a potential target to control inflammatory disease. Here, three selective small-molecule compounds are shown to inhibit RIP3 kinase-dependent necroptosis, although their therapeutic value is undermined by a surprising, concentration-dependent induction of apoptosis. These compounds interact with RIP3 to activate caspase 8 (Casp8) via RHIM-driven recruitment of RIP1 (RIPK1) to assemble a Casp8-FADD-cFLIP complex completely independent of pronecrotic kinase activities and MLKL. RIP3 kinase-dead D161N mutant induces spontaneous apoptosis independent of compound, whereas D161G, D143N, and K51A mutants, like wild-type, only trigger apoptosis when compound is present. Accordingly, RIP3-K51A mutant mice (Rip3(K51A/K51A)) are viable and fertile, in stark contrast to the perinatal lethality of Rip3(D161N/D161N) mice. RIP3 therefore holds both necroptosis and apoptosis in balance through a Ripoptosome-like platform. This work highlights a common mechanism unveiling RHIM-driven apoptosis by therapeutic or genetic perturbation of RIP3.
Collapse
Affiliation(s)
- Pratyusha Mandal
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Scott B Berger
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Sirika Pillay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kenta Moriwaki
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chunzi Huang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hongyan Guo
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D Lich
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Joshua Finger
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Viera Kasparcova
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Bart Votta
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Michael Ouellette
- Molecular Discovery Research, Platform Technologies and Science, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Bryan W King
- Molecular Discovery Research, Platform Technologies and Science, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - David Wisnoski
- Molecular Discovery Research, Platform Technologies and Science, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Ami S Lakdawala
- Molecular Discovery Research, Platform Technologies and Science, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Michael P DeMartino
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Linda N Casillas
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Pamela A Haile
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Clark A Sehon
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Robert W Marquis
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Jason Upton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Lisa P Daley-Bauer
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linda Roback
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nancy Ramia
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cole M Dovey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francis Ka-Ming Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
312
|
Abstract
Receptor Interacting Protein Kinase-1 (RIPK1), a key player in inflammation and cell death, assumes opposite functions depending on the cellular context and its posttranslational modifications. Genetic evidence supported by biochemical and cellular biology approaches sheds light on the circumstances in which RIPK1 promotes or inhibits these processes.
Collapse
Affiliation(s)
- Ricardo Weinlich
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
313
|
Abstract
Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia-reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.
Collapse
|
314
|
From nature to bedside: Pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv 2014; 32:1111-22. [DOI: 10.1016/j.biotechadv.2014.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 12/11/2022]
|
315
|
Abstract
PURPOSE OF REVIEW To critically review recent advances on the role of programmed necrosis and other cell death modalities in intestinal health and inflammatory bowel disease. RECENT FINDINGS Tight regulation of intestinal epithelial cell proliferation and cell death is required for intestinal physiology, and to maintain an integral barrier that restricts microbiota translocation and ensures immune tolerance. Apoptosis has long been considered as a normal part of intestinal epithelial cell turnover. However, recent studies have demonstrated that excessive cell death leads to deleterious intestinal inflammation, as is observed in inflammatory bowel disease. Additionally, a novel form of cell death dubbed programmed necrosis, or necroptosis, has been recently shown to be pathological in the gut. SUMMARY The role of cell death in the intestine is complex and its potential implication in intestinal diseases, and inflammatory bowel disease in particular, needs to be reevaluated.
Collapse
|
316
|
Cai Z, Liu ZG. Execution of RIPK3-regulated necrosis. Mol Cell Oncol 2014; 1:e960759. [PMID: 27308332 PMCID: PMC4905176 DOI: 10.4161/23723548.2014.960759] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 01/08/2023]
Abstract
Necroptosis is a form of regulated necrotic cell death that is mediated by receptor-interacting protein 1 (RIP1) and RIP3 kinases. Diverse receptors, including death receptors, Toll-like receptors, interferon receptors, and DAI DNA receptors are able to trigger necroptosis. The newly identified MLKL protein functions downstream of RIP1/RIP3 and is essential for the execution of necroptosis. Studies also indicate involvement of reactive oxygen species and calcium and sodium ions. Identification of the key mediators of necroptosis is critical for understanding the molecular mechanisms of the necroptotic process.
Collapse
Affiliation(s)
- Zhenyu Cai
- Center for Cancer Research; National Cancer Institute; National Institutes of Health , Bethesda, MD USA
| | - Zheng-Gang Liu
- Center for Cancer Research; National Cancer Institute; National Institutes of Health , Bethesda, MD USA
| |
Collapse
|
317
|
Son KN, Lipton HL. Inhibition of Theiler's virus-induced apoptosis in infected murine macrophages results in necroptosis. Virus Res 2014; 195:177-82. [PMID: 25449910 DOI: 10.1016/j.virusres.2014.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/10/2023]
Abstract
In mice Theiler's murine encephalomyelitis virus (TMEV) persists in macrophages that eventually undergo apoptosis. TMEV infection of macrophages in culture induces apoptosis through the intrinsic pathway, restricting virus yields. We show that inhibition of TMEV-induced apoptosis leads to phosphorylation of receptor interacting protein 1 (RIP1), localization of RIP1 and RIP3 to mitochondria, ROS production independent of MAPK activation and programmed necrosis (necroptosis). Blocking both apoptosis and necroptosis restored virus yields.
Collapse
Affiliation(s)
- Kyung-No Son
- Department of Microbiology-Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Howard L Lipton
- Department of Microbiology-Immunology, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
318
|
Kearney CJ, Cullen SP, Clancy D, Martin SJ. RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis. FEBS J 2014; 281:4921-34. [PMID: 25195660 DOI: 10.1111/febs.13034] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 11/30/2022]
Abstract
Tumour necrosis factor and lipopolysaccharide can promote a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing receptor-interacting serine/threonine kinase (RIPK)3. Because inhibitors of RIPK1 kinase activity such as necrostatin-1 block necroptosis in many settings, RIPK1 is thought to be required for activation of RIPK3, leading to necroptosis. However, here we show that, although necrostatin potently inhibited tumour necrosis factor-induced, lipopolysaccharide-induced and polyIC-induced necroptosis, RIPK1 knockdown unexpectedly potentiated this process. In contrast, RIPK3 knockdown potently suppressed necroptosis under the same conditions. Significantly, necrostatin failed to block necroptosis in the absence of RIPK1, indicating that its ability to suppress necroptosis was indeed RIPK1-dependent. These data argue that RIPK1 is dispensable for necroptosis and can act as an inhibitor of this process. Our observations also suggest that necrostatin enhances the inhibitory effects of RIPK1 on necroptosis, as opposed to blocking its participation in this process.
