301
|
Marchand C, Lea WA, Jadhav A, Dexheimer TS, Austin CP, Inglese J, Pommier Y, Simeonov A. Identification of phosphotyrosine mimetic inhibitors of human tyrosyl-DNA phosphodiesterase I by a novel AlphaScreen high-throughput assay. Mol Cancer Ther 2009; 8:240-8. [PMID: 19139134 DOI: 10.1158/1535-7163.mct-08-0878] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) resolves topoisomerase I (Top1)-DNA adducts accumulated from natural DNA damage as well as from the action of certain anticancer drugs. Tdp1 catalyzes the hydrolysis of the phosphodiester bond between the catalytic tyrosine residue of topoisomerase I and the DNA 3'-phosphate. Only a limited number of weak inhibitors have been reported for Tdp1, and there is an unmet need to identify novel chemotypes through screening of chemical libraries. Herein, we present an easily configured, highly miniaturized, and robust Tdp1 assay using the AlphaScreen technology. Uninhibited enzyme reaction is associated with low signal, whereas inhibition leads to a gain of signal, making the present assay format especially attractive for automated large-collection high-throughput screening. We report the identification and initial characterization of four previously unreported inhibitors of Tdp1. Among them, suramin, NF449, and methyl-3,4-dephostatin are phosphotyrosine mimetics that may act as Tdp1 substrate decoys. We also report a novel biochemical assay using the SCAN1 Tdp1 mutant to study the mechanism of action of methyl-3,4-dephostatin.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
302
|
Hawkins AJ, Subler MA, Akopiants K, Wiley JL, Taylor SM, Rice AC, Windle JJ, Valerie K, Povirk LF. In vitro complementation of Tdp1 deficiency indicates a stabilized enzyme-DNA adduct from tyrosyl but not glycolate lesions as a consequence of the SCAN1 mutation. DNA Repair (Amst) 2009; 8:654-63. [PMID: 19211312 DOI: 10.1016/j.dnarep.2008.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/19/2008] [Accepted: 12/21/2008] [Indexed: 11/17/2022]
Abstract
A homozygous H493R mutation in the active site of tyrosyl-DNA phosphodiesterase (TDP1) has been implicated in hereditary spinocerebellar ataxia with axonal neuropathy (SCAN1), an autosomal recessive neurodegenerative disease. However, it is uncertain how the H493R mutation elicits the specific pathologies of SCAN1. To address this question, and to further elucidate the role of TDP1 in repair of DNA end modifications and general physiology, we generated a Tdp1 knockout mouse and carried out detailed behavioral analyses as well as characterization of repair deficiencies in extracts of embryo fibroblasts from these animals. While Tdp1(-/-) mice appear phenotypically normal, extracts from Tdp1(-/-) fibroblasts exhibited deficiencies in processing 3'-phosphotyrosyl single-strand breaks and 3'-phosphoglycolate double-strand breaks (DSBs), but not 3'-phosphoglycolate single-strand breaks. Supplementing Tdp1(-/-) extracts with H493R TDP1 partially restored processing of 3'-phosphotyrosyl single-strand breaks, but with evidence of persistent covalent adducts between TDP1 and DNA, consistent with a proposed intermediate-stabilization effect of the SCAN1 mutation. However, H493R TDP1 supplementation had no effect on phosphoglycolate (PG) termini on 3' overhangs of double-strand breaks; these remained completely unprocessed. Altogether, these results suggest that for 3'-phosphoglycolate overhang lesions, the SCAN1 mutation confers loss of function, while for 3'-phosphotyrosyl lesions, the mutation uniquely stabilizes a reaction intermediate.
Collapse
Affiliation(s)
- Amy J Hawkins
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Tdp1 protects against oxidative DNA damage in non-dividing fission yeast. EMBO J 2009; 28:632-40. [PMID: 19197239 DOI: 10.1038/emboj.2009.9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 01/02/2009] [Indexed: 11/08/2022] Open
Abstract
In humans, a mutation in the tyrosyl-DNA phosphodiesterase (Tdp1) is responsible for the recessively inherited syndrome spinocerebellar ataxia with axonal neuropathy (SCAN1). Tdp1 is a well-conserved DNA repair enzyme, which processes modified 3' phospho-DNA adducts in vitro. Here, we report that in the yeast Schizosaccharomyces pombe, tdp1 mutant cells progressively accumulate DNA damage and rapidly lose viability in a physiological G0/quiescent state. Remarkably, this effect is independent of topoisomerase I function. Moreover, we provide evidence that Tdp1, with the polynucleotide kinase (Pnk1), processes the same naturally occurring 3'-ends, produced from oxidative DNA damage in G0. We also found that one half of the dead cells lose their nuclear DNA. Nuclear DNA degradation is genetically programmed and mainly depends on the two DNA damage checkpoint responses, ATM/Tel1 and ATR/Rad3, reminiscent to programmed cell death. Diminishing the respiration rate or treating cells with a low concentration of antioxidants rescues the quiescent tdp1 mutant cells. These findings suggest that mitochondrial respiration causes neuronal cell death in the SCAN1 syndrome and in other neurological disorders.
Collapse
|
304
|
Hartsuiker E, Neale MJ, Carr AM. Distinct requirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA. Mol Cell 2009; 33:117-23. [PMID: 19150433 DOI: 10.1016/j.molcel.2008.11.021] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/10/2008] [Accepted: 11/11/2008] [Indexed: 11/19/2022]
Abstract
For a cancer cell to resist treatment with drugs that trap topoisomerases covalently on the DNA, the topoisomerase must be removed. In this study, we provide evidence that the Schizosaccharomyces pombe Rad32(Mre11) nuclease activity is involved in the removal of both Top2 from 5' DNA ends as well as Top1 from 3' ends in vivo. A ctp1(CtIP) deletion is defective for Top2 removal but overproficient for Top1 removal, suggesting that Ctp1(CtIP) plays distinct roles in removing topoisomerases from 5' and 3' DNA ends. Analysis of separation of function mutants suggests that MRN-dependent topoisomerase removal contributes significantly to resistance against topoisomerase-trapping drugs. This study has important implications for our understanding of the role of the MRN complex and CtIP in resistance of cells to a clinically important group of anticancer drugs.
Collapse
Affiliation(s)
- Edgar Hartsuiker
- Genome Damage and Stability Centre, University of Sussex, Brighton BN19RQ, UK.
| | | | | |
Collapse
|
305
|
Abstract
The ability to respond to genotoxic stress is a prerequisite for the successful development of the nervous system. Mutations in various DNA repair factors can lead to human diseases that are characterized by pronounced neuropathology. In many of these syndromes the neurological component is among the most deleterious aspects of the disease. The nervous system poses a particular challenge in terms of clinical intervention, as the neuropathology associated with these diseases often arises during nervous system development and can be fully penetrant by childhood. Understanding how DNA repair deficiency affects the nervous system will provide a rational basis for therapies targeted at ameliorating the neurological problems in these syndromes.
Collapse
|
306
|
Genetics and Pathogenesis of Inherited Ataxias and Spastic Paraplegias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:263-96. [DOI: 10.1007/978-90-481-2813-6_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
307
|
Defective DNA ligation during short-patch single-strand break repair in ataxia oculomotor apraxia 1. Mol Cell Biol 2008; 29:1354-62. [PMID: 19103743 DOI: 10.1128/mcb.01471-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ataxia oculomotor apraxia 1 (AOA1) results from mutations in aprataxin, a component of DNA strand break repair that removes AMP from 5' termini. Despite this, global rates of chromosomal strand break repair are normal in a variety of AOA1 and other aprataxin-defective cells. Here we show that short-patch single-strand break repair (SSBR) in AOA1 cell extracts bypasses the point of aprataxin action at oxidative breaks and stalls at the final step of DNA ligation, resulting in the accumulation of adenylated DNA nicks. Strikingly, this defect results from insufficient levels of nonadenylated DNA ligase, and short-patch SSBR can be restored in AOA1 extracts, independently of aprataxin, by the addition of recombinant DNA ligase. Since adenylated nicks are substrates for long-patch SSBR, we reasoned that this pathway might in part explain the apparent absence of a chromosomal SSBR defect in aprataxin-defective cells. Indeed, whereas chemical inhibition of long-patch repair did not affect SSBR rates in wild-type mouse neural astrocytes, it uncovered a significant defect in Aptx(-/-) neural astrocytes. These data demonstrate that aprataxin participates in chromosomal SSBR in vivo and suggest that short-patch SSBR arrests in AOA1 because of insufficient nonadenylated DNA ligase.
