301
|
Herrera LA, Prada D, Andonegui MA, Dueñas-González A. The epigenetic origin of aneuploidy. Curr Genomics 2011; 9:43-50. [PMID: 19424483 PMCID: PMC2674307 DOI: 10.2174/138920208783884883] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 02/06/2023] Open
Abstract
Theodore Boveri, eminent German pathologist, observed aneuploidy in cancer cells more than a century ago and suggested that cancer cells derived from a single progenitor cell that acquires the potential for uncontrolled continuous proliferation. Currently, it is well known that aneuploidy is observed in virtually all cancers. Gain and loss of chromosomal material in neoplastic cells is considered to be a process of diversification that leads to survival of the fittest clones. According to Darwin’s theory of evolution, the environment determines the grounds upon which selection takes place and the genetic characteristics necessary for better adaptation. This concept can be applied to the carcinogenesis process, connecting the ability of cancer cells to adapt to different environments and to resist chemotherapy, genomic instability being the driving force of tumor development and progression. What causes this genome instability? Mutations have been recognized for a long time as the major source of genome instability in cancer cells. Nevertheless, an alternative hypothesis suggests that aneuploidy is a primary cause of genome instability rather than solely a simple consequence of the malignant transformation process. Whether genome instability results from mutations or from aneuploidy is not a matter of discussion in this review. It is most likely both phenomena are intimately related; however, we will focus on the mechanisms involved in aneuploidy formation and more specifically on the epigenetic origin of aneuploid cells. Epigenetic inheritance is defined as cellular information—other than the DNA sequence itself—that is heritable during cell division. DNA methylation and histone modifications comprise two of the main epigenetic modifications that are important for many physiological and pathological conditions, including cancer. Aberrant DNA methylation is the most common molecular cancer-cell lesion, even more frequent than gene mutations; tumor suppressor gene silencing by CpG island promoter hypermethylation is perhaps the most frequent epigenetic modification in cancer cells. Epigenetic characteristics of cells may be modified by several factors including environmental exposure, certain nutrient deficiencies, radiation, etc. Some of these alterations have been correlated with the formation of aneuploid cells in vivo. A growing body of evidence suggests that aneuploidy is produced and caused by chromosomal instability. We propose and support in this manuscript that not only genetics but also epigenetics, contribute in a major fashion to aneuploid cell formation.
Collapse
Affiliation(s)
- Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer (UIBC)-Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBM)-Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | | |
Collapse
|
302
|
Ontological hypothesis of the cancer etiology: discord between cells' survival determinism and their disposition to biological altruism. Med Hypotheses 2011; 77:389-400. [PMID: 21684694 DOI: 10.1016/j.mehy.2011.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/28/2011] [Accepted: 05/25/2011] [Indexed: 11/23/2022]
Abstract
During the last decades, scientific community has implicitly viewed cancer as a number of different diseases with the same underlying phenotype. Such a view was justified for the fact that some of the genetic and phenotypic similarities, observed in different types of tumors, were perpetuated via some distinct mechanisms. Nevertheless, this manuscript aims to interpret all of these differences in a context of the same underlying cause. To do so, the epigenetic and genetic alterations observed in cancers are initially interpreted in the context of their advantage for the evolution of the early eukaryotic organisms. Subsequently, the proposed premises are further discussed with respect to their propagation in the subsequent generations of the new eukaryotic species, as well as their role in the development of the higher organisms. In the subsequent section, the role of the proposed mechanism is discussed in the context of cancer, which is proposed to originate due to the analogous underlying mechanisms. Finally, the proposed mechanism is briefly discussed in parallel with some other contemporary theories of carcinogenesis, aiming to further support its validity. Thereby, the model presents an alternative interpretation of multiple cancer-related biomedical phenomena from the aspect of a proposed evolutionary mechanism.
Collapse
|
303
|
Roberts AR, Blewitt ME, Youngson NA, Whitelaw E, Chong S. Reduced dosage of the modifiers of epigenetic reprogramming Dnmt1, Dnmt3L, SmcHD1 and Foxo3a has no detectable effect on mouse telomere length in vivo. Chromosoma 2011; 120:377-85. [PMID: 21553025 PMCID: PMC3140923 DOI: 10.1007/s00412-011-0318-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 12/18/2022]
Abstract
Studies carried out in cultured cells have implicated modifiers of epigenetic reprogramming in the regulation of telomere length, reporting elongation in cells that were null for DNA methyltransferase DNA methyltransferase 1 (Dnmt1), both de novo DNA methyltransferases, Dnmt3a and Dnmt3b or various histone methyltransferases. To investigate this further, we assayed telomere length in whole embryos or adult tissue from mice carrying mutations in four different modifiers of epigenetic reprogramming: Dnmt1, DNA methyltransferase 3-like, structural maintenance of chromosomes hinge domain containing 1, and forkhead box O3a. Terminal restriction fragment analysis was used to compare telomere length in homozygous mutants, heterozygous mutants and wild-type littermates. Contrary to expectation, we did not detect overall lengthening in the mutants, raising questions about the role of epigenetic processes in telomere length in vivo.
Collapse
Affiliation(s)
- Amity R Roberts
- Epigenetics Laboratory, Queensland Institute of Medical Research, Herston, QLD, Australia
| | | | | | | | | |
Collapse
|
304
|
Miller D, Reynolds GE, Mejia R, Stark JM, Murnane JP. Subtelomeric regions in mammalian cells are deficient in DNA double-strand break repair. DNA Repair (Amst) 2011; 10:536-44. [PMID: 21466975 PMCID: PMC3084351 DOI: 10.1016/j.dnarep.2011.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that double-strand breaks (DSBs) in regions near telomeres are much more likely to result in large deletions, gross chromosome rearrangements, and chromosome instability than DSBs at interstitial sites within chromosomes. In the present study, we investigated whether this response of subtelomeric regions to DSBs is a result of a deficiency in DSB repair by comparing the frequency of homologous recombination repair (HRR) and nonhomologous end joining (NHEJ) at interstitial and telomeric sites following the introduction of DSBs by I-SceI endonuclease. We also monitored the frequency of small deletions, which have been shown to be the most common mutation at I-SceI-induced DSBs at interstitial sites. We observed no difference in the frequency of small deletions or HRR at interstitial and subtelomeric DSBs. However, the frequency of NHEJ was significantly lower at DSBs near telomeres compared to interstitial sites. The frequency of NHEJ was also lower at DSBs occurring at interstitial sites containing telomeric repeat sequences. We propose that regions near telomeres are deficient in classical NHEJ as a result of the presence of cis-acting telomere-binding proteins that cause DSBs to be processed as though they were telomeres, resulting in excessive resection, telomere loss, and eventual chromosome rearrangements by alternative NHEJ.
Collapse
Affiliation(s)
- Douglas Miller
- Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331, United States
| | - Gloria E. Reynolds
- Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331, United States
| | - Ricardo Mejia
- Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331, United States
| | - Jeremy M. Stark
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - John P. Murnane
- Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331, United States
| |
Collapse
|
305
|
Diet, nutrition and telomere length. J Nutr Biochem 2011; 22:895-901. [PMID: 21429730 DOI: 10.1016/j.jnutbio.2010.12.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/19/2010] [Accepted: 12/25/2010] [Indexed: 02/08/2023]
Abstract
The ends of human chromosomes are protected by DNA-protein complexes termed telomeres, which prevent the chromosomes from fusing with each other and from being recognized as a double-strand break by DNA repair proteins. Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric DNA shortens with repeated cell divisions until the telomeres reach a critical length, at which point the cells enter senescence. Telomere length is an indicator of biological aging, and dysfunction of telomeres is linked to age-related pathologies like cardiovascular disease, Parkinson disease, Alzheimer disease and cancer. Telomere length has been shown to be positively associated with nutritional status in human and animal studies. Various nutrients influence telomere length potentially through mechanisms that reflect their role in cellular functions including inflammation, oxidative stress, DNA integrity, DNA methylation and activity of telomerase, the enzyme that adds the telomeric repeats to the ends of the newly synthesized DNA.