Collapse
Affiliation(s)
- Conor J Kearney
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
319
|
Lai CH, Park KS, Lee DH, Alberobello AT, Raffeld M, Pierobon M, Pin E, Petricoin EF, Wang Y, Giaccone G. HSP-90 inhibitor ganetespib is synergistic with doxorubicin in small cell lung cancer. Oncogene 2014; 33:4867-76. [PMID: 24166505 PMCID: PMC4002667 DOI: 10.1038/onc.2013.439] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/25/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023]
Abstract
Small cell lung cancer (SCLC) at advanced stage is considered an incurable disease. Despite good response to initial chemotherapy, the responses in SCLC patients with metastatic disease are of short duration and resistance inevitably occurs. Although several target-specific drugs have altered the paradigm of treatment for many other cancers, we have yet to witness a revolution of the same magnitude in SCLC treatment. Anthracyclines, such as doxorubicin, have definite activity in this disease, and ganetespib has shown promising activity in preclinical models but underwhelming activity as a single agent in SCLC patients. Using SCLC cell lines, we demonstrated that ganetespib (IC50: 31 nM) was much more potent than 17-allylamino-17-demethoxygeldanamycin (17-AAG), a geldanamycin derivative (IC50: 16 μM). Ganetespib inhibited SCLC cell growth via induction of persistent G2/M arrest and Caspase 3-dependent cell death. MTS assay revealed that ganetespib synergized with both doxorubicin and etoposide, two topoisomerase II inhibitors commonly used in SCLC chemotherapy. Expression of receptor-interacting serine/threonine-protein kinase 1 (RIP1), a protein that may function as a pro-survival scaffold protein or a pro-death kinase in TNFR1-activated cells, was induced by doxorubicin and downregulated by ganetespib. Depletion of RIP1 by either RIP1 small interfering RNA (siRNA) or ganetespib sensitized doxorubicin-induced cell death, suggesting that RIP1 may promote survival in doxorubicin-treated cells and that ganetespib may synergize with doxorubicin in part through the downregulation of RIP1. In comparison to ganetespib or doxorubicin alone, the ganetespib+doxorubicin combination caused significantly more growth regression and death of human SCLC xenografts in immunocompromised mice. We conclude that ganetespib and doxorubicin combination exhibits significant synergy and is efficacious in inhibiting SCLC growth in vitro and in mouse xenograft models. Our preclinical study suggests that ganetespib and doxorubicin combination therapy may be an effective strategy for SCLC treatment, which warrants clinical testing.
Collapse
Affiliation(s)
- Chien-Hao Lai
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kang-Seo Park
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Dae-Hao Lee
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anna Teresa Alberobello
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark Raffeld
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Masson University, Manassas, Virginia 20110, United States
| | - Elisa Pin
- Center for Applied Proteomics and Molecular Medicine, George Masson University, Manassas, Virginia 20110, United States
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Masson University, Manassas, Virginia 20110, United States
| | - Yisong Wang
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Giuseppe Giaccone
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
320
|
Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M, Pernaute B, Shimizu Y, Sarr A, Draberova H, Montinaro A, Martinez-Barbera JP, Silke J, Rodriguez TA, Walczak H. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep 2014; 9:153-165. [PMID: 25284787 DOI: 10.1016/j.celrep.2014.08.066] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/31/2014] [Accepted: 08/26/2014] [Indexed: 10/25/2022] Open
Abstract
Linear ubiquitination is crucial for innate and adaptive immunity. The linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP, and SHARPIN, is the only known ubiquitin ligase that generates linear ubiquitin linkages. HOIP is the catalytically active LUBAC component. Here, we show that both constitutive and Tie2-Cre-driven HOIP deletion lead to aberrant endothelial cell death, resulting in defective vascularization and embryonic lethality at midgestation. Ablation of tumor necrosis factor receptor 1 (TNFR1) prevents cell death, vascularization defects, and death at midgestation. HOIP-deficient cells are more sensitive to death induction by both tumor necrosis factor (TNF) and lymphotoxin-α (LT-α), and aberrant complex-II formation is responsible for sensitization to TNFR1-mediated cell death in the absence of HOIP. Finally, we show that HOIP's catalytic activity is necessary for preventing TNF-induced cell death. Hence, LUBAC and its linear-ubiquitin-forming activity are required for maintaining vascular integrity during embryogenesis by preventing TNFR1-mediated endothelial cell death.
Collapse
Affiliation(s)
- Nieves Peltzer
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Lucia Taraborrelli
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Peter Draber
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Maurice Darding
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Barbara Pernaute
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute (NHLI), Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Yutaka Shimizu
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Aida Sarr
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Helena Draberova
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Antonella Montinaro
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Juan Pedro Martinez-Barbera
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Tristan A Rodriguez
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute (NHLI), Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
321
|
Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proc Natl Acad Sci U S A 2014; 111:14436-41. [PMID: 25246544 DOI: 10.1073/pnas.1409389111] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is recruited to the TNF receptor 1 to mediate proinflammatory signaling and to regulate TNF-induced cell death. RIPK1 deficiency results in postnatal lethality, but precisely why Ripk1(-/-) mice die remains unclear. To identify the lineages and cell types that depend on RIPK1 for survival, we generated conditional Ripk1 mice. Tamoxifen administration to adult RosaCreER(T2)Ripk1(fl/fl) mice results in lethality caused by cell death in the intestinal and hematopoietic lineages. Similarly, Ripk1 deletion in cells of the hematopoietic lineage stimulates proinflammatory cytokine and chemokine production and hematopoietic cell death, resulting in bone marrow failure. The cell death reflected cell-intrinsic survival roles for RIPK1 in hematopoietic stem and progenitor cells, because Vav-iCre Ripk1(fl/fl) fetal liver cells failed to reconstitute hematopoiesis in lethally irradiated recipients. We demonstrate that RIPK3 deficiency partially rescues hematopoiesis in Vav-iCre Ripk1(fl/fl) mice, showing that RIPK1-deficient hematopoietic cells undergo RIPK3-mediated necroptosis. However, the Vav-iCre Ripk1(fl/fl) Ripk3(-/-) progenitors remain TNF sensitive in vitro and fail to repopulate irradiated mice. These genetic studies reveal that hematopoietic RIPK1 deficiency triggers both apoptotic and necroptotic death that is partially prevented by RIPK3 deficiency. Therefore, RIPK1 regulates hematopoiesis and prevents inflammation by suppressing RIPK3 activation.