Collapse
|
308
|
Pastwa E, Somiari RI, Malinowski M, Somiari SB, Winters TA. In vitro non-homologous DNA end joining assays--the 20th anniversary. Int J Biochem Cell Biol 2008; 41:1254-60. [PMID: 19110069 DOI: 10.1016/j.biocel.2008.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/20/2008] [Accepted: 11/28/2008] [Indexed: 11/16/2022]
Abstract
DNA double-strand breaks (DSBs) are the most serious forms of DNA damage in cells. Unrepaired or misrepaired DSBs account for some of the genetic instabilities that lead to mutations or cell death, and consequently, to cancer predisposition. In human cells non-homologous DNA end joining (NHEJ) is the main repair mechanism of these breaks. Systems for DNA end joining study have been developing during the last 20 years. New assays have some advantages over earlier in vitro DSBs repair assays because they are less time-consuming, allow the use of clinical material and examination of the joining DNA ends produced physiologically in mammalian cells. Proteins involved in NHEJ repair pathway can serve as biomarkers or molecular targets for anticancer drugs. Results of studies on NHEJ in cancer could help to select potent repair inhibitors that may selectively sensitize tumor cells to ionizing radiation (IR) and chemotherapy. Here, we review the principles and practice of in vitro NHEJ assays and provide some insights into the future prospects of this assay in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Elzbieta Pastwa
- Department of Molecular Genetics, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | | | | | | | | |
Collapse
|
309
|
Nolte KW, Janecke AR, Vorgerd M, Weis J, Schröder JM. Congenital type IV glycogenosis: the spectrum of pleomorphic polyglucosan bodies in muscle, nerve, and spinal cord with two novel mutations in the GBE1 gene. Acta Neuropathol 2008; 116:491-506. [PMID: 18661138 DOI: 10.1007/s00401-008-0417-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 07/14/2008] [Accepted: 07/19/2008] [Indexed: 11/30/2022]
Abstract
A diagnosis of GSD-IV was established in three premature, floppy infants based on characteristic, however unusually pleomorphic polyglucosan bodies at the electron microscopic level, glycogen branching enzyme deficiency in two cases, and the identification of GBE1 mutations in two cases. Pleomorphic polyglucosan bodies in muscle fibers and macrophages, and less severe in Schwann cells and microglial cells were noted. Most of the inclusions were granular and membrane-bound; others had an irregular contour, were more electron dense and were not membrane bound, or homogenous ('hyaline'). A paracrystalline pattern of granules was repeatedly noted showing a periodicity of about 10 nm with an angle of about 60 degrees or 120 degrees at sites of changing linear orientation. Malteser crosses were noted under polarized light in the larger inclusions. Some inclusions were PAS positive and others were not. Severely atrophic muscle fibers without inclusions, but with depletion of myofibrils in the plane of section studied indicated the devastating myopathic nature of the disease. Schwann cells and peripheral axons were less severely affected as was the spinal cord. Two novel protein-truncating mutations (c.1077insT, p.V359fsX16; g.101517_127067del25550insCAGTACTAA, DelExon4-7) were identified in these families. The present findings extend previous studies indicating that truncating GBE1 mutations cause a spectrum of severe diseases ranging from generalized intrauterine hydrops to fatal perinatal hypotonia and fatal cardiomyopathy in the first months of life.
Collapse
Affiliation(s)
- Kay W Nolte
- Department of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | | | | | | | | |
Collapse
|
310
|
Kulkarni A, McNeill DR, Gleichmann M, Mattson MP, Wilson DM. XRCC1 protects against the lethality of induced oxidative DNA damage in nondividing neural cells. Nucleic Acids Res 2008; 36:5111-21. [PMID: 18682529 PMCID: PMC2528184 DOI: 10.1093/nar/gkn480] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
XRCC1 is a critical scaffold protein that orchestrates efficient single-strand break repair (SSBR). Recent data has found an association of XRCC1 with proteins causally linked to human spinocerebellar ataxias—aprataxin and tyrosyl-DNA phosphodiesterase 1—implicating SSBR in protection against neuronal cell loss and neurodegenerative disease. We demonstrate herein that shRNA lentiviral-mediated XRCC1 knockdown in human SH-SY5Y neuroblastoma cells results in a largely selective increase in sensitivity of the nondividing (i.e. terminally differentiated) cell population to the redox-cycling agents, menadione and paraquat; this reduced survival was accompanied by an accumulation of DNA strand breaks. Using hypoxanthine–xanthine oxidase as the oxidizing method, XRCC1 deficiency affected both dividing and nondividing SH-SY5Y cells, with a greater effect on survival seen in the former case, suggesting that the spectrum of oxidative DNA damage created dictates the specific contribution of XRCC1 to cellular resistance. Primary XRCC1 heterozygous mouse cerebellar granule cells exhibit increased strand break accumulation and reduced survival due to increased apoptosis following menadione treatment. Moreover, knockdown of XRCC1 in primary human fetal brain neurons leads to enhanced sensitivity to menadione, as indicated by increased levels of DNA strand breaks relative to control cells. The cumulative results implicate XRCC1, and more broadly SSBR, in the protection of nondividing neuronal cells from the genotoxic consequences of oxidative stress.
Collapse
Affiliation(s)
- Avanti Kulkarni
- Laboratory of Molecular Gerontology, National Institute of Aging (NIA)/National Institutes of Health (NIH), 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
311
|
Abstract
Hereditary defects in the repair of DNA damage are implicated in a variety of diseases, many of which are typified by neurological dysfunction and/or increased genetic instability and cancer. Of the different types of DNA damage that arise in cells, single-strand breaks (SSBs) are the most common, arising at a frequency of tens of thousands per cell per day from direct attack by intracellular metabolites and from spontaneous DNA decay. Here, the molecular mechanisms and organization of the DNA-repair pathways that remove SSBs are reviewed and the connection between defects in these pathways and hereditary neurodegenerative disease are discussed.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
312
|
Barzilai A, Biton S, Shiloh Y. The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst) 2008; 7:1010-27. [DOI: 10.1016/j.dnarep.2008.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
313
|
Dexheimer TS, Antony S, Marchand C, Pommier Y. Tyrosyl-DNA phosphodiesterase as a target for anticancer therapy. Anticancer Agents Med Chem 2008; 8:381-9. [PMID: 18473723 DOI: 10.2174/187152008784220357] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a recently discovered enzyme that catalyzes the hydrolysis of 3'-phosphotyrosyl bonds. Such linkages form in vivo following the DNA processing activity of topoisomerase I (Top1). For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes, which can be generated by either exogenous or endogenous factors. Tdp1 has been regarded as a potential therapeutic co-target of Top1 in that it seemingly counteracts the effects of Top1 inhibitors, such as camptothecin and its clinically used derivatives. Thus, by reducing the repair of Top1-DNA lesions, Tdp1 inhibitors have the potential to augment the anticancer activity of Top1 inhibitors provided there is a presence of genetic abnormalities related to DNA checkpoint and repair pathways. Human Tdp1 can also hydrolyze other 3'-end DNA alterations including 3'-phosphoglycolates and 3'-abasic sites indicating it may function as a general 3'-DNA phosphodiesterase and repair enzyme. The importance of Tdp1 in humans is highlighted by the observation that a recessive mutation in the human TDP1 gene is responsible for the inherited disorder, spinocerebellar ataxia with axonal neuropathy (SCAN1). This review provides a summary of the biochemical and cellular processes performed by Tdp1 as well as the rationale behind the development of Tdp1 inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
314
|
Sordet O, Larochelle S, Nicolas E, Stevens EV, Zhang C, Shokat KM, Fisher RP, Pommier Y. Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I. J Mol Biol 2008; 381:540-9. [PMID: 18588899 DOI: 10.1016/j.jmb.2008.06.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/05/2008] [Accepted: 06/11/2008] [Indexed: 02/06/2023]
Abstract
The progression of RNA polymerase II can be blocked by lesions on the DNA template. In this study, we focused on the modifications of the largest subunit of RNA polymerase II, Rpb1, in response to stabilized topoisomerase I (Top1)-DNA cleavage complexes. In addition to DNA modifications (base damages and strand breaks), Top1 cleavage complexes can be trapped by camptothecin (CPT) and its derivatives used in cancer treatment. We found that, within a few minutes, CPT produces the complete hyperphosphorylation of Rpb1 in both primary and transformed cancer cells. Hyperphosphorylation is rapidly reversible following CPT removal. Hyperphosphorylation occurs selectively on the serine 5 residue of the conserved heptapeptide repeats in the Rpb1 carboxy-terminal domain and is mediated principally by the transcription factor IIH-associated cyclin-dependent kinase Cdk7. Hyperphosphorylated Rpb1 is not primarily targeted for proteosomal degradation and instead is subjected to cycles of phosphorylation and dephosphorylation as long as Top1 cleavage complexes are trapped by CPT. Finally, we show that transcription-induced degradation of Top1 is Brca1 dependent, suggesting a role for Brca1 in the repair or removal of transcription-blocking Top1-DNA cleavage complexes.