Collapse
|
306
|
Martínez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 2011; 11:161-76. [PMID: 21346783 DOI: 10.1038/nrc3025] [Citation(s) in RCA: 385] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian telomeres are formed by tandem repeats of the TTAGGG sequence, which are progressively lost with each round of cell division. Telomere protection requires a minimal length of TTAGGG repeats to allow the binding of shelterin, which prevents the activation of a DNA damage response (DDR) at chromosome ends. Telomere elongation is carried out by telomerase. Telomerase can also act as a transcriptional modulator of the Wnt-β-catenin signalling pathway and has RNA-dependent RNA polymerase activity. Dysfunctional telomeres can lead to either cancer or ageing pathologies depending on the integrity of the DDR. This Review discusses the role of telomeric proteins in cancer and ageing through modulating telomere length and protection, as well as regulating gene expression by binding to non-telomeric sites.
Collapse
Affiliation(s)
- Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | | |
Collapse
|
307
|
Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood 2011; 118:1316-22. [PMID: 21355086 DOI: 10.1182/blood-2010-07-295774] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cells of B-cell chronic lymphocytic leukemia (B-CLL) are characterized by short telomeres despite a low proliferative index. Because telomere length has been reported to be a valuable prognosis criteria, there is a great interest in a deep understanding of the origin and consequences of telomere dysfunction in this pathology. Cases of chromosome fusion involving extremely short telomeres have been reported at advanced stage. In the present study, we address the question of the existence of early telomere dysfunction during the B-CLL time course. In a series restricted to 23 newly diagnosed Binet stage A CLL patients compared with 12 healthy donors, we found a significant increase in recruitment of DNA-damage factors to telomeres showing telomere dysfunction in the early stage of the disease. Remarkably, the presence of dysfunctional telomeres did not correlate with telomere shortening or chromatin marks deregulation but with a down-regulation of 2 shelterin genes: ACD (coding for TPP1; P = .0464) and TINF2 (coding for TIN2; P = .0177). We propose that telomeric deprotection in the early step of CLL is not merely the consequence of telomere shortening but also of shelterin alteration.
Collapse
|
308
|
De Amicis A, Piane M, Ferrari F, Fanciulli M, Delia D, Chessa L. Role of senataxin in DNA damage and telomeric stability. DNA Repair (Amst) 2011; 10:199-209. [PMID: 21112256 DOI: 10.1016/j.dnarep.2010.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/28/2010] [Accepted: 10/30/2010] [Indexed: 11/15/2022]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia and oculomotor apraxia. The gene mutated in AOA2, SETX, encodes senataxin (SETX), a putative DNA/RNA helicase. The presence of the helicase domain led us to investigate whether SETX might play a role in DNA damage repair and telomere stability. We analyzed the response of AOA2 lymphocytes and lymphoblasts after treatment with camptothecin (CPT), mitomycin C (MMC), H₂O₂ and X-rays by cytogenetic and Q-FISH (quantitative-FISH) assays. The rate of chromosomal aberrations was normal in AOA2 cells after treatment with CPT, MMC, H₂O₂ and X-rays. Conversely, Q-FISH analysis showed constitutively reduced telomere length in AOA2 lymphocytes, compared to age-matched controls. Furthermore, CPT- or X-ray-induced telomere shortening was more marked in AOA2 than in control cells. The partial co-localization of SETX with telomeric DNA, demonstrated by combined immunofluorescence-Q-FISH and chromatin immunoprecipitation, suggests a possible involvement of SETX in telomere stability.
Collapse
Affiliation(s)
- Andrea De Amicis
- II School of Medicine, Department of Clinical and Molecular Medicine, University La Sapienza, Roma, Italy. andrea.deamicis@unirom
| | | | | | | | | | | |
Collapse
|
309
|
Huang J, Wang F, Okuka M, Liu N, Ji G, Ye X, Zuo B, Li M, Liang P, Ge WW, Tsibris JC, Keefe DL, Liu L. Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res 2011; 21:779-92. [PMID: 21283131 DOI: 10.1038/cr.2011.16] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomerase and telomeres are important for indefinite replication of stem cells. Recently, telomeres of somatic cells were found to be reprogrammed to elongate in induced pluripotent stem cells (iPSCs). The role of telomeres in developmental pluripotency in vivo of embryonic stem cells (ESCs) or iPSCs, however, has not been directly addressed. We show that ESCs with long telomeres exhibit authentic developmental pluripotency, as evidenced by generation of complete ESC pups as well as germline-competent chimeras, the most stringent tests available in rodents. ESCs with short telomeres show reduced teratoma formation and chimera production, and fail to generate complete ESC pups. Telomere lengths are highly correlated (r > 0.8) with the developmental pluripotency of ESCs. Short telomeres decrease the proliferative rate or capacity of ESCs, alter the expression of genes related to telomere epigenetics, down-regulate genes important for embryogenesis and disrupt germ cell differentiation. Moreover, iPSCs with longer telomeres generate chimeras with higher efficiency than those with short telomeres. Our data show that functional telomeres are essential for the developmental pluripotency of ESCs/iPSCs and suggest that telomere length may provide a valuable marker to evaluate stem cell pluripotency, particularly when the stringent tests are not feasible.
Collapse
Affiliation(s)
- Junjiu Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Oh BK, Um TH, Choi GH, Park YN. Frequent changes in subtelomeric DNA methylation patterns and its relevance to telomere regulation during human hepatocarcinogenesis. Int J Cancer 2011; 128:857-68. [PMID: 20473888 DOI: 10.1002/ijc.25398] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Subtelomeric chromatin modifications are important regulators of telomere length. We examined the subtelomeric DNA methylation status of 7q, 8q, 17q, 18p, 21q and XpYp in 32 pairs of hepatocellular carcinomas (HCCs) and their adjacent non-HCCs via methylation-specific PCR (quantified as methylation ratio). In addition, 10q was subjected to bisulfite-genomic-sequencing. Telomere length was determined by Southern hybridization. In all cases, the relationship between methylation ratio and telomere length was determined. High levels of methylation ratio were found on chromosomes 7q, 18p and XpYp, whereas 8q 17q and 21q were less methylated in both HCCs and non-HCCs. Compared to non-HCCs, HCCs exhibited a higher methylation ratio on 18p and 21q, and a wider distribution of methylation ratio on 7q, 21q and 10q (p < 0.05). The methylation ratio of 18p and of 21q was negatively and positively correlated with telomere length of HCCs, respectively (p < 0.05). We evaluated changes in methylation pattern between non-HCCs and HCCs. Out of 185 sites, hypermethylation changes from non-HCC to HCC were found at 47 sites and hypomethylation changes at 31 sites. Changes in methylation pattern were observed at three to four sites among six chromosomal sites in 15 patients (47%). There was a tendency toward hypomethylation changes at 7q (p = 0.013) and hypermethylation changes at 21q (p = 0.057) when telomere lengthened from non-HCCs to HCCs. In summary, subtelomeric methylation patterns dynamically changed during hepatocarcinogenesis. Subtelomeric methylation at certain regions was related to telomere lengthening or shortening, suggesting an association between subtelomeric chromatin structure and telomere length regulation in human hepatocarcinogenesis.
Collapse
Affiliation(s)
- Bong-Kyeong Oh
- Bio/Molecular Informatics Center, Konkuk University, Gwangjin-gu, Seoul, Korea
| | | | | | | |
Collapse
|
311
|
Abstract
Organismal aging and longevity are influenced by many complex interacting factors. Epigenetics has recently emerged as another possible determinant of aging. Here, we review some of the epigenetic pathways that contribute to cellular senescence and age-associated phenotypes. Strategies aimed to reverse age-linked epigenetic alterations may lead to the development of new therapeutic interventions to delay or alleviate some of the most debilitating age-associated diseases.
Collapse
Affiliation(s)
- Ursula Muñoz-Najar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA.
| | | |
Collapse
|
312
|
Arora R, Brun CMC, Azzalin CM. TERRA: Long Noncoding RNA at Eukaryotic Telomeres. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:65-94. [PMID: 21287134 DOI: 10.1007/978-3-642-16502-3_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Telomeres protect the ends of linear eukaryotic chromosomes from being recognized as DNA double-stranded breaks, thereby maintaining the stability of our genome. The highly heterochromatic nature of telomeres had, for a long time, reinforced the idea that telomeres were transcriptionally silent. Since a few years, however, we know that DNA-dependent RNA polymerase II transcribes telomeric DNA into TElomeric Repeat-containing RNA (TERRA) molecules in a large variety of eukaryotes. In this chapter, we summarize the current knowledge of telomere structure and function and extensively review data accumulated on TERRA biogenesis and regulation. We also discuss putative functions of TERRA in preserving telomere stability and propose future directions for research encompassing this novel and exciting aspect of telomere biology.