Collapse
|
322
|
Patel S, Murphy D, Haralambieva E, Abdulla ZA, Wong KK, Chen H, Gould E, Roncador G, Hatton C, Anderson AP, Banham AH, Pulford K. Increased Expression of Phosphorylated FADD in Anaplastic Large Cell and Other T-Cell Lymphomas. Biomark Insights 2014; 9:77-84. [PMID: 25232277 PMCID: PMC4159367 DOI: 10.4137/bmi.s16553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/03/2014] [Indexed: 01/02/2023] Open
Abstract
FAS-associated protein with death domain (FADD) is a major adaptor protein involved in extrinsic apoptosis, embryogenesis, and lymphocyte homeostasis. Although abnormalities of the FADD/death receptor apoptotic pathways have been established in tumorigenesis, fewer studies have analyzed the expression and role of phosphorylated FADD (pFADD). Our identification of FADD as a lymphoma-associated autoantigen in T-cell lymphoma patients raises the possibility that pFADD, with its correlation with cell cycle, may possess role(s) in human T-cell lymphoma development. This immunohistochemical study investigated pFADD protein expression in a range of normal tissues and lymphomas, particularly T-cell lymphomas that require improved therapies. Whereas pFADD was expressed only in scattered normal T cells, it was detected at high levels in T-cell lymphomas (eg, 84% anaplastic large cell lymphoma and 65% peripheral T cell lymphomas, not otherwise specified). The increased expression of pFADD supports further study of its clinical relevance and role in lymphomagenesis, highlighting phosphorylation of FADD as a potential therapeutic target.
Collapse
Affiliation(s)
- Suketu Patel
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Derek Murphy
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland. ; School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland. ; Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hong Chen
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edith Gould
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Biotechnology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Chris Hatton
- Department of Hematology, John Radcliffe Hospital, Oxford, UK
| | - Amanda P Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Karen Pulford
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| |
Collapse
|
323
|
Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol 2014; 35:2-13. [PMID: 25160988 DOI: 10.1016/j.semcdb.2014.08.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Over the last decade, our picture of cell death signals involved in experimental disease models totally shifted. Indeed, in addition to apoptosis, multiple forms of regulated necrosis have been associated with an increasing number of pathologies such as ischemia-reperfusion injury in brain, heart and kidney, inflammatory diseases, sepsis, retinal disorders, neurodegenerative diseases and infectious disorders. Especially necroptosis is currently attracting the attention of the scientific community. However, the in vivo identification of ongoing necroptosis in experimental disease conditions remains troublesome, mainly due to the lack of specific biomarkers. Initially, Receptor-Interacting Protein Kinase 1 (RIPK1) and RIPK3 kinase activity were uniquely associated with induction of necroptosis, however recent evidence suggests pleiotropic functions in cell death, inflammation and survival, obscuring a clear picture. In this review, we will present the last methodological advances for in vivo necroptosis identification and discuss past and recent data to provide an update of the so-called "necroptosis-associated pathologies".
Collapse
|
324
|
RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ 2014; 22:225-36. [PMID: 25146926 DOI: 10.1038/cdd.2014.126] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/05/2023] Open
Abstract
Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes. However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and as key mediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases.
Collapse
|
325
|
Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, Zelic M, Kirsch P, Basic M, Bleich A, Kelliher M, Pasparakis M. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 2014; 513:90-4. [PMID: 25132550 DOI: 10.1038/nature13608] [Citation(s) in RCA: 540] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/25/2014] [Indexed: 11/09/2022]
Abstract
Necroptosis has emerged as an important pathway of programmed cell death in embryonic development, tissue homeostasis, immunity and inflammation. RIPK1 is implicated in inflammatory and cell death signalling and its kinase activity is believed to drive RIPK3-mediated necroptosis. Here we show that kinase-independent scaffolding RIPK1 functions regulate homeostasis and prevent inflammation in barrier tissues by inhibiting epithelial cell apoptosis and necroptosis. Intestinal epithelial cell (IEC)-specific RIPK1 knockout caused IEC apoptosis, villus atrophy, loss of goblet and Paneth cells and premature death in mice. This pathology developed independently of the microbiota and of MyD88 signalling but was partly rescued by TNFR1 (also known as TNFRSF1A) deficiency. Epithelial FADD ablation inhibited IEC apoptosis and prevented the premature death of mice with IEC-specific RIPK1 knockout. However, mice lacking both RIPK1 and FADD in IECs displayed RIPK3-dependent IEC necroptosis, Paneth cell loss and focal erosive inflammatory lesions in the colon. Moreover, a RIPK1 kinase inactive knock-in delayed but did not prevent inflammation caused by FADD deficiency in IECs or keratinocytes, showing that RIPK3-dependent necroptosis of FADD-deficient epithelial cells only partly requires RIPK1 kinase activity. Epidermis-specific RIPK1 knockout triggered keratinocyte apoptosis and necroptosis and caused severe skin inflammation that was prevented by RIPK3 but not FADD deficiency. These findings revealed that RIPK1 inhibits RIPK3-mediated necroptosis in keratinocytes in vivo and identified necroptosis as a more potent trigger of inflammation compared with apoptosis. Therefore, RIPK1 is a master regulator of epithelial cell survival, homeostasis and inflammation in the intestine and the skin.
Collapse
Affiliation(s)
- Marius Dannappel
- 1] Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany [2]
| | - Katerina Vlantis
- 1] Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany [2]
| | - Snehlata Kumari
- 1] Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany [2]
| | - Apostolos Polykratis
- 1] Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany [2]
| | - Chun Kim
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Christina Eftychi
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Juan Lin
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Teresa Corona
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Nicole Hermance
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Matija Zelic
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Petra Kirsch
- Tierforschungszentrum, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, D-30625 Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, D-30625 Hannover, Germany
| | - Michelle Kelliher
- 1] Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2]
| | - Manolis Pasparakis
- 1] Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany [2]
| |
Collapse
|
326
|
Abstract
Cell turnover is a fundamental feature in metazoans. Cells can die passively, as a consequence of severe damage to their structural integrity, or actively, owing to a more confined biological disruption such as DNA damage. Passive cell death is uncontrolled and often harmful to the organism. In contrast, active cell death is tightly regulated and serves to support the organism's life. Apoptosis-the primary form of regulated cell death-is relatively well defined. Necroptosis-an alternative, distinct kind of regulated cell death discovered more recently-is less well understood. Apoptosis and necroptosis can be triggered either from within the cell or by extracellular stimuli. Certain signaling components, including several death ligands and receptors, can regulate both processes. Whereas apoptosis is triggered and executed via intracellular proteases called caspases, necroptosis is suppressed by caspase activity. Here we highlight current understanding of the key signaling mechanisms that control regulated cell death.