Collapse
Affiliation(s)
- Olivier Sordet
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
315
|
Lavin MF, Gueven N, Grattan-Smith P. Defective responses to DNA single- and double-strand breaks in spinocerebellar ataxia. DNA Repair (Amst) 2008; 7:1061-76. [PMID: 18467193 DOI: 10.1016/j.dnarep.2008.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Failure to maintain the integrity of DNA/chromatin can result in genome instability and an increased risk of cancer. The description of a number of human genetic disorders characterised not only by cancer predisposition but by a broader phenotype including neurodegeneration suggests that maintaining genome stability is also important for preserving post-mitotic neurons. The identification of genes associated with other neurodegenerative disorders provides further evidence for the importance of DNA damage response and DNA repair genes in protecting against neurodegeneration. This theme is further developed in this review.
Collapse
Affiliation(s)
- Martin F Lavin
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | |
Collapse
|
316
|
Abstract
DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling nonneuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| |
Collapse
|
317
|
Katyal S, McKinnon PJ. DNA strand breaks, neurodegeneration and aging in the brain. Mech Ageing Dev 2008; 129:483-91. [PMID: 18455751 DOI: 10.1016/j.mad.2008.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/08/2008] [Accepted: 03/16/2008] [Indexed: 12/01/2022]
Abstract
Defective responses to DNA single- or double-strand breaks can result in neurological disease, underscoring the critical importance of DNA repair for neural homeostasis. Human DNA repair-deficient syndromes are generally congenital, in which brain pathology reflects the consequences of developmentally incurred DNA damage. Although, it is unclear to what degree DNA strand-break repair defects in mature neural cells contributes to disease pathology. However, DNA single-strand breaks are a relatively common lesion which if not repaired can impact cells via interference with transcription. Thus, this lesion, and probably to a lesser extent DNA double-strand breaks, may be particularly relevant to aging in the neural cell population. In this review we will examine the consequences of defective DNA strand-break repair towards homeostasis in the brain. Further, we also consider the utility of mouse models as reagents to understand the connection between DNA strand breaks and aging in the brain.
Collapse
Affiliation(s)
- Sachin Katyal
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
318
|
Schöls L, Arning L, Schüle R, Epplen JT, Timmann D. “Pseudodominant inheritance” of ataxia with ocular apraxia type 2 (AOA2). J Neurol 2008; 255:495-501. [DOI: 10.1007/s00415-008-0707-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/22/2007] [Accepted: 07/19/2007] [Indexed: 11/30/2022]
|
319
|
Kulkarni A, Wilson DM. The involvement of DNA-damage and -repair defects in neurological dysfunction. Am J Hum Genet 2008; 82:539-66. [PMID: 18319069 PMCID: PMC2427185 DOI: 10.1016/j.ajhg.2008.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/17/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022] Open
Abstract
A genetic link between defects in DNA repair and neurological abnormalities has been well established through studies of inherited disorders such as ataxia telangiectasia and xeroderma pigmentosum. In this review, we present a comprehensive summary of the major types of DNA damage, the molecular pathways that function in their repair, and the connection between defective DNA-repair responses and specific neurological disease. Particular attention is given to describing the nature of the repair defect and its relationship to the manifestation of the associated neurological dysfunction. Finally, the review touches upon the role of oxidative stress, a leading precursor to DNA damage, in the development of certain neurodegenerative pathologies, such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Avanti Kulkarni
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
320
|
Brain capacity for repair of oxidatively damaged DNA and preservation of neuronal function. Mech Ageing Dev 2008; 129:475-82. [PMID: 18374390 DOI: 10.1016/j.mad.2008.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/23/2008] [Accepted: 02/07/2008] [Indexed: 11/20/2022]
Abstract
Accumulation of oxidative DNA damage in the human brain has been implicated in etiologies of post-traumatic and age-associated declines in neuronal function. In neurons, because of high metabolic rates and prolonged life span, exposure to free radicals is intense and risk for accumulation of damaged DNA is amplified. While data indicate that the brain is equipped to repair nuclear and mitochondrial DNA, it is unclear whether repair is executed by distinct subsets of the DNA-repair machinery. Likewise, there are no firm assessments of brain capacity for accurate DNA repair under normal and more so compromised conditions. Consequently, the scope of DNA repair in the brain and the impact of resolution of oxidative lesions on neuronal survival and function remain largely unknown. This review considers evidences for brain levels and activities of the base excision repair (BER) pathway in the context of newly available, comprehensive in situ hybridization analyses of genes encoding repair enzymes. These analyses suggest that not all subsets of BER are equally represented in the brain. Because BER is the major repair process for oxidatively damaged DNA, to what extent parsimonious BER may contribute to development of neuronal dysfunction and brain injury under compromised conditions, is discussed.