Collapse
Affiliation(s)
- Rajika Arora
- Institute of Biochemistry, ETHZ-Eidgenössische Technische Hochschule Zürich, CH-8093, Zürich, Switzerland
| | | | | |
Collapse
|
313
|
Nabetani A, Ishikawa F. Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J Biochem 2011; 149:5-14. [PMID: 20937668 DOI: 10.1093/jb/mvq119] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Unlimitedly proliferating cells need to acquire the telomere DNA maintenance mechanism, to counteract possible shortening through multiple rounds of replication and segregation of linear chromosomes. Most human cancer cells express telomerase whereas the other cells utilize the alternative lengthening of telomeres (ALT) pathway to elongate telomere DNA. It is suggested that ALT depends on the recombination between telomere repetitive DNAs. However, the molecular details remain unknown. Recent studies have provided evidence of special structures of telomere DNA and genes essential for the phenotypes of ALT cells. The molecular models of the ALT pathway should be validated to elucidate recombination-mediated telomere maintenance and promote the applications to anti-cancer therapy.
Collapse
Affiliation(s)
- Akira Nabetani
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University,Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
314
|
Abstract
Faithful replication of chromosomes is essential for maintaining genome stability. Telomeres, the chromosomal termini, pose quite a challenge to replication machinery due to the complexity in their structures and sequences. Efficient and complete replication of chromosomes is critical to prevent aberrant telomeres as well as to avoid unnecessary loss of telomere DNA. Compelling evidence supports the emerging picture of synergistic actions between DNA replication proteins and telomere protective components in telomere synthesis. This review discusses the actions of various replication and telomere-specific binding proteins that ensure accurate telomere replication and their roles in telomere maintenance and protection.
Collapse
Affiliation(s)
- Shilpa Sampathi
- WWAMI Medical Education Program, Washington State UniversitySpokane, WA, USA
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| | - Weihang Chai
- WWAMI Medical Education Program, Washington State UniversitySpokane, WA, USA
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
315
|
Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol 2010; 191:1299-313. [PMID: 21187328 PMCID: PMC3010065 DOI: 10.1083/jcb.201005160] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 11/29/2010] [Indexed: 01/30/2023] Open
Abstract
Yeast Sir2 deacetylase is a component of the silent information regulator (SIR) complex encompassing Sir2/Sir3/Sir4. Sir2 is recruited to telomeres through Rap1, and this complex spreads into subtelomeric DNA via histone deacetylation. However, potential functions at telomeres for SIRT1, the mammalian orthologue of yeast Sir2, are less clear. We studied both loss of function (SIRT1 deficient) and gain of function (SIRT1(super)) mouse models. Our results indicate that SIRT1 is a positive regulator of telomere length in vivo and attenuates telomere shortening associated with aging, an effect dependent on telomerase activity. Using chromatin immunoprecipitation assays, we find that SIRT1 interacts with telomeric repeats in vivo. In addition, SIRT1 overexpression increases homologous recombination throughout the entire genome, including telomeres, centromeres, and chromosome arms. These findings link SIRT1 to telomere biology and global DNA repair and provide new mechanistic explanations for the known functions of SIRT1 in protection from DNA damage and some age-associated pathologies.
Collapse
Affiliation(s)
- Jose A. Palacios
- Telomeres and Telomerase Group and Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
| | - Daniel Herranz
- Telomeres and Telomerase Group and Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
| | - Maria Luigia De Bonis
- Telomeres and Telomerase Group and Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
- Istituto di Ricovero e Cura a Carattere Scientifico, Oncology Reference Center of Basilicata, Rionero in Vulture (PZ) 85028, Italy
| | - Susana Velasco
- Telomeres and Telomerase Group and Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
| | - Manuel Serrano
- Telomeres and Telomerase Group and Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group and Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
| |
Collapse
|
316
|
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O'Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363:2424-33. [PMID: 21067377 PMCID: PMC3201818 DOI: 10.1056/nejmoa1005143] [Citation(s) in RCA: 1550] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The genetic alterations responsible for an adverse outcome in most patients with acute myeloid leukemia (AML) are unknown. METHODS Using massively parallel DNA sequencing, we identified a somatic mutation in DNMT3A, encoding a DNA methyltransferase, in the genome of cells from a patient with AML with a normal karyotype. We sequenced the exons of DNMT3A in 280 additional patients with de novo AML to define recurring mutations. RESULTS A total of 62 of 281 patients (22.1%) had mutations in DNMT3A that were predicted to affect translation. We identified 18 different missense mutations, the most common of which was predicted to affect amino acid R882 (in 37 patients). We also identified six frameshift, six nonsense, and three splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A. These mutations were highly enriched in the group of patients with an intermediate-risk cytogenetic profile (56 of 166 patients, or 33.7%) but were absent in all 79 patients with a favorable-risk cytogenetic profile (P<0.001 for both comparisons). The median overall survival among patients with DNMT3A mutations was significantly shorter than that among patients without such mutations (12.3 months vs. 41.1 months, P<0.001). DNMT3A mutations were associated with adverse outcomes among patients with an intermediate-risk cytogenetic profile or FLT3 mutations, regardless of age, and were independently associated with a poor outcome in Cox proportional-hazards analysis. CONCLUSIONS DNMT3A mutations are highly recurrent in patients with de novo AML with an intermediate-risk cytogenetic profile and are independently associated with a poor outcome. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Timothy J Ley
- Department of Genetics, Genome Center, Washington University, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 2010; 8:e1000506. [PMID: 21072239 PMCID: PMC2970541 DOI: 10.1371/journal.pbio.1000506] [Citation(s) in RCA: 483] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/24/2010] [Indexed: 12/14/2022] Open
Abstract
Using genome-wide methylation profiles in honey bee queen and worker brains to understand how contrasting organismal outputs are generated from the same genotype. In honey bees (Apis mellifera) the behaviorally and reproductively distinct queen and worker female castes derive from the same genome as a result of differential intake of royal jelly and are implemented in concert with DNA methylation. To determine if these very different diet-controlled phenotypes correlate with unique brain methylomes, we conducted a study to determine the methyl cytosine (mC) distribution in the brains of queens and workers at single-base-pair resolution using shotgun bisulfite sequencing technology. The whole-genome sequencing was validated by deep 454 sequencing of selected amplicons representing eight methylated genes. We found that nearly all mCs are located in CpG dinucleotides in the exons of 5,854 genes showing greater sequence conservation than non-methylated genes. Over 550 genes show significant methylation differences between queens and workers, revealing the intricate dynamics of methylation patterns. The distinctiveness of the differentially methylated genes is underscored by their intermediate CpG densities relative to drastically CpG-depleted methylated genes and to CpG-richer non-methylated genes. We find a strong correlation between methylation patterns and splicing sites including those that have the potential to generate alternative exons. We validate our genome-wide analyses by a detailed examination of two transcript variants encoded by one of the differentially methylated genes. The link between methylation and splicing is further supported by the differential methylation of genes belonging to the histone gene family. We propose that modulation of alternative splicing is one mechanism by which DNA methylation could be linked to gene regulation in the honey bee. Our study describes a level of molecular diversity previously unknown in honey bees that might be important for generating phenotypic flexibility not only during development but also in the adult post-mitotic brain. The queen honey bee and her worker sisters do not seem to have much in common. Workers are active and intelligent, skillfully navigating the outside world in search of food for the colony. They never reproduce; that task is left entirely to the much larger and longer-lived queen, who is permanently ensconced within the colony and uses a powerful chemical influence to exert control. Remarkably, these two female castes are generated from identical genomes. The key to each female's developmental destiny is her diet as a larva: future queens are raised on royal jelly. This specialized diet is thought to affect a particular chemical modification, methylation, of the bee's DNA, causing the same genome to be deployed differently. To document differences in this epigenomic setting and hypothesize about its effects on behavior, we performed high-resolution bisulphite sequencing of whole genomes from the brains of queen and worker honey bees. In contrast to the heavily methylated human genome, we found that only a small and specific fraction of the honey bee genome is methylated. Most methylation occurred within conserved genes that provide critical cellular functions. Over 550 genes showed significant methylation differences between the queen and the worker, which may contribute to the profound divergence in behavior. How DNA methylation works on these genes remains unclear, but it may change their accessibility to the cellular machinery that controls their expression. We found a tantalizing clue to a mechanism in the clustering of methylation within parts of genes where splicing occurs, suggesting that methylation could control which of several versions of a gene is expressed. Our study provides the first documentation of extensive molecular differences that may allow honey bees to generate different phenotypes from the same genome.