Collapse
Affiliation(s)
- Avi Ashkenazi
- Genentech Inc., South San Francisco, California 94080;
| | | |
Collapse
|
327
|
Zhou W, Yuan J. Necroptosis in health and diseases. Semin Cell Dev Biol 2014; 35:14-23. [PMID: 25087983 DOI: 10.1016/j.semcdb.2014.07.013] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
Necroptosis is a form of regulated necrosis that can be activated by ligands of death receptors and stimuli that induce the expression of death receptor ligands under apoptotic deficient conditions. Activation of necroptosis by ligands of death receptors requires the kinase activity of RIP1, which mediates the activation of RIP3 and MLKL, two critical downstream mediators of necroptosis. Blocking the kinase activity of RIP1, a key druggable target in the necroptosis pathway, by necrostatins inhibits the activation of necroptosis and allows cell survival and proliferation in the presence of death receptor ligands. The activation of necroptosis is modulated by different forms of ubiquitination, including K63, linear and K48 ubiquitination, as well as phosphorylation of RIP1, RIP3 and MLKL. Necroptosis is suppressed by caspase-8/FADD-mediated apoptosis. Deficiency in caspase-8 and FADD leads to embryonic lethality, tissue degeneration and inflammation which can be suppressed by inhibition of RIP1 kinase and RIP3. On the other hand, the lack of RIP3 kinase activity leads to early embryonic lethality which can be suppressed by the loss of caspase-8, suggesting that although the kinase activity of RIP3 is involved in mediating necroptosis, the basal activity of RIP3 kinase may be required for suppressing caspase-8 mediated apoptosis. Necroptosis as well as RIP1- and RIP3-mediated inflammatory response have been implicated in mediating multiple human diseases including TNF-mediated hypothermia and systemic inflammation, ischemic reperfusion injury, neurodegeneration, Gaucher's disease, progressive atherosclerotic lesions, etc. Targeting RIP1 kinase may provide therapeutic benefits for the treatment of human diseases characterized by necrosis and inflammation.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
328
|
Therapeutic exploitation of necroptosis for cancer therapy. Semin Cell Dev Biol 2014; 35:51-6. [PMID: 25065969 DOI: 10.1016/j.semcdb.2014.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 12/22/2022]
Abstract
Evasion of programmed cell death represents one of the hallmarks of cancers that contributes to tumor initiation, progression and treatment resistance. This calls for novel therapeutic concepts to reactivate cell death programs in human malignancies. Since necroptosis represents a regulated form of necrosis that is under the control of defined signal transduction pathways, it offers molecular targets for rational therapeutic intervention. Indeed, there is mounting evidence showing that many currently used anticancer agents can engage necroptotic signaling pathways and thereby elicit cell death in malignant cells. A better understanding of the signaling networks regulating necroptosis in cancer cells is expected to speed up the development of anticancer drugs for therapeutic exploitation of necroptosis for cancer therapy.
Collapse
|
329
|
Lu JV, Chen HC, Walsh CM. Necroptotic signaling in adaptive and innate immunity. Semin Cell Dev Biol 2014; 35:33-9. [PMID: 25042848 DOI: 10.1016/j.semcdb.2014.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 01/17/2023]
Abstract
The vertebrate immune system is highly dependent on cell death for efficient responsiveness to microbial pathogens and oncogenically transformed cells. Cell death pathways are vital to the function of many immune cell types during innate, humoral and cellular immune responses. In addition, cell death regulation is imperative for proper adaptive immune self-tolerance and homeostasis. While apoptosis has been found to be involved in several of these roles in immunity, recent data demonstrate that alternative cell death pathways are required. Here, we describe the involvement of a programmed form of cellular necrosis called "necroptosis" in immunity. We consider the signaling pathways that promote necroptosis downstream of death receptors, type I transmembrane proteins of the tumor necrosis factor (TNF) receptor family. The involvement of necroptotic signaling through a "RIPoptosome" assembled in response to innate immune stimuli or genotoxic stress is described. We also characterize the induction of necroptosis following antigenic stimulation in T cells lacking caspase-8 or FADD function. While necroptotic signaling remains poorly understood, it is clear that this pathway is an essential component to effective vertebrate immunity.
Collapse
Affiliation(s)
- Jennifer V Lu
- Institute for Immunology, Department of Molecular Biology and Biochemistry, 3215 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-3900, United States
| | - Helen C Chen
- Institute for Immunology, Department of Molecular Biology and Biochemistry, 3215 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-3900, United States
| | - Craig M Walsh
- Institute for Immunology, Department of Molecular Biology and Biochemistry, 3215 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-3900, United States.
| |
Collapse
|
330
|
Polykratis A, Hermance N, Zelic M, Roderick J, Kim C, Van TM, Lee TH, Chan FKM, Pasparakis M, Kelliher MA. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. THE JOURNAL OF IMMUNOLOGY 2014; 193:1539-1543. [PMID: 25015821 DOI: 10.4049/jimmunol.1400590] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The serine/threonine kinase RIPK1 is recruited to TNFR1 to mediate proinflammatory signaling and to regulate TNF-induced cell death. A RIPK1 deficiency results in perinatal lethality, impaired NFκB and MAPK signaling, and sensitivity to TNF-induced apoptosis. Chemical inhibitor and in vitro-reconstitution studies suggested that RIPK1 displays distinct kinase activity-dependent and -independent functions. To determine the contribution of RIPK1 kinase to inflammation in vivo, we generated knock-in mice endogenously expressing catalytically inactive RIPK1 D138N. Unlike Ripk1(-/-) mice, which die shortly after birth, Ripk1(D138N/D138N) mice are viable. Cells expressing RIPK1 D138N are resistant to TNF- and polyinosinic-polycytidylic acid-induced necroptosis in vitro, and Ripk1(D138N/D138N) mice are protected from TNF-induced shock in vivo. Moreover, Ripk1(D138N/D138N) mice fail to control vaccinia virus replication in vivo. This study provides genetic evidence that the kinase activity of RIPK1 is not required for survival but is essential for TNF-, TRIF-, and viral-initiated necroptosis.