Collapse
|
321
|
Akbari M, Krokan HE. Cytotoxicity and mutagenicity of endogenous DNA base lesions as potential cause of human aging. Mech Ageing Dev 2008; 129:353-65. [PMID: 18355895 DOI: 10.1016/j.mad.2008.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 11/26/2022]
Abstract
Endogenous factors constitute a substantial source of damage to the genomic DNA. The type of damage includes a number of different base lesions and single- and double-strand breaks. Unrepaired DNA damage can give rise to mutations and may cause cell death. A number of studies have demonstrated an association between aging and the accumulation of DNA damage. This may be attributed to reduced DNA repair with age, although this is apparently not a general feature for all types of damage and repair mechanisms. Therefore, detailed studies that improve our knowledge of DNA repair systems as well as mutagenic and toxic effects of DNA lesions will help us to gain a better insight into the mechanisms of aging. The aim of this review is to provide a brief description of cytotoxic and mutagenic endogenous DNA lesions that are mainly repaired by base excision repair and single-strand break repair pathways and to discuss the potential role of DNA lesions and DNA repair dysfunction in the onset of human aging.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|
322
|
Abstract
Each day tens of thousands of DNA single-strand breaks (SSBs) arise in every cell from the attack of deoxyribose and DNA bases by reactive oxygen species and other electrophilic molecules. DNA double-strand breaks (DSBs) also arise, albeit at a much lower frequency, from similar attacks and from the encounter of unrepaired SSBs and possibly other DNA structures by DNA replication forks. DSBs are also created during normal development of the immune system. Defects in the cellular response to DNA strand breaks underpin many human diseases, including disorders associated with cancer predisposition, immune dysfunction, radiosensitivity, and neurodegeneration. Here we provide an overview of the genetic diseases associated with defects in the repair/response to DNA strand breaks.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
323
|
Gorodetsky E, Calkins S, Ahn J, Brooks P. ATM, the Mre11/Rad50/Nbs1 complex, and topoisomerase I are concentrated in the nucleus of Purkinje neurons in the juvenile human brain. DNA Repair (Amst) 2007; 6:1698-707. [PMID: 17706468 PMCID: PMC2797317 DOI: 10.1016/j.dnarep.2007.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 06/11/2007] [Accepted: 06/13/2007] [Indexed: 11/17/2022]
Abstract
The genetic disease ataxia telangiectasia (AT) results from mutations in the ataxia telangiectasia mutated (ATM) gene. AT patients develop a progressive degeneration of cerebellar Purkinje neurons. Surprisingly, while ATM plays a criticial role in the cellular reponse to DNA damage, previous studies have localized ATM to the cytoplasm of rodent and human Purkinje neurons. Here we show that ATM is primarily localized to the nucleus in cerebellar Purkinje neurons in postmortem human brain tissue samples, although some light cytoplasmic ATM staining was also observed. No ATM staining was observed in brain tissue samples from AT patients, verifying the specificity of the antibody. We also found that antibodies against components of the Mre11/Rad50/Nbs1 (MRN) complex showed strong staining in Purkinje cell nuclei. However, while ATM is present in both the nucleoplasm and nucleolus, MRN proteins are excluded from the nucleolus. We also observed very high levels of topoisomerase 1 (TOP1) in the nucleus, and specifically the nucleolus, of human Purkinje neurons. Our results have direct implications for understanding the mechanisms of neurodegeneration in AT and AT-like disorder.
Collapse
Affiliation(s)
- Elena Gorodetsky
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room 3S-32, MSC 9412, Bethesda, MD 20952-9412, USA, 301-496-7920, 301-480-2839 (FAX),
| | - Sarah Calkins
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room 3S-32, MSC 9412, Bethesda, MD 20952-9412, USA, 301-496-7920, 301-480-2839 (FAX),
| | - Julia Ahn
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room 3S-32, MSC 9412, Bethesda, MD 20952-9412, USA, 301-496-7920, 301-480-2839 (FAX),
| | - P.J. Brooks
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room 3S-32, MSC 9412, Bethesda, MD 20952-9412, USA, 301-496-7920, 301-480-2839 (FAX),
| |
Collapse
|
324
|
Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA. Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics 2007; 32:219-28. [PMID: 17957000 DOI: 10.1152/physiolgenomics.00157.2007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
325
|
Hirano R, Interthal H, Huang C, Nakamura T, Deguchi K, Choi K, Bhattacharjee MB, Arimura K, Umehara F, Izumo S, Northrop JL, Salih MAM, Inoue K, Armstrong DL, Champoux JJ, Takashima H, Boerkoel CF. Spinocerebellar ataxia with axonal neuropathy: consequence of a Tdp1 recessive neomorphic mutation? EMBO J 2007; 26:4732-43. [PMID: 17948061 DOI: 10.1038/sj.emboj.7601885] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 09/19/2007] [Indexed: 01/30/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) cleaves the phosphodiester bond between a covalently stalled topoisomerase I (Topo I) and the 3' end of DNA. Stalling of Topo I at DNA strand breaks is induced by endogenous DNA damage and the Topo I-specific anticancer drug camptothecin (CPT). The H493R mutation of Tdp1 causes the neurodegenerative disorder spinocerebellar ataxia with axonal neuropathy (SCAN1). Contrary to the hypothesis that SCAN1 arises from catalytically inactive Tdp1, Tdp1-/- mice are indistinguishable from wild-type mice, physically, histologically, behaviorally, and electrophysiologically. However, compared to wild-type mice, Tdp1-/- mice are hypersensitive to CPT and bleomycin but not to etoposide. Consistent with earlier in vitro studies, we show that the H493R Tdp1 mutant protein retains residual activity and becomes covalently trapped on the DNA after CPT treatment of SCAN1 cells. This result provides a direct demonstration that Tdp1 repairs Topo I covalent lesions in vivo and suggests that SCAN1 arises from the recessive neomorphic mutation H493R. This is a novel mechanism for disease since neomorphic mutations are generally dominant.
Collapse
Affiliation(s)
- Ryuki Hirano
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Katyal S, El-Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, McKinnon PJ. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J 2007; 26:4720-31. [PMID: 17914460 PMCID: PMC2080805 DOI: 10.1038/sj.emboj.7601869] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/05/2007] [Indexed: 11/08/2022] Open
Abstract
Defective Tyrosyl-DNA phosphodiesterase 1 (TDP1) can cause spinocerebellar ataxia with axonal neuropathy (SCAN1), a neurodegenerative syndrome associated with marked cerebellar atrophy and peripheral neuropathy. Although SCAN1 lymphoblastoid cells show pronounced defects in the repair of chromosomal single-strand breaks (SSBs), it is unknown if this DNA repair activity is important for neurons or for preventing neurodegeneration. Therefore, we generated Tdp1-/- mice to assess the role of Tdp1 in the nervous system. Using both in vitro and in vivo assays, we found that cerebellar neurons or primary astrocytes derived from Tdp1-/- mice display an inability to rapidly repair DNA SSBs associated with Top1-DNA complexes or oxidative damage. Moreover, loss of Tdp1 resulted in age-dependent and progressive cerebellar atrophy. Tdp1-/- mice treated with topotecan, a drug that increases levels of Top1-DNA complexes, also demonstrated significant loss of intestinal and hematopoietic progenitor cells. These data indicate that TDP1 is required for neural homeostasis, and reveal a widespread requisite for TDP1 function in response to acutely elevated levels of Top1-associated DNA strand breaks.
Collapse
Affiliation(s)
- Sachin Katyal
- Department Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherif F El-Khamisy
- Genome Damage and Stability Center, University of Sussex, Falmer, Brighton, UK
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Helen R Russell
- Department Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yang Li
- Department Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Limei Ju
- Genome Damage and Stability Center, University of Sussex, Falmer, Brighton, UK
| | - Keith W Caldecott
- Genome Damage and Stability Center, University of Sussex, Falmer, Brighton, UK
- Genome Damage and Stability Center, University of Sussex, Falmer, Brighton BN1 9RQ, UK. Tel.: +44 1323 877519; Fax: +44 1323 678121; E-mail:
| | - Peter J McKinnon
- Department Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA. Tel.: +1 901 495 2700; Fax: +1 901 526 2907; E-mail:
| |
Collapse
|
327
|
El-Khamisy SF, Hartsuiker E, Caldecott KW. TDP1 facilitates repair of ionizing radiation-induced DNA single-strand breaks. DNA Repair (Amst) 2007; 6:1485-95. [PMID: 17600775 DOI: 10.1016/j.dnarep.2007.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/20/2007] [Accepted: 04/23/2007] [Indexed: 01/25/2023]
Abstract
Tyrosyl DNA phosphodiesterase-1 (TDP1) is the gene product mutated in spinocerebellar ataxia with axonal neuropathy1 (SCAN1). SCAN1 is a hereditary ataxia that lacks extra-neurological phenotype, pointing to a critical role for TDP1 in the nervous system. Recently, we showed that TDP1 is associated with the DNA single-strand break (SSBR) repair machinery through an interaction with DNA ligase 3alpha (Lig3alpha) and that SCAN1 cells are defective in the repair of chromosomal DNA single-strand breaks (SSBs) arising from abortive Topoisomerase 1 (Top1)-DNA intermediates. Here we demonstrate that TDP1 is also required for the repair of SSBs induced by ionizing radiation (IR), though not measurably for IR-induced DNA double-strand breaks (DSBs). In addition, we provide evidence that abortive Top1 cleavage complexes are processed by the proteasome prior to the action of TDP1 in vivo, and we exploit this observation to show that the SSBR defect in SCAN1 following IR reflects, in part at least, the presence of IR-induced protein-DNA cross-links. Finally we show that TDP1 activity at abortive Top1-SSBs is stimulated by XRCC1/Lig3alpha in vitro. These data expand the type of SSBs processed by TDP1 to include those induced by ionizing radiation, and raise the possibility that TDP1 inhibitors may improve radiotherapy.