Collapse
Affiliation(s)
- Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Sylvain Foret
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Robert Kucharski
- Research School of Biology, the Australian National University, Canberra, Australia
| | - Stephan Wolf
- Genomics and Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Cassandra Falckenhayn
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ryszard Maleszka
- Research School of Biology, the Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
318
|
Slatter T, Gifford-Garner J, Wiles A, Tan X, Chen YJ, MacFarlane M, Sullivan M, Royds J, Hung N. Pilocytic astrocytomas have telomere-associated promyelocytic leukemia bodies without alternatively lengthened telomeres. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2694-700. [PMID: 21037079 DOI: 10.2353/ajpath.2010.100468] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Telomere maintenance by either telomerase activity or the recombination-mediated alternative lengthening of telomeres (ALT) mechanism is a hallmark of cancer. Tumors that use ALT as their telomere maintenance mechanism are characterized by long telomeres of great heterogeneity in length and by specific nuclear structures of co-localized promyelocytic leukemia protein and telomere DNA, called ALT-associated promyelocytic leukemia bodies (APBs). Recent advances have revealed a direct role for APBs in telomere recombination in ALT-positive cells. In this study, we investigated the possibility that APBs could occur before the long 'alternatively' lengthened telomeres arise, particularly in low-grade tumors. We measured APBs, telomere length, and telomerase activity in 64 astrocytomas inclusive of grade 1-4 tumors. Almost all grade 1-3 tumors (93%) were APB-positive using published criteria. Grade 2-3 APB-positive tumors also had long telomeres and were confirmed as ALT positive. However, grade 1 tumors lacked long telomeres and were therefore classified as ALT negative, but positive for telomere-associated promyelocytic leukemia bodies (TPB). This is the first report of a TPB-positive but ALT-negative tumor, and suggests that low-grade tumors have the foundation for recombinational telomere repair, as in ALT. Further work is warranted to characterize the TPB-positive phenotype in other early malignancies, as well as to determine whether TPBs predispose to telomere maintenance by ALT.
Collapse
Affiliation(s)
- Tania Slatter
- Department of Pathology, Dunedin School of Medicine, PO Box 913, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Vaziri H, Chapman KB, Guigova A, Teichroeb J, Lacher MD, Sternberg H, Singec I, Briggs L, Wheeler J, Sampathkumar J, Gonzalez R, Larocca D, Murai J, Snyder E, Andrews WH, Funk WD, West MD. Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming. Regen Med 2010; 5:345-63. [PMID: 20230312 DOI: 10.2217/rme.10.21] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To determine whether transcriptional reprogramming is capable of reversing the developmental aging of normal human somatic cells to an embryonic state. MATERIALS & METHODS An isogenic system was utilized to facilitate an accurate assessment of the reprogramming of telomere restriction fragment (TRF) length of aged differentiated cells to that of the human embryonic stem (hES) cell line from which they were originally derived. An hES-derived mortal clonal cell strain EN13 was reprogrammed by SOX2, OCT4 and KLF4. The six resulting induced pluripotent stem (iPS) cell lines were surveyed for telomere length, telomerase activity and telomere-related gene expression. In addition, we measured all these parameters in widely-used hES and iPS cell lines and compared the results to those obtained in the six new isogenic iPS cell lines. RESULTS We observed variable but relatively long TRF lengths in three widely studied hES cell lines (16.09-21.1 kb) but markedly shorter TRF lengths (6.4-12.6 kb) in five similarly widely studied iPS cell lines. Transcriptome analysis comparing these hES and iPS cell lines showed modest variation in a small subset of genes implicated in telomere length regulation. However, iPS cell lines consistently showed reduced levels of telomerase activity compared with hES cell lines. In order to verify these results in an isogenic background, we generated six iPS cell clones from the hES-derived cell line EN13. These iPS cell clones showed initial telomere lengths comparable to the parental EN13 cells, had telomerase activity, expressed embryonic stem cell markers and had a telomere-related transcriptome similar to hES cells. Subsequent culture of five out of six lines generally showed telomere shortening to lengths similar to that observed in the widely distributed iPS lines. However, the clone EH3, with relatively high levels of telomerase activity, progressively increased TRF length over 60 days of serial culture back to that of the parental hES cell line. CONCLUSION Prematurely aged (shortened) telomeres appears to be a common feature of iPS cells created by current pluripotency protocols. However, the spontaneous appearance of lines that express sufficient telomerase activity to extend telomere length may allow the reversal of developmental aging in human cells for use in regenerative medicine.
Collapse
Affiliation(s)
- H Vaziri
- Ontario Cancer Institute/PMH, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Wong LH. Epigenetic regulation of telomere chromatin integrity in pluripotent embryonic stem cells. Epigenomics 2010; 2:639-55. [DOI: 10.2217/epi.10.49] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Telomeres are protective chromosomal structures highly conserved from primitive organisms to humans. The evolutionary conservation of telomere DNA implicates the importance of telomeric structure for basic cellular functions. Loss of telomere function causes chromosomal fusion, activation of DNA damage checkpoint responses, genome instability and impaired stem cell function. In human cells, the telomeric chromatin consists of TTAGGG repeats associated with a complex of proteins known as Shelterin. It is also organized in nucleosomes enriched with epigenetic modifications of ‘closed’ or ‘silenced’ chromatin states, including DNA hypermethylation and trimethylation of H3K9 and H4K20. These heterochromatin marks serve as a higher-order level of control of telomere length and structural integrity. Recent studies have shown that the telomere nucleosome in pluripotent embryonic stem cells is characterized by a more ‘open’ chromatin state that switches to become more repressive during differentiation. Conversely, the reprogramming of adult somatic cells into induced pluripotent cells results in the switch in telomeric chromatin from a repressive to a more open embryonic stem cell-like state, coupled with the restoration of telomere length. These findings indicate that telomeric chromatin is dynamic and reprogrammable, and has a fundamental role in the maintenance of embryonic stem cell pluripotency.
Collapse
Affiliation(s)
- Lee H Wong
- Chromosome & Chromatin Research, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
321
|
Joulie M, Miotto B, Defossez PA. Mammalian methyl-binding proteins: What might they do? Bioessays 2010; 32:1025-32. [DOI: 10.1002/bies.201000057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 12/12/2022]
|
322
|
Zhang M, Kimatu JN, Xu K, Liu B. DNA cytosine methylation in plant development. J Genet Genomics 2010; 37:1-12. [PMID: 20171573 DOI: 10.1016/s1673-8527(09)60020-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/15/2009] [Accepted: 11/30/2009] [Indexed: 10/19/2022]
Abstract
Cytosine bases of the nuclear genome in higher plants are often extensively methylated. Cytosine methylation has been implicated in the silencing of both transposable elements (TEs) and endogenous genes, and loss of methylation may have severe functional consequences. The recent methylation profiling of the entire Arabidopsis genome has provided novel insights into the extent and pattern of cytosine methylation and its relationships with gene activity. In addition, the fresh studies also revealed the more dynamic nature of this epigenetic modification across plant development than previously believed. Cytosine methylation of gene promoter regions usually inhibits transcription, but methylation in coding regions (gene-body methylation) does not generally affect gene expression. Active demethylation (though probably act synergistically with passive loss of methylation) of promoters by the 5-methyl cytosine DNA glycosylase or DEMETER (DME) is required for the uni-parental expression of imprinting genes in endosperm, which is essential for seed viability. The opinion that cytosine methylation is indispensible for normal plant development has been reinforced by using single or combinations of diverse loss-of-function mutants for DNA methyltransferases, DNA glycosylases, components involved in siRNA biogenesis and chromatin remodeling factors. Patterns of cytosine methylation in plants are usually faithfully maintained across organismal generations by the concerted action of epigenetic inheritance and progressive correction of strayed patterns. However, some variant methylation patterns may escape from being corrected and hence produce novel epialleles in the affected somatic cells. This, coupled with the unique property of plants to produce germline cells late during development, may enable the newly acquired epialleles to be inherited to future generations, which if visible to selection may contribute to adaptation and evolution.