Collapse
Affiliation(s)
- Apostolos Polykratis
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Nicole Hermance
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Matija Zelic
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Justine Roderick
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chun Kim
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Trieu-My Van
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | | | - Francis K M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Manolis Pasparakis
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Michelle A Kelliher
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
331
|
Cheng W, Zhang R, Yao C, He L, Jia K, Yang B, Du P, Zhuang H, Chen J, Liu Z, Ding X, Hua Z. A critical role of Fas-associated protein with death domain phosphorylation in intracellular reactive oxygen species homeostasis and aging. Antioxid Redox Signal 2014; 21:33-45. [PMID: 24295239 PMCID: PMC4048578 DOI: 10.1089/ars.2013.5390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AIM Reactive oxygen species (ROS) plays important roles in aging. However, the specific mechanisms for intracellular ROS accumulation, especially during aging, remain elusive. RESULTS We have reported that Fas-associated protein with death domain (FADD) phosphorylation abolishes the recruitment of phosphatase type 2A C subunit (PP2Ac) to protein kinase C (PKC)βII, which specifically regulates mitochondrial ROS generation by p66shc. Here, we have studied the role of FADD phosphorylation in an FADD constitutive-phosphorylation mutation (FADD-D) mouse model. In FADD-D mice, the constitutive FADD phosphorylation led to ROS accumulation (hydrogen peroxide [H₂O₂]), in a process that was dependent on PKCβ and accompanied by increased PKCβ and p66shc phosphorylation, impaired mitochondrial integrity, and enhanced sensitivity to oxidative stress-mediated apoptosis. Moreover, FADD-D mice exhibited premature aging-like phenotypes, including DNA damage, cellular senescence, and shortened lifespan. In addition, we demonstrate that FADD phosphorylation and the recruitment of PP2A and FADD to PKCβ are induced responses to oxidative stress, and that the extent of FADD phosphorylation in wild-type mice was augmented during aging, accompanied by impairment of the interaction between PKCβ and PP2A. INNOVATION The present study first addresses the role of FADD phosphorylation in aging through controlling mitochondrial ROS specifically generated by PKCβ. CONCLUSION These data identify that FADD phosphorylation is critical for the PKCβ-p66shc signaling route to generate H₂O₂ and to implicate enhanced FADD phosphorylation as a primary cause of ROS accumulation during aging.
Collapse
Affiliation(s)
- Wei Cheng
- 1 State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, School of Stomatology, Affiliated Stomatological Hospital, Nanjing University , Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Ehlken H, Krishna-Subramanian S, Ochoa-Callejero L, Kondylis V, Nadi NE, Straub BK, Schirmacher P, Walczak H, Kollias G, Pasparakis M. Death receptor-independent FADD signalling triggers hepatitis and hepatocellular carcinoma in mice with liver parenchymal cell-specific NEMO knockout. Cell Death Differ 2014; 21:1721-32. [PMID: 24971483 DOI: 10.1038/cdd.2014.83] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) usually develops in the context of chronic hepatitis triggered by viruses or toxic substances causing hepatocyte death, inflammation and compensatory proliferation of liver cells. Death receptors of the TNFR superfamily regulate cell death and inflammation and are implicated in liver disease and cancer. Liver parenchymal cell-specific ablation of NEMO/IKKγ, a subunit of the IκB kinase (IKK) complex that is essential for the activation of canonical NF-κB signalling, sensitized hepatocytes to apoptosis and caused the spontaneous development of chronic hepatitis and HCC in mice. Here we show that hepatitis and HCC development in NEMO(LPC-KO) mice is triggered by death receptor-independent FADD-mediated hepatocyte apoptosis. TNF deficiency in all cells or conditional LPC-specific ablation of TNFR1, Fas or TRAIL-R did not prevent hepatocyte apoptosis, hepatitis and HCC development in NEMO(LPC-KO) mice. To address potential functional redundancies between death receptors we generated and analysed NEMO(LPC-KO) mice with combined LPC-specific deficiency of TNFR1, Fas and TRAIL-R and found that also simultaneous lack of all three death receptors did not prevent hepatocyte apoptosis, chronic hepatitis and HCC development. However, LPC-specific combined deficiency in TNFR1, Fas and TRAIL-R protected the NEMO-deficient liver from LPS-induced liver failure, showing that different mechanisms trigger spontaneous and LPS-induced hepatocyte apoptosis in NEMO(LPC-KO) mice. In addition, NK cell depletion did not prevent liver damage and hepatitis. Moreover, NEMO(LPC-KO) mice crossed into a RAG-1-deficient genetic background-developed hepatitis and HCC. Collectively, these results show that the spontaneous development of hepatocyte apoptosis, chronic hepatitis and HCC in NEMO(LPC-KO) mice occurs independently of death receptor signalling, NK cells and B and T lymphocytes, arguing against an immunological trigger as the critical stimulus driving hepatocarcinogenesis in this model.
Collapse
Affiliation(s)
- H Ehlken
- 1] Institute for Genetics, Center for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne D-50931, Germany [2] University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - S Krishna-Subramanian
- Institute for Genetics, Center for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne D-50931, Germany
| | - L Ochoa-Callejero
- 1] Institute for Genetics, Center for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne D-50931, Germany [2] Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - V Kondylis
- Institute for Genetics, Center for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne D-50931, Germany
| | - N E Nadi
- Institute for Genetics, Center for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne D-50931, Germany
| | - B K Straub
- Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany
| | - P Schirmacher
- Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany
| | - H Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT London, UK
| | - G Kollias
- B.S.R.C. Alexander Fleming, 34 Fleming Street, Vari 16672, Greece
| | - M Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne D-50931, Germany
| |
Collapse
|
333
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
334
|
Upton JW, Chan FKM. Staying alive: cell death in antiviral immunity. Mol Cell 2014; 54:273-80. [PMID: 24766891 DOI: 10.1016/j.molcel.2014.01.027] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/27/2013] [Accepted: 12/12/2013] [Indexed: 02/07/2023]
Abstract
Programmed cell death is an integral part of host defense against invading intracellular pathogens. Apoptosis, programmed necrosis, and pyroptosis each serve to limit pathogen replication in infected cells, while simultaneously promoting the inflammatory and innate responses that shape effective long-term host immunity. The importance of carefully regulated cell death is evident in the spectrum of inflammatory and autoimmune disorders caused by defects in these pathways. Moreover, many viruses encode inhibitors of programmed cell death to subvert these host responses during infection, thereby facilitating their own replication and persistence. Thus, as both virus and cell vie for control of these pathways, the battle for survival has shaped a complex host-pathogen interaction. This review will discuss the multifaceted role that programmed cell death plays in maintaining the immune system and its critical function in host defense, with a special emphasis on viral infections.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Francis Ka-Ming Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
335
|
Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death Differ 2014; 21:1709-20. [PMID: 24902902 DOI: 10.1038/cdd.2014.77] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/02/2014] [Accepted: 04/23/2014] [Indexed: 11/08/2022] Open
Abstract
Necroptosis is mediated by a signaling complex called necrosome, containing receptor-interacting protein (RIP)1, RIP3, and mixed-lineage kinase domain-like (MLKL). It is known that RIP1 and RIP3 form heterodimeric filamentous scaffold in necrosomes through their RIP homotypic interaction motif (RHIM) domain-mediated oligomerization, but the signaling events based on this scaffold has not been fully addressed. By using inducible dimer systems we found that RIP1-RIP1 interaction is dispensable for necroptosis; RIP1-RIP3 interaction is required for necroptosis signaling, but there is no necroptosis if no additional RIP3 protein is recruited to the RIP1-RIP3 heterodimer, and the interaction with RIP1 promotes the RIP3 to recruit other RIP3; RIP3-RIP3 interaction is required for necroptosis and RIP3-RIP3 dimerization is sufficient to induce necroptosis; and RIP3 dimer-induced necroptosis requires MLKL. We further show that RIP3 oligomer is not more potent than RIP3 dimer in triggering necroptosis, suggesting that RIP3 homo-interaction in the complex, rather than whether RIP3 has formed homo polymer, is important for necroptosis. RIP3 dimerization leads to RIP3 intramolecule autophosphorylation, which is required for the recruitment of MLKL. Interestingly, phosphorylation of one of RIP3 in the dimer is sufficient to induce necroptosis. As RIP1-RIP3 heterodimer itself cannot induce necroptosis, the RIP1-RIP3 heterodimeric amyloid fibril is unlikely to directly propagate necroptosis. We propose that the signaling events after the RIP1-RIP3 amyloid complex assembly are the recruitment of free RIP3 by the RIP3 in the amyloid scaffold followed by autophosphorylation of RIP3 and subsequent recruitment of MLKL by RIP3 to execute necroptosis.