Collapse
Affiliation(s)
- Sherif F El-Khamisy
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton, UK.
| | | | | |
Collapse
|
328
|
Abstract
Defects in cellular DNA repair processes have been linked to genome instability, heritable cancers, and premature aging syndromes. Yet defects in some repair processes manifest themselves primarily in neuronal tissues. This review focuses on studies defining the molecular defects associated with several human neurological disorders, particularly ataxia with oculomotor apraxia 1 (AOA1) and spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). A picture is emerging to suggest that brain cells, due to their nonproliferative nature, may be particularly prone to the progressive accumulation of unrepaired DNA lesions.
Collapse
Affiliation(s)
- Ulrich Rass
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | | | |
Collapse
|
329
|
He X, van Waardenburg RCAM, Babaoglu K, Price AC, Nitiss KC, Nitiss JL, Bjornsti MA, White SW. Mutation of a Conserved Active Site Residue Converts Tyrosyl-DNA Phosphodiesterase I into a DNA Topoisomerase I-dependent Poison. J Mol Biol 2007; 372:1070-1081. [PMID: 17707402 DOI: 10.1016/j.jmb.2007.07.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/17/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the resolution of 3' and 5' phospho-DNA adducts. A defective mutant, associated with the recessive neurodegenerative disease SCAN1, accumulates Tdp1-DNA complexes in vitro. To assess the conservation of enzyme architecture, a 2.0 A crystal structure of yeast Tdp1 was determined that is very similar to human Tdp1. Poorly conserved regions of primary structure are peripheral to an essentially identical catalytic core. Enzyme mechanism was also conserved, because the yeast SCAN1 mutant (H(432)R) enhanced cell sensitivity to the DNA topoisomerase I (Top1) poison camptothecin. A more severe Top1-dependent lethality of Tdp1H(432)N was drug-independent, coinciding with increased covalent Top1-DNA and Tdp1-DNA complex formation in vivo. However, both H(432) mutants were recessive to wild-type Tdp1. Thus, yeast H(432) acts in the general acid/base catalytic mechanism of Tdp1 to resolve 3' phosphotyrosyl and 3' phosphoamide linkages. However, the distinct pattern of mutant Tdp1 activity evident in yeast cells, suggests a more severe defect in Tdp1H(432)N-catalyzed resolution of 3' phospho-adducts.
Collapse
Affiliation(s)
- Xiaoping He
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Kerim Babaoglu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Allen C Price
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karin C Nitiss
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John L Nitiss
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary-Ann Bjornsti
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
330
|
Antony S, Marchand C, Stephen AG, Thibaut L, Agama KK, Fisher RJ, Pommier Y. Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1. Nucleic Acids Res 2007; 35:4474-84. [PMID: 17576665 PMCID: PMC1935015 DOI: 10.1093/nar/gkm463] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
By enzymatically hydrolyzing the terminal phosphodiester bond at the 3'-ends of DNA breaks, tyrosyl-DNA phosphodiesterase (Tdp1) repairs topoisomerase-DNA covalent complexes and processes the DNA ends for DNA repair. To identify novel Tdp1 inhibitors, we developed a high-throughput assay that uses electrochemiluminescent (ECL) substrates. Subsequent to screening of 1981 compounds from the 'diversity set' of the NCI-Developmental Therapeutics Program, here we report that furamidine inhibits Tdp1 at low micromolar concentrations. Inhibition of Tdp1 by furamidine is effective both with single- and double-stranded substrates but is slightly stronger with the duplex DNA. Surface plasmon resonance studies show that furamidine binds both single- and double-stranded DNA, though more weakly with the single-stranded substrate DNA. Thus, the inhibition of Tdp1 activity could in part be due to the binding of furamidine to DNA. However, the inhibition of Tdp1 by furamidine is independent of the substrate DNA sequence. The kinetics of Tdp1 inhibition by furamidine was influenced by the drug to enzyme ratio and duration of the reaction. Comparison with related dications shows that furamidine inhibits Tdp1 more effectively than berenil, while pentamidine was inactive. Thus, furamidine represents the most potent Tdp1 inhibitor reported to date.
Collapse
Affiliation(s)
- Smitha Antony
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
331
|
Takahashi T, Tada M, Igarashi S, Koyama A, Date H, Yokoseki A, Shiga A, Yoshida Y, Tsuji S, Nishizawa M, Onodera O. Aprataxin, causative gene product for EAOH/AOA1, repairs DNA single-strand breaks with damaged 3'-phosphate and 3'-phosphoglycolate ends. Nucleic Acids Res 2007; 35:3797-809. [PMID: 17519253 PMCID: PMC1920238 DOI: 10.1093/nar/gkm158] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aprataxin is the causative gene product for early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia type 1 (EAOH/AOA1), the clinical symptoms of which are predominantly neurological. Although aprataxin has been suggested to be related to DNA single-strand break repair (SSBR), the physiological function of aprataxin remains to be elucidated. DNA single-strand breaks (SSBs) continually produced by endogenous reactive oxygen species or exogenous genotoxic agents, typically possess damaged 3′-ends including 3′-phosphate, 3′-phosphoglycolate, or 3′-α, β-unsaturated aldehyde ends. These damaged 3′-ends should be restored to 3′-hydroxyl ends for subsequent repair processes. Here we demonstrate by in vitro assay that recombinant human aprataxin specifically removes 3′-phosphoglycolate and 3′-phosphate ends at DNA 3′-ends, but not 3′-α, β-unsaturated aldehyde ends, and can act with DNA polymerase β and DNA ligase III to repair SSBs with these damaged 3′-ends. Furthermore, disease-associated mutant forms of aprataxin lack this removal activity. The findings indicate that aprataxin has an important role in SSBR, that is, it removes blocking molecules from 3′-ends, and that the accumulation of unrepaired SSBs with damaged 3′-ends underlies the pathogenesis of EAOH/AOA1. The findings will provide new insight into the mechanism underlying degeneration and DNA repair in neurons.
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Masayoshi Tada
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Shuichi Igarashi
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Akihide Koyama
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Hidetoshi Date
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Akio Yokoseki
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Atsushi Shiga
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Yutaka Yoshida
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Shoji Tsuji
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
- *To whom correspondence should be addressed. 81 25 227 066581 25 223 6646
| |
Collapse
|
332
|
Szigeti K, Nelis E, Lupski JR. Molecular diagnostics of Charcot-Marie-Tooth disease and related peripheral neuropathies. Neuromolecular Med 2007; 8:243-54. [PMID: 16775379 DOI: 10.1385/nmm:8:1-2:243] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 01/13/2006] [Accepted: 01/13/2006] [Indexed: 12/20/2022]
Abstract
DNA diagnostics plays an important role in the characterization and management of patients manifesting inherited peripheral neuropathies. We describe the clinical integration of molecular diagnostics with medical history, physical examination, and electrophysiological studies. Molecular testing can help establish a secure diagnosis, enable genetic counseling regarding recurrence risk, potentially provide prognostic information, and in the near future may be important for the choice of therapies.