Collapse
Affiliation(s)
- Meishan Zhang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | |
Collapse
|
323
|
Abstract
Global DNA hypomethylation at CpG islands coupled with local hypermethylation is a hallmark for breast cancer, yet the mechanism underlying this change remains elusive. In this study, we showed that DNMT1, which encodes a methylation maintenance enzyme, is a transcriptional target of BRCA1. BRCA1 binds to the promoter of the DNMT1 gene through a potential OCT1 site and the binding is required for maintaining a transcriptional active configuration of the promoter in both mouse and human cells. We further demonstrated that impaired function of BRCA1 leads to global DNA hypomethylation, loss of genomic imprinting, and an open chromatin configuration in several types of tissues examined in a BRCA1 mutant mouse model at premaligant stages. BRCA1 deficiency is also associated with significantly increased expression levels of several protooncogenes, including c-Fos, Ha-Ras, and c-Myc, with a higher expression in tumors, while premalignant mammary epithelial cells displayed an intermediate state between tumors and controls. In human clinical samples, reduced expression of BRCA1 correlates with decreased levels of DNMT1, and reduced methylation of CpG islands. Thus, BRCA1 prevents global DNA hypomethylation through positively regulating DNMT1 expression, and this provides one of mechanisms for BRCA1-associated breast cancer formation.
Collapse
|
324
|
Borghese B, Barbaux S, Mondon F, Santulli P, Pierre G, Vinci G, Chapron C, Vaiman D. Research resource: genome-wide profiling of methylated promoters in endometriosis reveals a subtelomeric location of hypermethylation. Mol Endocrinol 2010; 24:1872-85. [PMID: 20685852 DOI: 10.1210/me.2010-0160] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several lines of evidence indicate that endometriosis could be partially due to selective epigenetic deregulations. Promoter hypermethylation of some key genes, such as progesterone receptor and aromatase, has been associated with the silencing of these genes and might contribute to the disease. However, it is unknown whether global alterations in DNA methylation patterns occur in endometriosis and to what extent they are involved in its pathogenesis. We conducted a whole-genome scanning of methylation status in more than 25,000 promoters, using methylated DNA immunoprecipitation with hybridization to promoter microarrays. We detailed the methylation profiles for each subtype of the disease (superficial endometriosis, endometriomas, and deep infiltrating endometriosis) and compared them with the profile obtained for the eutopic endometrium. In line with the current theory of the endometrial origin of endometriosis, the overall methylation profile was highly similar between the endometrium and the lesions. It showed promoter regions consistently hypomethylated or hypermethylated (more than 1.5-times, as compared with endometrium) and others specific to one given subtype. Albeit there was no systematic correlation between promoter methylation and expression of nearby genes, 35 genes had both methylation and expressional alterations in the lesions. These genes, reported here for the first time, might be of interest in the development of endometriosis. In addition, hypermethylated regions were located at the ends of the chromosomes, whereas hypomethylated regions were randomly distributed all along the chromosomes. We postulated that this original observation might participate to the chromosomal stability and protect the endometriotic lesion against malignancy.
Collapse
Affiliation(s)
- Bruno Borghese
- Département Génétique et Développement, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Berardinelli F, Antoccia A, Cherubini R, De Nadal V, Gerardi S, Cirrone GAP, Tanzarella C, Sgura A. Transient activation of the ALT pathway in human primary fibroblasts exposed to high-LET radiation. Radiat Res 2010; 174:539-49. [PMID: 20726710 DOI: 10.1667/rr2127.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well established that high-LET radiations efficiently induce chromosome aberrations. However, data on the effect of protons on telomere maintenance, as involved in genomic stability, are scarce and contradictory. Here we demonstrate that high-LET protons induce telomere lengthening in human primary fibroblasts and that this elongation does not involve the telomerase enzyme, supporting the hypothesis that high-LET radiations are able to activate a telomerase-independent mechanism. In tumor cells that lack telomerase, one or more non-telomerase mechanisms for telomere maintenance are present, which are termed alternative lengthening of telomeres (ALT). Since ALT cells are characterized by recombinational events at telomeres, known as telomeric-sister chromatid exchanges (T-SCE), and colocalization of telomeres and premyelocytic leukemia protein (PML), we analyzed both T-SCE and PML. Our results show that high-LET protons induce a 2.5-fold increase of T-SCE and a colocalization of PML protein and telomeric DNA. Furthermore, our data show that the ALT pathway can be activated in human primary cells after induction of severe DNA damage. Thus, since telomeres are known to be involved in chromosome maintenance, the present work may contribute in the elucidation of the mechanism by which ionizing radiation induces genomic instability.
Collapse
|
326
|
Farnung BO, Giulotto E, Azzalin CM. Promoting transcription of chromosome ends. Transcription 2010; 1:140-143. [PMID: 21326888 DOI: 10.4161/trns.1.3.13191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 12/19/2022] Open
Abstract
We recently identified CpG island promoters driving transcription of human telomeric repeat-containing RNA (TERRA). This discovery has shaped a new concept in telomere biology, where TERRA promoters and downstream telomeric sequences constitute autonomous genic units.
Collapse
Affiliation(s)
- Benjamin O Farnung
- Institute of Biochemistry; Eidgenössische Technische Hochschule Zürich (ETHZ); Zürich, Switzerland
| | | | | |
Collapse
|
327
|
Abstract
The linear nature of eukaryotic chromosomes necessitates protection of their physical ends, the telomeres, because the DNA-repair machinery can misconstrue the ends as double-stranded DNA breaks. Thus, protection is crucial for avoiding an unwarranted DNA-damage response that could have catastrophic ramifications for the integrity and stability of the linear genome. In this Commentary, we attempt to define what is currently understood by the term ;telomere protection'. Delineating the defining boundaries of chromosome-end protection is important now more than ever, as it is becoming increasingly evident that, although unwanted DNA repair at telomeres must be avoided at all costs, the molecular players involved in recognition, signaling and repair of DNA damage might also serve to protect telomeres.
Collapse
Affiliation(s)
- Liana Oganesian
- The Salk Institute for Biological Studies, Molecular and Cellular Biology Department, La Jolla, CA 92037, USA
| | | |
Collapse
|
328
|
Uhlírová R, Horáková AH, Galiová G, Legartová S, Matula P, Fojtová M, Varecha M, Amrichová J, Vondrácek J, Kozubek S, Bártová E. SUV39h- and A-type lamin-dependent telomere nuclear rearrangement. J Cell Biochem 2010; 109:915-26. [PMID: 20069564 DOI: 10.1002/jcb.22466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Telomeres are specialized chromatin structures that are situated at the end of linear chromosomes and play an important role in cell senescence and immortalization. Here, we investigated whether changes in histone signature influence the nuclear arrangement and positioning of telomeres. Analysis of mouse embryonic fibroblasts revealed that telomeres were organized into specific clusters that partially associated with centromeric clusters. This nuclear arrangement was influenced by deficiency of the histone methyltransferase SUV39h, LMNA deficiency, and the histone deacetylase inhibitor Trichostatin A (TSA). Similarly, nuclear radial distributions of telomeric clusters were preferentially influenced by TSA, which caused relocation of telomeres closer to the nuclear center. Telomeres also co-localized with promyelocytic leukemia bodies (PML). This association was increased by SUV39h deficiency and decreased by LMNA deficiency. These differences could be explained by differing levels of the telomerase subunit, TERT, in SUV39h- and LMNA-deficient fibroblasts. Taken together, our data show that SUV39h and A-type lamins likely play a key role in telomere maintenance and telomere nuclear architecture.
Collapse
Affiliation(s)
- Radka Uhlírová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Turner S, Wong HP, Rai J, Hartshorne GM. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts. Mol Hum Reprod 2010; 16:685-94. [PMID: 20573647 PMCID: PMC2930518 DOI: 10.1093/molehr/gaq048] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Telomeres are repeated sequences that protect the ends of chromosomes and harbour DNA repair proteins. Telomeres shorten during each cell division in the absence of telomerase. When telomere length becomes critically short, cell senescence occurs. Telomere length therefore reflects both cellular ageing and capacity for division. We have measured telomere length in human germinal vesicle (GV) oocytes and preimplantation embryos, by quantitative fluorescence in situ hybridization (Q-FISH), providing baseline data towards our hypothesis that telomere length is a marker of embryo quality. The numbers of fluorescent foci suggest that extensive clustering of telomeres occurs in mature GV stage oocytes, and in preimplantation embryos. When calculating average telomere length by assuming that each signal presents one telomere, the calculated telomere length decreased from the oocyte to the cleavage stages, and increased between the cleavage stages and the blastocyst (11.12 versus 8.43 versus 12.22 kb, respectively, P < 0.001). Other methods of calculation, based upon expected maximum and minimum numbers of telomeres, confirm that telomere length in blastocysts is significantly longer than cleavage stages. Individual blastomeres within an embryo showed substantial variation in calculated average telomere length. This study implies that telomere length changes according to the stage of preimplantation embryo development.