Collapse
|
336
|
Salvesen GS, Walsh CM. Functions of caspase 8: the identified and the mysterious. Semin Immunol 2014; 26:246-52. [PMID: 24856110 DOI: 10.1016/j.smim.2014.03.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/07/2023]
Abstract
Initially discovered as an initiator protease in apoptosis mediated by death receptors, caspase-8 is now known to have an apparently confounding opposing effect in securing cell survival. It is required to allow mouse embryo survival, and the survival of hematopoietic cells during their development and activation. Classic models in which caspase-8 is depleted or inhibited frequently result in inhibition of apoptosis, and conversion to death through a necrotic pathway. This bewildering switch is now known to be driven by activation of a pathway dependent on protein kinases of the RIP family, which engage a pathway known as necroptosis. If caspase-8 does not control this pathway, necrotic death results. The pro-apoptotic and pro-survival functions of caspase-8 are regulated by a specific interaction with the pseudo-caspase cFLIP, and it is thought that the heterocomplex between these two partners alters the substrate specificity of caspase-8 in favor of inactivating components of the RIP kinase pathway. The description of how caspase-8 and cFLIP coordinate the switch between apoptosis and survival is just beginning. The mechanism is not known, the differential targets are not known, and the reason of why an apoptotic initiator has been co-opted as a critical survival factor is only guessed at. Elucidating these unknowns will be important in understanding mechanisms and possible therapeutic targets in autoimmune, inflammatory, and metastatic diseases.
Collapse
Affiliation(s)
- Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Craig M Walsh
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
337
|
Volk A, Li J, Xin J, You D, Zhang J, Liu X, Xiao Y, Breslin P, Li Z, Wei W, Schmidt R, Li X, Zhang Z, Kuo PC, Nand S, Zhang J, Chen J, Zhang J. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML. ACTA ACUST UNITED AC 2014; 211:1093-108. [PMID: 24842373 PMCID: PMC4042653 DOI: 10.1084/jem.20130990] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leukemic stem cells (LSCs) isolated from acute myeloid leukemia (AML) patients are more sensitive to nuclear factor κB (NF-κB) inhibition-induced cell death when compared with hematopoietic stem and progenitor cells (HSPCs) in in vitro culture. However, inadequate anti-leukemic activity of NF-κB inhibition in vivo suggests the presence of additional survival/proliferative signals that can compensate for NF-κB inhibition. AML subtypes M3, M4, and M5 cells produce endogenous tumor necrosis factor α (TNF). Although stimulating HSPC with TNF promotes necroptosis and apoptosis, similar treatment with AML cells (leukemic cells, LCs) results in an increase in survival and proliferation. We determined that TNF stimulation drives the JNK-AP1 pathway in a manner parallel to NF-κB, leading to the up-regulation of anti-apoptotic genes in LC. We found that we can significantly sensitize LC to NF-κB inhibitor treatment by blocking the TNF-JNK-AP1 signaling pathway. Our data suggest that co-inhibition of both TNF-JNK-AP1 and NF-κB signals may provide a more comprehensive treatment paradigm for AML patients with TNF-expressing LC.
Collapse
Affiliation(s)
- Andrew Volk
- Molecular Biology Program, Department of Biology, Loyola University Chicago, Chicago, IL 60660
| | - Jing Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Junping Xin
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Dewen You
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Xinli Liu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Yechen Xiao
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Peter Breslin
- Molecular Biology Program, Department of Biology, Loyola University Chicago, Chicago, IL 60660 Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Zejuan Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Wei Wei
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Rachel Schmidt
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Xingyu Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Zhou Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Paul C Kuo
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Sucha Nand
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Jianke Zhang
- Thomas Jefferson University, Jefferson Medical College, Department of Microbiology and Immunology, Philadelphia, PA 19107
| | - Jianjun Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jiwang Zhang
- Molecular Biology Program, Department of Biology, Loyola University Chicago, Chicago, IL 60660 Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| |
Collapse
|
338
|
RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc Natl Acad Sci U S A 2014; 111:7753-8. [PMID: 24821786 DOI: 10.1073/pnas.1401857111] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pronecrotic kinase, receptor interacting protein (RIP1, also called RIPK1) mediates programmed necrosis and, together with its partner, RIP3 (RIPK3), drives midgestational death of caspase 8 (Casp8)-deficient embryos. RIP1 controls a second vital step in mammalian development immediately after birth, the mechanism of which remains unresolved. Rip1(-/-) mice display perinatal lethality, accompanied by gross immune system abnormalities. Here we show that RIP1 K45A (kinase dead) knockin mice develop normally into adulthood, indicating that development does not require RIP1 kinase activity. In the face of complete RIP1 deficiency, cells develop sensitivity to RIP3-mixed lineage kinase domain-like-mediated necroptosis as well as to Casp8-mediated apoptosis activated by diverse innate immune stimuli (e.g., TNF, IFN, double-stranded RNA). When either RIP3 or Casp8 is disrupted in combination with RIP1, the resulting double knockout mice exhibit slightly prolonged survival over RIP1-deficient animals. Surprisingly, triple knockout mice with combined RIP1, RIP3, and Casp8 deficiency develop into viable and fertile adults, with the capacity to produce normal levels of myeloid and lymphoid lineage cells. Despite the combined deficiency, these mice sustain a functional immune system that responds robustly to viral challenge. A single allele of Rip3 is tolerated in Rip1(-/-)Casp8(-/-)Rip3(+/-) mice, contrasting the need to eliminate both alleles of either Rip1 or Rip3 to rescue midgestational death of Casp8-deficient mice. These observations reveal a vital kinase-independent role for RIP1 in preventing pronecrotic as well as proapoptotic signaling events associated with life-threatening innate immune activation at the time of mammalian parturition.