Collapse
Affiliation(s)
- Kinga Szigeti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
333
|
Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 2007; 6:245-57. [PMID: 17303531 DOI: 10.1016/s1474-4422(07)70054-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among the hereditary ataxias, autosomal recessive spinocerebellar ataxias comprise a diverse group of neurodegenerative disorders. Clinical phenotypes vary from predominantly cerebellar syndromes to sensorimotor neuropathy, ophthalmological disturbances, involuntary movements, seizures, cognitive dysfunction, skeletal anomalies, and cutaneous disorders, among others. Molecular pathogenesis also ranges from disorders of mitochondrial or cellular metabolism to impairments of DNA repair or RNA processing functions. Diagnosis can be improved by a systematic approach to the categorisation of these disorders, which is used to direct further, more specific, biochemical and genetic investigations. In this Review, we discuss the clinical characteristics and molecular genetics of the more common autosomal recessive ataxias and provide a framework for assessment and differential diagnosis of patients with these disorders.
Collapse
Affiliation(s)
- Brent L Fogel
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, 90095, USA
| | | |
Collapse
|
334
|
Bowen C, Stuart A, Ju JH, Tuan J, Blonder J, Conrads TP, Veenstra TD, Gelmann EP. NKX3.1 homeodomain protein binds to topoisomerase I and enhances its activity. Cancer Res 2007; 67:455-64. [PMID: 17234752 DOI: 10.1158/0008-5472.can-06-1591] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prostate-specific homeodomain protein NKX3.1 is a tumor suppressor that is commonly down-regulated in human prostate cancer. Using an NKX3.1 affinity column, we isolated topoisomerase I (Topo I) from a PC-3 prostate cancer cell extract. Topo I is a class 1B DNA-resolving enzyme that is ubiquitously expressed in higher organisms and many prokaryotes. NKX3.1 interacts with Topo I to enhance formation of the Topo I-DNA complex and to increase Topo I cleavage of DNA. The two proteins interacted in affinity pull-down experiments in the presence of either DNase or RNase. The NKX3.1 homeodomain was essential, but not sufficient, for the interaction with Topo I. NKX3.1 binding to Topo I occurred independently of the Topo I NH2-terminal domain. The binding of equimolar amounts of Topo I to NKX3.1 caused displacement of NKX3.1 from its cognate DNA recognition sequence. Topo I activity in prostates of Nkx3.1+/- and Nkx3.1-/- mice was reduced compared with wild-type mice, whereas Topo I activity in livers, where no NKX3.1 is expressed, was independent of Nkx3.1 genotype. Endogenous Topo I and NKX3.1 could be coimmunoprecipitated from LNCaP cells, where NKX3.1 and Topo I were found to colocalize in the nucleus and comigrate within the nucleus in response to either gamma-irradiation or mitomycin C exposure, two DNA-damaging agents. This is the first report that a homeodomain protein can modify the activity of Topo I and may have implications for organ-specific DNA replication, transcription, or DNA repair.
Collapse
Affiliation(s)
- Cai Bowen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007-2197, USA
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Bouslam N, Bouhouche A, Benomar A, Hanein S, Klebe S, Azzedine H, Di Giandomenico S, Boland-Augé A, Santorelli FM, Durr A, Brice A, Yahyaoui M, Stevanin G. A novel locus for autosomal recessive spastic ataxia on chromosome 17p. Hum Genet 2007; 121:413-20. [PMID: 17273843 DOI: 10.1007/s00439-007-0328-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Autosomal recessive spastic ataxias are a heterogeneous group of neurodegenerative diseases usually characterized by the early onset of cerebellar and pyramidal signs. With the collaboration of the clinical European and Mediterranean SPATAX network, we identified 15 families with 34 affected members presenting with ataxia and pyramidal signs or spasticity that were not linked to the ARSACS locus on chromosome 13. In an informative consanguineous Moroccan family, we mapped a novel locus, SAX2, to chromosome 17p13. The minimal linked interval lies in a region of 6.1 cM flanked by markers D17S1845/1583 and D17S1854 (Z(max) = 3.21). Three of the remaining 14 families were also possibly linked to SAX2. The overall clinical picture in nine patients was cerebellar ataxia with pyramidal signs and/or spasticity. Onset occurred before the age of 15 years in two families and in adulthood in the other two. Interestingly, in the largest SAX2 family, the presenting clinical sign was dysarthria, which is not common in other forms of inherited ataxias or spastic ataxias, whereas gait difficulties appeared later. Most cases also showed fasciculations suggesting that both lower and upper motor neurons are involved in the disease process. No mutations were found in the coding exons of KIF1C, ARRB2 and ANKFY1, three genes in the candidate region.
Collapse
Affiliation(s)
- Naima Bouslam
- Neurology B and Neurogenetics Unit, Specialities Hospital, Rabat, Morocco
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Abstract
Ataxia oculomotor apraxia-1 is a neurological disorder that arises from mutations in the gene encoding the protein aprataxin. A recent study demonstrates that aprataxin is critical for the processing of obstructive DNA termini, suggesting a broader role for DNA single-strand break repair in neurodegenerative disease.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA.
| | | |
Collapse
|
337
|
Shiomi N, Mori M, Tsuji H, Imai T, Inoue H, Tateishi S, Yamaizumi M, Shiomi T. Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination. Nucleic Acids Res 2006; 35:e9. [PMID: 17158148 PMCID: PMC1802632 DOI: 10.1093/nar/gkl979] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Switching from a replicative to a translesion polymerase is an important step to further continue on replication at the site of DNA lesion. Recently, RAD18 (a ubiquitin ligase) was shown to monoubiquitinate proliferating cell nuclear antigen (PCNA) in cooperation with RAD6 (a ubiquitin-conjugating enzyme) at the replication-stalled sites, causing the polymerase switch. Analyzing RAD18-knockout (RAD18−/−) cells generated from human HCT116 cells, in addition to the polymerase switch, we found a new function of RAD18 for S phase-specific DNA single-strand break repair (SSBR). Unlike the case with polymerase switching, PCNA monoubiquitination was not necessary for the SSBR. When compared with wild-type HCT116 cells, RAD18−/− cells, defective in the repair of X-ray-induced chromosomal aberrations, were significantly hypersensitive to X-ray-irradiation and also to the topoisomerase I inhibitor camptothecin (CPT) capable of inducing single-strand breaks but were not so sensitive to the topoisomerase II inhibitor etoposide capable of inducing double-strand breaks. However, such hypersensitivity to CPT observed with RAD18−/− cells was limited to only the S phase due to the absence of the RAD18 S phase-specific function. Furthermore, the defective SSBR observed in S phase of RAD18−/− cells was also demonstrated by alkaline comet assay.
Collapse
Affiliation(s)
- Naoko Shiomi
- Radgenomics Research Group, Research Center for Charged Particle TherapyChiba 263-8555, Japan
| | - Masahiko Mori
- Radiation Effect Mechanisms Research Group, Research Center for Radiation ProtectionChiba 263-8555, Japan
| | - Hideo Tsuji
- Radiation Effect Mechanisms Research Group, Research Center for Radiation ProtectionChiba 263-8555, Japan
| | - Takashi Imai
- Radgenomics Research Group, Research Center for Charged Particle TherapyChiba 263-8555, Japan
| | - Hirokazu Inoue
- Department of Regulation Biology, Faculty of Science, Saitama UniversitySaitama 338-8570, Japan
| | - Satoshi Tateishi
- Institute of Molecular Embryogenesis and Genetics, Kumamoto UniversityKumamoto 862-0976, Japan
| | - Masaru Yamaizumi
- Institute of Molecular Embryogenesis and Genetics, Kumamoto UniversityKumamoto 862-0976, Japan
| | - Tadahiro Shiomi
- Radgenomics Research Group, Research Center for Charged Particle TherapyChiba 263-8555, Japan
- National Institute of Radiological SciencesChiba 263-8555, Japan
- To whom correspondence should be addressed. Tel: +81 43 206 3136; Fax: +81 43 251 9818;
| |
Collapse
|
338
|
Miao ZH, Agama K, Sordet O, Povirk L, Kohn KW, Pommier Y. Hereditary ataxia SCAN1 cells are defective for the repair of transcription-dependent topoisomerase I cleavage complexes. DNA Repair (Amst) 2006; 5:1489-94. [PMID: 16935573 DOI: 10.1016/j.dnarep.2006.07.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
Hereditary spinocerebellar ataxia with axonal neuropathy (SCAN1) is caused by an inactivating mutation (H493R) in the enzyme tyrosyl-DNA phosphodiesterase (Tdp1), which removes blocked 3'-termini at DNA strand breaks. Using SCAN1 cells treated with the specific topoisomerase I (Top1) inhibitor camptothecin, we find enhanced levels of Top1 cleavage complexes (Top1cc) and defective reversal of Top1cc in SCAN1 Tdp1-deficient cells, indicating a direct involvement of Tdp1 in the repair of Top1cc. Because the defective removal of Top1cc and the hypersensitivity of SCAN1 cells to camptothecin are not affected by aphidicolin, we propose that Tdp1 is involved in the repair of Top1cc associated with transcription damage in SCAN1 cells.