Collapse
Affiliation(s)
- S Turner
- Warwick Medical School, Clinical Sciences Research Institute, University of Warwick, Clifford Bridge Road, Coventry CV2 2DX, UK
| | | | | | | |
Collapse
|
330
|
Henson JD, Reddel RR. Assaying and investigating Alternative Lengthening of Telomeres activity in human cells and cancers. FEBS Lett 2010; 584:3800-11. [PMID: 20542034 DOI: 10.1016/j.febslet.2010.06.009] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/08/2010] [Indexed: 12/14/2022]
Abstract
Alternative Lengthening of Telomeres (ALT) activity can be deduced from the presence of telomere length maintenance in the absence of telomerase activity. More convenient assays for ALT utilize phenotypic markers of ALT activity, but only a few of these assays are potentially definitive. Here we assess each of the current ALT assays and their implications for understanding the ALT mechanism. We also review the clinical situations where availability of an ALT activity assay would be advantageous. The prevalence of ALT ranges from 25% to 60% in sarcomas and 5% to 15% in carcinomas. Patients with many of these types of ALT[+] tumors have a poor prognosis.
Collapse
Affiliation(s)
- Jeremy D Henson
- Children's Medical Research Institute, Sydney, NSW, Australia
| | | |
Collapse
|
331
|
Abstract
Chromosome termini form a specialized type of heterochromatin that is important for chromosome stability. The recent discovery of telomeric RNA transcripts in yeast and vertebrates raised the question of whether RNA-based mechanisms are involved in the formation of telomeric heterochromatin. In this study, we performed detailed analysis of chromatin structure and RNA transcription at chromosome termini in Arabidopsis. Arabidopsis telomeres display features of intermediate heterochromatin that does not extensively spread to subtelomeric regions which encode transcriptionally active genes. We also found telomeric repeat-containing transcripts arising from telomeres and centromeric loci, a portion of which are processed into small interfering RNAs. These telomeric siRNAs contribute to the maintenance of telomeric chromatin through promoting methylation of asymmetric cytosines in telomeric (CCCTAAA)(n) repeats. The formation of telomeric siRNAs and methylation of telomeres relies on the RNA-dependent DNA methylation pathway. The loss of telomeric DNA methylation in rdr2 mutants is accompanied by only a modest effect on histone heterochromatic marks, indicating that maintenance of telomeric heterochromatin in Arabidopsis is reinforced by several independent mechanisms. In conclusion, this study provides evidence for an siRNA-directed mechanism of chromatin maintenance at telomeres in Arabidopsis.
Collapse
|
332
|
Abstract
Work over the last decade has revealed novel regulatory mechanisms in pathological disease states that are mediated by microRNAs and has inspired researchers to begin elucidating the specific roles of miRNAs in the regulation of genes involved in cancer development and progression. Recently, miRNAs have been explored as therapeutic targets and diagnostic markers of cancer. In this paper, we review recent advances in the study of miRNAs involved in tumorigenesis, focusing on miRNA regulation of genes that have been demonstrated to play critical roles in lung cancer development. We discuss miRNA regulation of genes that play critical roles in the process of malignant transformation, angiogenesis and tumor metastasis, the dysregulation of miRNA expression in cancer development, and the development of miRNA-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Liqin Du
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8807, USA
| | | |
Collapse
|
333
|
Zalzman M, Falco G, Sharova LV, Nishiyama A, Thomas M, Lee SL, Stagg CA, Hoang HG, Yang HT, Indig FE, Wersto RP, Ko MSH. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 2010; 464:858-63. [PMID: 20336070 PMCID: PMC2851843 DOI: 10.1038/nature08882] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 02/08/2010] [Indexed: 01/21/2023]
Abstract
Exceptional genomic stability is one of the hallmarks of mouse embryonic stem (ES) cells. However, the genes contributing to this stability remain obscure. We previously identified Zscan4 as a specific marker for two-cell embryo and ES cells. Here we show that Zscan4 is involved in telomere maintenance and long-term genomic stability in ES cells. Only 5% of ES cells express Zscan4 at a given time, but nearly all ES cells activate Zscan4 at least once during nine passages. The transient Zscan4-positive state is associated with rapid telomere extension by telomere recombination and upregulation of meiosis-specific homologous recombination genes, which encode proteins that are colocalized with ZSCAN4 on telomeres. Furthermore, Zscan4 knockdown shortens telomeres, increases karyotype abnormalities and spontaneous sister chromatid exchange, and slows down cell proliferation until reaching crisis by passage eight. Together, our data show a unique mode of genome maintenance in ES cells.
Collapse
Affiliation(s)
- Michal Zalzman
- Developmental Genomics and Aging Section, Laboratory of Genetics, NIH, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
|
335
|
Tamayo M, Mosquera A, Rego JI, Fernández-Sueiro JL, Blanco FJ, Fernández JL. Differing patterns of peripheral blood leukocyte telomere length in rheumatologic diseases. Mutat Res 2010; 683:68-73. [PMID: 19879280 DOI: 10.1016/j.mrfmmm.2009.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/08/2009] [Accepted: 10/19/2009] [Indexed: 11/26/2022]
Abstract
Telomeres progressively shorten with repeated somatic tissue cell division, their length being an indicator of cellular ageing. Telomeric dysfunction may be implicated in a variety of diseases. We measured mean telomere length in peripheral blood leukocytes (PBL) from patients with various rheumatologic diseases. Mean PBL telomere length was measured using real-time quantitative polymerase chain reaction (Q-PCR) assay in a control population (n=130; age range: 3-94 years) and in subjects diagnosed with rheumatoid arthritis (RA; n=86; age range: 31-82 years), psoriatic arthritis (PA; n=56; age range: 26-79 years) and ankylosing spondylitis (AS; n=59; age range: 21-75 years). These diseases are associated with chronic systemic inflammatory activity. Telomere length was also quantified in subjects with osteoarthritis (OA; n=34; age range: 43-82 years) and osteoporosis (OP; n=35; age range: 59-95 years), diseases without a chronic systemic inflammatory component. Telomere length in OA showed no differences from age-matched controls (p=0.234), but was significantly shorter in OP (p=0.001). Telomere length was significantly longer than controls in RA (p=0.015), PA (p<0.001) and AS (p<0.001). Different patterns in telomere length from PBL are evidenced in rheumatologic pathologies, possibly dependent on the presence or absence of chronic systemic inflammation.
Collapse
Affiliation(s)
- María Tamayo
- INIBIC-Complexo Hospitalario Universitario A Coruña, Genetics Unit, Coruña, Spain
| | | | | | | | | | | |
Collapse
|
336
|
Deng Z, Campbell AE, Lieberman PM. TERRA, CpG methylation and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle 2010; 9:69-74. [PMID: 20016274 DOI: 10.4161/cc.9.1.10358] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Self-reinforcing negative feedback loops are commonly observed in biological systems. RNA-mediated negative feedback loops have been described in the formation of heterochromatin at centromeres in fission yeast and the inactive X chromosome in mammalian cells. The telomere repeat-containing RNA (TERRA) has also been implicated in the formation of telomeric heterochromatin through a self-reinforcing negative feedback loop. In cells derived from human ICF syndrome, TERRA levels are abnormally elevated and telomeres are abnormally shortened. We now show that telomere heterochromatin is also abnormal in ICF cells. We propose that ICF cells fail to reinforce the TERRA-dependent negative feedback loop as a result of the inability to establish heterochromatin at subtelomeres. This failure is likely due to the lack of DNMT3b and DNA methylation, which is a genetic lesion associated with ICF syndrome. Failure of this feedback mechanism leads to catastrophic telomere dysfunction and chromosome instability.