Collapse
|
339
|
RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 2014; 157:1189-202. [PMID: 24813850 DOI: 10.1016/j.cell.2014.04.018] [Citation(s) in RCA: 544] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 11/22/2022]
Abstract
Receptor-interacting protein kinase (RIPK)-1 is involved in RIPK3-dependent and -independent signaling pathways leading to cell death and/or inflammation. Genetic ablation of ripk1 causes postnatal lethality, which was not prevented by deletion of ripk3, caspase-8, or fadd. However, animals that lack RIPK1, RIPK3, and either caspase-8 or FADD survived weaning and matured normally. RIPK1 functions in vitro to limit caspase-8-dependent, TNFR-induced apoptosis, and animals lacking RIPK1, RIPK3, and TNFR1 survive to adulthood. The role of RIPK3 in promoting lethality in ripk1(-/-) mice suggests that RIPK3 activation is inhibited by RIPK1 postbirth. Whereas TNFR-induced RIPK3-dependent necroptosis requires RIPK1, cells lacking RIPK1 were sensitized to necroptosis triggered by poly I:C or interferons. Disruption of TLR (TRIF) or type I interferon (IFNAR) signaling delayed lethality in ripk1(-/-)tnfr1(-/-) mice. These results clarify the complex roles for RIPK1 in postnatal life and provide insights into the regulation of FADD-caspase-8 and RIPK3-MLKL signaling by RIPK1.
Collapse
|
340
|
Mocarski ES, Kaiser WJ, Livingston-Rosanoff D, Upton JW, Daley-Bauer LP. True grit: programmed necrosis in antiviral host defense, inflammation, and immunogenicity. THE JOURNAL OF IMMUNOLOGY 2014; 192:2019-26. [PMID: 24563506 DOI: 10.4049/jimmunol.1302426] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Programmed necrosis mediated by receptor interacting protein kinase (RIP)3 (also called RIPK3) has emerged as an alternate death pathway triggered by TNF family death receptors, pathogen sensors, IFNRs, Ag-specific TCR activation, and genotoxic stress. Necrosis leads to cell leakage and acts as a "trap door," eliminating cells that cannot die by apoptosis because of the elaboration of pathogen-encoded caspase inhibitors. Necrotic signaling requires RIP3 binding to one of three partners-RIP1, DAI, or TRIF-via a common RIP homotypic interaction motif. Once activated, RIP3 kinase targets the pseudokinase mixed lineage kinase domain-like to drive cell lysis. Although necrotic and apoptotic death can enhance T cell cross-priming during infection, mice that lack these extrinsic programmed cell death pathways are able to produce Ag-specific T cells and control viral infection. The entwined relationship of apoptosis and necrosis evolved in response to pathogen-encoded suppressors to support host defense and contribute to inflammation.
Collapse
Affiliation(s)
- Edward S Mocarski
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | | | |
Collapse
|
341
|
Morioka S, Broglie P, Omori E, Ikeda Y, Takaesu G, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. ACTA ACUST UNITED AC 2014; 204:607-23. [PMID: 24535827 PMCID: PMC3926964 DOI: 10.1083/jcb.201305070] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activation of the TAK1 kinase drives RIPK3-dependent necrosis and inhibits apoptosis downstream of TNF-α stimulation. TNF activates three distinct intracellular signaling cascades leading to cell survival, caspase-8–mediated apoptosis, or receptor interacting protein kinase 3 (RIPK3)–dependent necrosis, also called necroptosis. Depending on the cellular context, one of these pathways is activated upon TNF challenge. When caspase-8 is activated, it drives the apoptosis cascade and blocks RIPK3-dependent necrosis. Here we report the biological event switching to activate necrosis over apoptosis. TAK1 kinase is normally transiently activated upon TNF stimulation. We found that prolonged and hyperactivation of TAK1 induced phosphorylation and activation of RIPK3, leading to necrosis without caspase activation. In addition, we also demonstrated that activation of RIPK1 and RIPK3 promoted TAK1 activation, suggesting a positive feedforward loop of RIPK1, RIPK3, and TAK1. Conversely, ablation of TAK1 caused caspase-dependent apoptosis, in which Ripk3 deletion did not block cell death either in vivo or in vitro. Our results reveal that TAK1 activation drives RIPK3-dependent necrosis and inhibits apoptosis. TAK1 acts as a switch between apoptosis and necrosis.
Collapse
Affiliation(s)
- Sho Morioka
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | | | | | | | | | | | | |
Collapse
|
342
|
Sridharan H, Upton JW. Programmed necrosis in microbial pathogenesis. Trends Microbiol 2014; 22:199-207. [DOI: 10.1016/j.tim.2014.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 01/14/2023]
|
343
|
Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014; 15:135-47. [PMID: 24452471 DOI: 10.1038/nrm3737] [Citation(s) in RCA: 1385] [Impact Index Per Article: 125.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell death research was revitalized by the understanding that necrosis can occur in a highly regulated and genetically controlled manner. Although RIPK1 (receptor-interacting protein kinase 1)- and RIPK3-MLKL (mixed lineage kinase domain-like)-mediated necroptosis is the most understood form of regulated necrosis, other examples of this process are emerging, including cell death mechanisms known as parthanatos, oxytosis, ferroptosis, NETosis, pyronecrosis and pyroptosis. Elucidating how these pathways of regulated necrosis are interconnected at the molecular level should enable this process to be therapeutically targeted.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- 1] Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent University, 9052 Ghent, Belgium. [2]
| | - Andreas Linkermann
- 1] Division of Nephrology and Hypertension, Christian-Albrechts-University, 24105 Kiel, Germany. [2]
| | - Sandrine Jouan-Lanhouet
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent University, 9052 Ghent, Belgium
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
344
|
More to life than death: molecular determinants of necroptotic and non-necroptotic RIP3 kinase signaling. Curr Opin Immunol 2014; 26:76-89. [DOI: 10.1016/j.coi.2013.10.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 01/06/2023]
|
345
|
Lukens JR, Kanneganti TD. SHP-1 and IL-1α conspire to provoke neutrophilic dermatoses. ACTA ACUST UNITED AC 2014; 2:e27742. [PMID: 25054090 PMCID: PMC4091500 DOI: 10.4161/rdis.27742] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/16/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022]
Abstract
Neutrophilic dermatoses are a spectrum of autoinflammatory skin disorders that are characterized by extensive infiltration of neutrophils into the epidermis and dermis. The underlining biological pathways that are responsible for this heterogeneous group of cutaneous diseases have remained elusive. However, recent work from our laboratory and other groups has shown that missense mutations in Ptpn6, which encodes for the non-receptor protein tyrosine phosphatase Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP-1), results in a skin disease with many of the major histopathological and clinical features that encompass neutrophilic dermatoses in humans. In particular, we found that loss-of-function mutation in Ptpn6 results in unremitting footpad swelling, suppurative inflammation, and neutrophilia. Dysregulated wound healing responses were discovered to contribute to chronic inflammatory skin disease in SHP-1 defective mice and genetic abrogation of interleukin-1 receptor (IL-1R) protected mice from cutaneous inflammation, suggesting that IL-1-mediated events potentiate disease. Surprisingly, inflammasome activation and IL-1β-mediated events were dispensable for Ptpn6spin-mediated footpad disease. Instead, RIP1-mediated regulation of IL-1α was identified to be the major driver of inflammation and tissue damage.