Collapse
Affiliation(s)
- Ze-Hong Miao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
339
|
Liu C, Zhou S, Begum S, Sidransky D, Westra WH, Brock M, Califano JA. Increased expression and activity of repair genes TDP1 and XPF in non-small cell lung cancer. Lung Cancer 2006; 55:303-11. [PMID: 17118488 PMCID: PMC1890013 DOI: 10.1016/j.lungcan.2006.10.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 10/23/2006] [Accepted: 10/24/2006] [Indexed: 11/18/2022]
Abstract
Resistance to camptothecin (CPT), a topoisomerase I (Top1) inhibitor, is frequently encountered in non-small cell lung cancer (NSCLC) and CPT resistance is linked with TDP1, an enzyme capable of cleaving the covalent linkage between stabilized Top1 with DNA. The aim of this study is to evaluate the in vivo expression level of TDP1, as well as parallel repair pathway components XPF and MUS81, in primary NSCLC. We collected 30 un-matched and 4 NSCLC samples matched with normal lung tissue and 8 samples of non-neoplastic lung tissue from patients with and without lung cancer, and determined the protein expression of these three genes using Western blot and TDP1 activity by a specific enzymatic assay. Both TDP1 and XPF were overexpressed in over 50% of NSCLC tissues, with wide ranges of expression levels. MUS81 did not exhibit alteration in expression. Overexpression of TDP1 and XPF is common in NSCLC, and is therefore of interest as a possible contributor to drug resistance in NSCLC.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Otolaryngology- Head and Neck Surgery, Head and Neck Cancer Division, Johns Hopkins Medical Institutions, Baltimore, United States
| | - Shaoyu Zhou
- Department of Otolaryngology- Head and Neck Surgery, Head and Neck Cancer Division, Johns Hopkins Medical Institutions, Baltimore, United States
| | - Shahnaz Begum
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, United States
| | - David Sidransky
- Department of Otolaryngology- Head and Neck Surgery, Head and Neck Cancer Division, Johns Hopkins Medical Institutions, Baltimore, United States
| | - William H. Westra
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, United States
| | - Malcolm Brock
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, United States
| | - Joseph A. Califano
- Department of Otolaryngology- Head and Neck Surgery, Head and Neck Cancer Division, Johns Hopkins Medical Institutions, Baltimore, United States
- *Correspondence author at: Department of Otolaryngology- Head and Neck Surgery, 601 N. Caroline Street, 6 Floor, Baltimore, MD, 21287-0910, United States. Tel.: +1 410 955 6420; fax: + 410 614 1411. Email address: (J. Califano)
| |
Collapse
|
340
|
Palau F, Espinós C. Autosomal recessive cerebellar ataxias. Orphanet J Rare Dis 2006; 1:47. [PMID: 17112370 PMCID: PMC1664553 DOI: 10.1186/1750-1172-1-47] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/17/2006] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia.
Collapse
Affiliation(s)
- Francesc Palau
- Genetics and Molecular Medicine Unit, Instituto de Biomedicina, CSIC, Jaume Roig, 11 46010 Valencia, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Carmen Espinós
- Genetics and Molecular Medicine Unit, Instituto de Biomedicina, CSIC, Jaume Roig, 11 46010 Valencia, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| |
Collapse
|
341
|
Lin RJ, Blumenkranz MS, Binkley J, Wu K, Vollrath D. A novel His158Arg mutation in TIMP3 causes a late-onset form of Sorsby fundus dystrophy. Am J Ophthalmol 2006; 142:839-48. [PMID: 16989765 DOI: 10.1016/j.ajo.2006.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/27/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To describe the phenotype and genotype of a family with suspected Sorsby fundus dystrophy (SFD). DESIGN Case reports and results of deoxyribonucleic acid (DNA) analysis. METHODS Clinical features were determined by complete ophthalmologic examination or by review of medical records. Mutational analysis of the tissue inhibitor of metalloproteinase (TIMP)3 gene was performed by DNA resequencing. Biochemical properties of the mutant TIMP3 protein were studied, and phylogenetic and molecular modeling analyses of TIMP proteins were performed. RESULTS Fundi of four affected family members demonstrated active or regressed bilateral choroidal neovascularization, whereas another affected individual displayed severe diffuse pigmentary degeneration associated with nyctalopia characteristic of SFD. Onset of disease occurred in the fifth to seventh decades of life. A heterozygous His158Arg mutation was found in seven affected family members and was absent from an unaffected member and 98 unrelated controls. Bioinformatic analyses indicate that histidine 158 is an evolutionarily conserved residue in most vertebrate TIMP homologs and predict that substitution by arginine disrupts TIMP3 function. The mutant protein appears to be expressed by fibroblasts from an affected family member. Molecular modeling suggests that TIMP3 residue 158 may be part of a protein-protein interaction interface. CONCLUSION A novel mutation in TIMP3 causes a late-onset form of SFD in this family. His158Arg is the first reported TIMP3 SFD coding sequence mutation that does not create an unpaired cysteine. Further study of this unusual mutation may provide insight into the mechanism of SFD pathogenesis.
Collapse
Affiliation(s)
- Ruth J Lin
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | |
Collapse
|
342
|
Abstract
At least four disorders, ataxia telangiectasia (AT), an ataxia-telangiectasia-like disorder, early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH)/ ataxia with oculomotor apraxia type 1 (AOA1), and ataxia with oculomotor apraxia type 2, are accompanied by ocular motor apraxia (OMA), which is an impairment of saccadic eye movement initiation. The characteristic pathological findings of EAOH/AOA1 and AT are a severe loss of Purkinje cells, severe myelin pallor of the posterior columns, and moderate neuronal loss in the dorsal root ganglia and anterior horn. Purkinje cells stimulate the fastigial nucleus and suppress omnipause neurons to initiate saccadic eye movement. The selective loss of Purkinje cells might cause OMA and disturb the cancellation of the vestibulo-ocular reflex. These disorders have the following common clinical features: ataxia, involuntary movements, and peripheral neuronopathy. In addition, the causative genes for these disorders are associated with the DNA/RNA quality control system. The impairment of DNA/ RNA integrity results in selective neuronal loss in these recessive-inherited ataxias.
Collapse
Affiliation(s)
- Osamu Onodera
- Department of Molecular Neuroscience, Resource Branch for Brain Disease, Brain Research Institute, Niigata University, Japan.
| |
Collapse
|
343
|
el-Khamisy SF, Caldecott KW. DNA single-strand break repair and spinocerebellar ataxia with axonal neuropathy-1. Neuroscience 2006; 145:1260-6. [PMID: 17045754 DOI: 10.1016/j.neuroscience.2006.08.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/01/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
DNA single-strand breaks (SSBs) are the commonest DNA lesions arising spontaneously in cells, and if not repaired may block transcription or may be converted into potentially lethal/clastogenic DNA double-strand breaks (DSBs). Recently, evidence has emerged that defects in the rapid repair of SSBs preferentially impact the nervous system. In particular, spinocerebellar ataxia with axonal neuropathy (SCAN1) is a human disease that is associated with mutation of TDP1 (tyrosyl DNA phosphodiesterase 1) protein and with a defect in repairing certain types of SSBs. Although SCAN1 is a rare neurodegenerative disorder, understanding the molecular basis of this disease will lead to better understanding of neurodegenerative processes. Here we review recent progress in our understanding of TDP1, single-strand break repair (SSBR), and neurodegenerative disease.