Collapse
Affiliation(s)
- Zhong Deng
- The Wistar Institute, Philadelphia, PA, USA
| | | | | |
Collapse
|
337
|
McNees CJ, Tejera AM, Martínez P, Murga M, Mulero F, Fernandez-Capetillo O, Blasco MA. ATR suppresses telomere fragility and recombination but is dispensable for elongation of short telomeres by telomerase. J Cell Biol 2010; 188:639-52. [PMID: 20212315 PMCID: PMC2835929 DOI: 10.1083/jcb.200908136] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 02/08/2010] [Indexed: 12/29/2022] Open
Abstract
Telomere shortening caused by incomplete DNA replication is balanced by telomerase-mediated telomere extension, with evidence indicating that the shortest telomeres are preferred substrates in primary cells. Critically short telomeres are detected by the cellular DNA damage response (DDR) system. In budding yeast, the important DDR kinase Tel1 (homologue of ATM [ataxia telangiectasia mutated]) is vital for telomerase recruitment to short telomeres, but mammalian ATM is dispensable for this function. We asked whether closely related ATR (ATM and Rad3 related) kinase, which is important for preventing replicative stress and chromosomal breakage at common fragile sites, might instead fulfill this role. The newly created ATR-deficient Seckel mouse strain was used to examine the function of ATR in telomerase recruitment and telomere function. Telomeres were recently found to resemble fragile sites, and we show in this study that ATR has an important role in the suppression of telomere fragility and recombination. We also find that wild-type ATR levels are important to protect short telomeres from chromosomal fusions but do not appear essential for telomerase recruitment to short telomeres in primary mouse embryonic fibroblasts from the ATR-deficient Seckel mouse model. These results reveal a previously unnoticed role for mammalian ATR in telomere protection and stability.
Collapse
Affiliation(s)
- Carolyn J. McNees
- Telomeres and Telomerase Group and Genomic Instability Group, Molecular Oncology Programme and Molecular Imaging Core Unit, Biotechnology Programme, Spanish National Cancer Centre, Madrid 28029, Spain
| | - Agueda M. Tejera
- Telomeres and Telomerase Group and Genomic Instability Group, Molecular Oncology Programme and Molecular Imaging Core Unit, Biotechnology Programme, Spanish National Cancer Centre, Madrid 28029, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group and Genomic Instability Group, Molecular Oncology Programme and Molecular Imaging Core Unit, Biotechnology Programme, Spanish National Cancer Centre, Madrid 28029, Spain
| | - Matilde Murga
- Telomeres and Telomerase Group and Genomic Instability Group, Molecular Oncology Programme and Molecular Imaging Core Unit, Biotechnology Programme, Spanish National Cancer Centre, Madrid 28029, Spain
| | - Francisca Mulero
- Telomeres and Telomerase Group and Genomic Instability Group, Molecular Oncology Programme and Molecular Imaging Core Unit, Biotechnology Programme, Spanish National Cancer Centre, Madrid 28029, Spain
| | - Oscar Fernandez-Capetillo
- Telomeres and Telomerase Group and Genomic Instability Group, Molecular Oncology Programme and Molecular Imaging Core Unit, Biotechnology Programme, Spanish National Cancer Centre, Madrid 28029, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group and Genomic Instability Group, Molecular Oncology Programme and Molecular Imaging Core Unit, Biotechnology Programme, Spanish National Cancer Centre, Madrid 28029, Spain
| |
Collapse
|
338
|
Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, George AJ, Morgan KA, Mann JR, Choo KHA. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res 2010; 20:351-60. [PMID: 20110566 PMCID: PMC2840985 DOI: 10.1101/gr.101477.109] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/14/2009] [Indexed: 02/07/2023]
Abstract
ATRX (alpha thalassemia/mental retardation syndrome X-linked) belongs to the SWI2/SNF2 family of chromatin remodeling proteins. Besides the ATPase/helicase domain at its C terminus, it contains a PHD-like zinc finger at the N terminus. Mutations in the ATRX gene are associated with X-linked mental retardation (XLMR) often accompanied by alpha thalassemia (ATRX syndrome). Although ATRX has been postulated to be a transcriptional regulator, its precise roles remain undefined. We demonstrate ATRX localization at the telomeres in interphase mouse embryonic stem (ES) cells in synchrony with the incorporation of H3.3 during telomere replication at S phase. Moreover, we found that chromobox homolog 5 (CBX5) (also known as heterochromatin protein 1 alpha, or HP1 alpha) is also present at the telomeres in ES cells. We show by coimmunoprecipitation that this localization is dependent on the association of ATRX with histone H3.3, and that mutating the K4 residue of H3.3 significantly diminishes ATRX and H3.3 interaction. RNAi-knockdown of ATRX induces a telomere-dysfunction phenotype and significantly reduces CBX5 enrichment at the telomeres. These findings suggest a novel function of ATRX, working in conjunction with H3.3 and CBX5, as a key regulator of ES-cell telomere chromatin.
Collapse
Affiliation(s)
- Lee H Wong
- Chromosome and Chromatin Research, Murdoch Childrens Research Institute, Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Marión RM, Blasco MA. Telomere rejuvenation during nuclear reprogramming. Curr Opin Genet Dev 2010; 20:190-6. [PMID: 20176474 DOI: 10.1016/j.gde.2010.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 01/26/2023]
Abstract
Reprogramming of adult differentiated cells to a more pluripotent state has been achieved by various means, including somatic cell nuclear transfer (SCNT) and, more recently, by over expression of specific transcription factors to generate the so-called induced pluripotent stem (iPS) cells. Since telomeres play an important role in the maintenance of chromosomal stability associated with continuous cell division, a key question for the quality of the resulting reprogrammed cells was to address whether nuclear reprogramming involves a full rejuvenation of telomeres. Recent work from our group and others demonstrate that telomeres are indeed rejuvenated during nuclear reprogramming. These findings also revealed that the structure of telomeric chromatin is dynamic and controlled by epigenetic programmes, which are reversed by reprogramming.
Collapse
|
340
|
Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 2010; 11:171-81. [PMID: 20125188 DOI: 10.1038/nrm2848] [Citation(s) in RCA: 718] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function.
Collapse
|
341
|
Individual telomere lengths in chronic myeloid leukemia. Neoplasia 2010; 11:1146-54. [PMID: 19881950 DOI: 10.1593/neo.09836] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 01/20/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a neoplasia characterized by proliferation of a myeloid cell lineage and chromosome translocation t(9;22) (q34;q11.2). As in the case of most cancers, the average telomere length in CML cells is shorter than that in normal blood cells. However, there are currently no data available concerning specific individual telomere length in CML. Here, we studied telomere length on each chromosome arm of CML cells. In situ hybridization with peptide nucleic acid probes was performed on CML cells in metaphase. The fluorescence intensity of each specific telomere was converted into kilobases according to the telomere restriction fragment results for each sample. We found differences in telomere length between short arm ends and long arm ends. We observed recurrent telomere length changes as well as telomere length maintenance and elongation in some individual telomeres. We propose a possible involvement of individual telomere length changes to some chromosomal abnormalities in CML. We suggest that individual telomere length maintenance is chromosome arm-specific associated with leukemia cells.
Collapse
|
342
|
Telomeres and telomerase in adult stem cells and pluripotent embryonic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:118-31. [PMID: 21222203 DOI: 10.1007/978-1-4419-7037-4_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Telomerase expression is silenced in most adult somatic tissues with the exception of adult stem cell (SC) compartments, which have the property of having the longest telomeres within a given tissue. Adult SC compartments suffer from telomere shortening associated with organismal aging until telomeres reach a critically short length, which is sufficient to impair SC mobilization and tissue regeneration. p53 is essential to prevent that adult SC carrying telomere damage contribute to tissue regeneration, indicating a novel role for p53 in SC behavior and therefore in the maintenance of tissue fitness and tumor protection. Reprogramming of adult differentiated cells to a more pluripotent state has been achieved by various means, including somatic cell nuclear transfer and, more recently, by over expression of specific transcription factors to generate the so-called induced pluripotent stem (iPS) cells. Recent work has demonstrated that telomeric chromatin is remodeled and telomeres are elongated by telomerase during nuclear reprogramming. These findings suggest that the structure of telomeric chromatin is dynamic and controlled by epigenetic programs associated with the differentiation potential of cells, which are reversed by reprogramming. This chapter will focus on the current knowledge of the role of telomeres and telomerase in adult SC, as well as during nuclear reprograming to generate pluripotent embryonic-like stem cells from adult differentiated cells.