Collapse
|
346
|
Abstract
The role of apoptotic pathways in the development and function of the megakaryocyte lineage has generated renewed interest in recent years. This has been driven by the advent of BH3 mimetic drugs that target BCL2 family proteins to induce apoptosis in tumour cells: agents such as ABT-263 (navitoclax, which targets BCL2, BCL-XL [BCL2L1] and BCL2L2) and ABT-199 (a BCL2-specific agent) are showing great promise in early stage clinical trials. However, the major dose-limiting toxicity of navitoclax has proven to be thrombocytopenia, an on-target effect of inhibiting BCL-XL . It transpires that the anucleate platelet contains a classical intrinsic apoptosis pathway, which at steady state regulates its life span in the circulation. BCL-XL is the critical pro-survival protein that restrains apoptosis and maintains platelet viability. These findings have paved the way to a deeper understanding of apoptotic pathways and processes in platelets, and their precursor cell, the megakaryocyte.
Collapse
Affiliation(s)
- Benjamin T Kile
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia; Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
347
|
Murphy JM, Silke J. Ars Moriendi; the art of dying well - new insights into the molecular pathways of necroptotic cell death. EMBO Rep 2014; 15:155-64. [PMID: 24469330 DOI: 10.1002/embr.201337970] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When our time comes to die most people would probably opt for a quick, peaceful and painless exit. But the manner and timing are rarely under our direct control. Hence the Ars moriendi, literally, "The Art of Dying", two texts written in Latin around the 15th century that offered advice on how to die well according to the Christian ideals of the time. In contrast, for individual cells, the death process is frequently under their control and several signaling pathways that cause cell death, including apoptosis, pyroptosis and necroptosis, have been described. Furthermore the manner in which cells die can have good or bad consequences for the organism. In this review we will discuss how cells die via the necroptotic signaling pathway, with emphasis on recent structural work and place this work in a biological context by discussing relevant studies with knock-out animals.
Collapse
Affiliation(s)
- James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | | |
Collapse
|
348
|
Necroptosis: molecular signalling and translational implications. Int J Cell Biol 2014; 2014:490275. [PMID: 24587805 PMCID: PMC3920604 DOI: 10.1155/2014/490275] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 12/11/2022] Open
Abstract
Necroptosis is a form of programmed necrosis whose molecular players are partially shared with apoptotic cell death. Here we summarize what is known about molecular signalling of necroptosis, particularly focusing on fine tuning of FLIP and IAP proteins in the apoptosis/necroptosis balance. We also emphasize necroptosis involvement in physiological and pathological conditions, particularly in the regulation of immune homeostasis.
Collapse
|
349
|
Abstract
Necroptosis is a physiologically relevant mode of cell death with some well-described initiating events, but largely unknown executioners. Here we investigated necrostatin-1 (Nec-1) sensitive death elicited by different necroptosis stimuli in L929 mouse fibrosarcoma cells, mouse embryonic fibroblasts (MEF) and bone marrow-derived macrophages. We found that TNFα- or zVAD-induced necroptosis occurs independently of the recently implicated executioners Bmf or PARP-2, but can involve the Bcl-2 family proteins Bid and Bak. Furthermore, this type of necroptosis is associated with mitochondrial cytochrome c release and partly sensitive to cyclosporine A inhibition, suggesting a cross talk with the mitochondrial permeability transition pore. Necroptosis triggered by cadmium (Cd) exposure caused fully Nec-1-sensitive and caspase-independent death in L929 cells that was associated with autocrine TNFα-mediated feed-forward signalling. In MEF Cd-exposure elicited a mixed mode of cell death that was to some extent Nec-1-sensitive but also displayed features of apoptosis. It was partly dependent on Bmf and Bax/Bak, proteins typically considered to act pro-apoptotic, but ultimately insensitive to caspase inhibition. Overall, our study indicates that inducers of "extrinsic" and "intrinsic" necroptosis can both trigger TNF-receptor signalling. Further, necroptosis may depend on mitochondrial changes engaging proteins considered critical for MOMP during apoptosis that ultimately contribute to caspase-independent necrotic cell death.
Collapse
|
350
|
Matsuda I, Matsuo K, Matsushita Y, Haruna Y, Niwa M, Kataoka T. The C-terminal domain of the long form of cellular FLICE-inhibitory protein (c-FLIPL) inhibits the interaction of the caspase 8 prodomain with the receptor-interacting protein 1 (RIP1) death domain and regulates caspase 8-dependent nuclear factor κB (NF-κB) activation. J Biol Chem 2014; 289:3876-87. [PMID: 24398693 DOI: 10.1074/jbc.m113.506485] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Caspase 8 plays an essential role in the regulation of apoptotic and non-apoptotic signaling pathways. The long form of cellular FLICE-inhibitory protein (c-FLIPL) has been shown previously to regulate caspase 8-dependent nuclear factor κB (NF-κB) activation by receptor-interacting protein 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). In this study, the molecular mechanism by which c-FLIPL regulates caspase 8-dependent NF-κB activation was further explored in the human embryonic kidney cell line HEK 293 and variant cells barely expressing caspase 8. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone greatly diminished caspase 8-dependent NF-κB activation induced by Fas ligand (FasL) when c-FLIPL, but not its N-terminal fragment c-FLIP(p43), was expressed. The prodomain of caspase 8 was found to interact with the RIP1 death domain and to be sufficient to mediate NF-κB activation induced by FasL or c-FLIP(p43). The interaction of the RIP1 death domain with caspase 8 was inhibited by c-FLIPL but not c-FLIP(p43). Thus, these results reveal that the C-terminal domain of c-FLIPL specifically inhibits the interaction of the caspase 8 prodomain with the RIP1 death domain and, thereby, regulates caspase 8-dependent NF-κB activation.
Collapse
Affiliation(s)
- Iyo Matsuda
- From the Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan and
| | | | | | | | | | | |
Collapse
|