Collapse
|
343
|
Song GA, Ryoo HM, Choi JY. Osteoblast differentiation of human bone marrow stromal cells (hBMSC) according to age for bone tissue engineering. J Korean Assoc Oral Maxillofac Surg 2010. [DOI: 10.5125/jkaoms.2010.36.4.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Gin-Ah Song
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul, Korea
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul, Korea
| | - Jin-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
344
|
Folate and One-Carbon Metabolism and Its Impact on Aberrant DNA Methylation in Cancer. EPIGENETICS AND CANCER, PART B 2010; 71:79-121. [DOI: 10.1016/b978-0-12-380864-6.00004-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
345
|
Moskal JR, Kroes RA, Dawson G. The glycobiology of brain tumors: disease relevance and therapeutic potential. Expert Rev Neurother 2009; 9:1529-45. [PMID: 19831842 DOI: 10.1586/ern.09.105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oligosaccharides that decorate cell surface glycoconjugates play important roles in intercellular recognition and cell-extracellular matrix interactions, and thus the regulation of cellular migration, metastasis and invasivity. Virtually all tumor cells display aberrant cell-surface glycosylation patterns brought about by alterations in their biosynthetic machinery. This holds true for highly invasive, malignant brain tumors as well as tumor cells that metastasize to the brain. The field of glycobiology is well established with essentially all of the biochemical pathways for oligosaccharide metabolism characterized and all of the 'glycogenes' involved in these pathways cloned. Yet there has been a paucity of progress toward the development of therapeutics. However, recent studies aimed at controlled glycosylation of therapeutic antibodies and mucins with anticancer vaccine potential, the emergence of new and highly sensitive tools for the identification of tumor-associated biomarkers and the manipulation of the expression of glycogenes that inhibit brain tumor invasivity have emerged. The opportunity now exists to answer questions as to how glycogenes are regulated at the genomic and transcriptomic level and how altered glycogene expression patterns lead to altered cell surface glycoconjugates. These studies should lead to the development of ways to directly regulate tumor cell glycogene expression, which should have significant therapeutic potential.
Collapse
Affiliation(s)
- Joseph R Moskal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA.
| | | | | |
Collapse
|
346
|
Wakeling LA, Ions LJ, Ford D. Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions? AGE (DORDRECHT, NETHERLANDS) 2009; 31:327-41. [PMID: 19568959 PMCID: PMC2813047 DOI: 10.1007/s11357-009-9104-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 06/10/2009] [Indexed: 05/08/2023]
Abstract
Dietary restriction (DR) increases lifespan in a range of evolutionarily distinct species. The polyphenol resveratrol may be a dietary mimetic of some effects of DR. The pivotal role of the mammalian histone deacetylase (HDAC) Sirt1, and its homologue in other organisms, in mediating the effects of both DR and resveratrol on lifespan/ageing suggests it may be the common conduit through which these dietary interventions influence ageing. We propose the novel hypothesis that effects of DR relevant to lifespan extension include maintenance of DNA methylation patterns through Sirt1-mediated epigenetic effects, and proffer the view that dietary components, including resveratrol, may mimic these actions.
Collapse
Affiliation(s)
- Luisa A. Wakeling
- Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Laura J. Ions
- Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Dianne Ford
- Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
347
|
Gonzalez-Suarez I, Gonzalo S. Nurturing the genome: A-type lamins preserve genomic stability. Nucleus 2009; 1:129-35. [PMID: 21326943 DOI: 10.4161/nucl.1.2.10797] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/24/2009] [Accepted: 11/29/2009] [Indexed: 01/17/2023] Open
Abstract
A-type lamins provide a scaffold for tethering chromatin and protein complexes regulating nuclear structure and function. Interest in lamins increased after mutations in the LMNA gene were found to be associated with a variety of human disorders termed laminopathies. These include muscular dystrophy, cardiomyopathy, lipodystrophy, peripheral neuropathy and premature aging syndromes such as progeria. In addition, altered expression of A-type lamins is emerging as a contributing factor to tumorigenesis. How different alterations in a gene that is ubiquitously expressed can cause such an array of systemic as well as tissue specific diseases remains an enigma. Several lines of evidence indicate that mutant forms of A-type lamins impact on genome function and integrity. A current model suggests that genomic instability plays a major part in the pathophysiology of some lamin-related diseases. However, this model remains to be fully investigated. Here we discuss recent studies revealing novel functions for A-type lamins in the maintenance of telomeres and in the DNA damage response (DDR) pathway. These findings have shed some light onto the putative molecular mechanisms by which alterations in A-type lamins induce genomic instability and contribute to disease.
Collapse
Affiliation(s)
- Ignacio Gonzalez-Suarez
- Radiation and Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
348
|
Hiragami-Hamada K, Xie SQ, Saveliev A, Uribe-Lewis S, Pombo A, Festenstein R. The molecular basis for stability of heterochromatin-mediated silencing in mammals. Epigenetics Chromatin 2009; 2:14. [PMID: 19889207 PMCID: PMC2779788 DOI: 10.1186/1756-8935-2-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 11/04/2009] [Indexed: 01/19/2023] Open
Abstract
The archetypal epigenetic phenomenon of position effect variegation (PEV) in Drosophila occurs when a gene is brought abnormally close to heterochromatin, resulting in stochastic silencing of the affected gene in a proportion of cells that would normally express it. PEV has been instrumental in unraveling epigenetic mechanisms. Using an in vivo mammalian model for PEV we have extensively investigated the molecular basis for heterochromatin-mediated gene silencing. Here we distinguish 'epigenetic effects' from other cellular differences by studying ex vivo cells that are identical, apart from the expression of the variegating gene which is silenced in a proportion of the cells. By separating cells according to transgene expression we show here that silencing appears to be associated with histone H3 lysine 9 trimethylation (H3K9me3), DNA methylation and the localization of the silenced gene to a specific nuclear compartment enriched in these modifications. In contrast, histone H3 acetylation (H3Ac) and lysine 4 di or tri methylation (H3K4me2/3) are the predominant modifications associated with expression where we see the gene in a euchromatic compartment. Interestingly, DNA methylation and inaccessibility, rather than H3K9me3, correlated most strongly with resistance to de-repression by cellular activation. These results have important implications for understanding the contribution of specific factors involved in the establishment and maintenance of gene silencing and activation in vivo.
Collapse
Affiliation(s)
- Kyoko Hiragami-Hamada
- Gene Control Mechanisms and Disease Group, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
349
|
Kozak ML, Chavez A, Dang W, Berger SL, Ashok A, Guo X, Johnson FB. Inactivation of the Sas2 histone acetyltransferase delays senescence driven by telomere dysfunction. EMBO J 2009; 29:158-70. [PMID: 19875981 DOI: 10.1038/emboj.2009.314] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 09/24/2009] [Indexed: 01/28/2023] Open
Abstract
Changes in telomere chromatin have been linked to cellular senescence, but the underlying mechanisms and impact on lifespan are unclear. We found that inactivation of the Sas2 histone acetyltransferase delays senescence in Saccharomyces cerevisiae telomerase (tlc1) mutants through a homologous recombination-dependent mechanism. Sas2 acetylates histone H4 lysine 16 (H4K16), and telomere shortening in tlc1 mutants was accompanied by a selective and Sas2-dependent increase in subtelomeric H4K16 acetylation. Further, mutation of H4 lysine 16 to arginine, which mimics constitutively deacetylated H4K16, delayed senescence and was epistatic to sas2 deletion, indicating that deacetylated H4K16 mediates the delay caused by sas2 deletion. Sas2 normally prevents the Sir2/3/4 heterochromatin complex from leaving the telomere and spreading to internal euchromatic loci. Senescence was delayed by sir3 deletion, but not sir2 deletion, indicating that senescence delay is mediated by release of Sir3 specifically from the telomere repeats. In contrast, sir4 deletion sped senescence and blocked the delay conferred by sas2 or sir3 deletion. We thus show that manipulation of telomere chromatin modulates senescence caused by telomere shortening.
Collapse
Affiliation(s)
- Marina L Kozak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
| | | | | | | | | | | | | |
Collapse
|
350
|
Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462:315-22. [PMID: 19829295 DOI: 10.1038/nature08514] [Citation(s) in RCA: 3353] [Impact Index Per Article: 209.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/21/2009] [Indexed: 12/11/2022]
Abstract
DNA cytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome regulation, development and disease. Here we present the first genome-wide, single-base-resolution maps of methylated cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibroblasts, along with comparative analysis of messenger RNA and small RNA components of the transcriptome, several histone modifications, and sites of DNA-protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context, suggesting that embryonic stem cells may use different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation, and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development.
Collapse
|