Collapse
Affiliation(s)
- S F el-Khamisy
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | | |
Collapse
|
344
|
Abstract
Nuclear DNA topoisomerase I (TOP1) is an essential human enzyme. It is the only known target of the alkaloid camptothecin, from which the potent anticancer agents irinotecan and topotecan are derived. As camptothecins bind at the interface of the TOP1-DNA complex, they represent a paradigm for interfacial inhibitors that reversibly trap macromolecular complexes. Several camptothecin and non-camptothecin derivatives are being developed to further increase anti-tumour activity and reduce side effects. The mechanisms and molecular determinants of tumour response to TOP1 inhibitors are reviewed, and rational combinations of TOP1 inhibitors with other drugs are considered based on current knowledge of repair and checkpoint pathways that are associated with TOP1-mediated DNA damage.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892-4255, USA.
| |
Collapse
|
345
|
Schelhaas HJ, van de Warrenburg BPC, Bos MM, Houtman CJ, Scheffer H, Gabreëls-Festen A, Kremer B, Zwarts MJ. Neurophysiologic studies in early-onset cerebellar ataxia. J Clin Neurophysiol 2006; 23:381-7. [PMID: 16885713 DOI: 10.1097/01.wnp.0000216262.54227.7a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The discovery of the gene for Friedreich's ataxia (FRDA) has not only broadened the FRDA phenotype, but has also identified patients with early-onset cerebellar ataxia who resemble FRDA clinically but who do not carry a mutation in the frataxin gene. In order to identify subgroups that may represent a uniform underlying disorder, we performed neurophysiologic studies, including nerve conduction studies, electromyography, and transcranial magnetic stimulation, in 15 patients with a slowly progressive, unexplained, early-onset cerebellar ataxia (EOCA). In addition, sural nerve biopsy data were available in four patients. The neurophysiologic data identified three distinctive groups of EOCA patients: three patients with normal motor and sensory conduction velocities and borderline sensory amplitudes (group 1); three patients with a mild, predominantly motor, axonal neuropathy (group 2); and nine patients with a highly uniform syndrome characterized by pyramidal features and a severe sensory and motor axonal neuropathy (group 3). We conclude that, on the basis of neurophysiologic studies, distinctive groups of patients with EOCA can be delineated, and that differentiation between patients with EOCA can be useful for differential diagnostic consideration. Whether this splitting also reflects a fundamental phenotypic difference and, therefore, may direct future DNA studies, remains to be established.
Collapse
Affiliation(s)
- H Jurgen Schelhaas
- Department of Neurology, University Medical Center Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
346
|
Affiliation(s)
- Patrick J Morrison
- Department of Medical Genetics, Belfast City Hospital Trust, Belfast BT9 7AB, UK.
| |
Collapse
|
347
|
Raymond AC, Burgin AB. Tyrosyl-DNA phosphodiesterase (Tdp1) (3'-phosphotyrosyl DNA phosphodiesterase). Methods Enzymol 2006; 409:511-24. [PMID: 16793421 DOI: 10.1016/s0076-6879(05)09030-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Tyrosyl-DNA phosphodiesterase (Tdp1) hydrolyzes 3'-phosphotyrosyl bonds in vitro. Because topoisomerase I, a type IB topoisomerase, is the only enzyme known to form 3'-phosphotyrosine bonds in eukaryotic cells, it was proposed that Tdp1 is involved in the repair of dead-end topoisomerase I-DNA covalent complexes that may form in vivo. It has also been proposed that Tdp1 may represent a novel anticancer target since known anticancer agents (e.g., camptothecin) act by stabilizing topoisomerase I-DNA covalent adducts. The importance of Tdp1 in DNA repair is also demonstrated by the observation that a recessive mutation in the human TDP1 gene is responsible for the hereditary disorder Spinocerebellar Ataxia with Axonal Neuropathy (SCAN). Although it has been proposed that Tdp1 may be involved in the repair of multiple DNA lesions, this chapter describes the synthesis and characterization of substrates used to study the role of Tdp1 in repairing topoisomerase I-DNA adducts, and the methods used to study the catalytic mechanism and structure of this novel enzyme.
Collapse
Affiliation(s)
- Amy C Raymond
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | | |
Collapse
|
348
|
Povirk LF. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair (Amst) 2006; 5:1199-212. [PMID: 16822725 DOI: 10.1016/j.dnarep.2006.05.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure of mammalian cells to agents that induce DNA double-strand breaks typically results in both reciprocal and nonreciprocal chromosome translocations. Over the past decade, breakpoint junctions of a significant number of translocations and other genomic rearrangements, both in clinical tumors and in experimental models, have been analyzed at the DNA sequence level. Based on these data, reasonable inferences regarding the biochemical mechanisms involved in translocations can be drawn. In a few cases, breakpoints have been shown to correlate with sites of double-strand cleavage by agents to which the cells or patients have been exposed, including exogenous rare-cutting endonucleases, radiomimetic compounds, and topoisomerase inhibitors. These results confirm that translocations primarily reflect misjoining of the exchanged ends of two or more double-strand breaks. Many junctions show significant loss of DNA sequence at the breakpoints, suggesting exonucleolytic degradation of DNA ends prior to joining. The size and frequency of these deletions varies widely, both between experimental systems, and among individual events in a single system. Homologous recombination between repetitive DNA sequences does not appear to be a major pathway for translocations associated with double-strand breaks. Rather, the general features of the junction sequences, particularly the high frequency small terminal deletions, the apparent splicing of DNA ends at microhomologies, and gap-filling on aligned double-strand break ends, are consistent with the known biochemical properties of the classical nonhomologous end joining pathway involving DNA-dependent protein kinase, XRCC4 and DNA ligase IV. Nevertheless, cells with deficiencies in this pathway still exhibit translocations, with grossly similar junction sequences, suggesting an alternative but less conservative end joining pathway. Although evidence for participation of specific DNA end processing enzymes in formation of translocations is largely circumstantial, likely candidates include DNA polymerases lambda and mu, Artemis nuclease, polynucleotide kinase/phosphatase, tyrosyl-DNA phosphodiesterase, DNase III, Werner syndrome protein, and the Mre11/Rad50/NBS1 complex.
Collapse
Affiliation(s)
- Lawrence F Povirk
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
349
|
Liao Z, Thibaut L, Jobson A, Pommier Y. Inhibition of human tyrosyl-DNA phosphodiesterase by aminoglycoside antibiotics and ribosome inhibitors. Mol Pharmacol 2006; 70:366-72. [PMID: 16618796 DOI: 10.1124/mol.105.021865] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerase I (Top1) is the target of camptothecin, and novel Top1 inhibitors are in development as anticancer agents. Top1 inhibitors damage DNA by trapping covalent complexes between the Top1 catalytic tyrosine and the 3'-end of the broken DNA. Tyrosyl-DNA phosphodiesterase (Tdp1) can repair Top1-DNA covalent complexes by hydrolyzing the tyrosyl-DNA bond. Inhibiting Tdp1 has the potential to enhance the anticancer activity of Top1 inhibitors (http://discover.nci.nih.gov/pommier/pommier.htm) and to act as antiproliferative agents. In the present study, we report that neomycin inhibits Tdp1 more effectively than the related aminoglycosides paromomycin and lividomycin A. Inhibition of Tdp1 by neomycin is observed both with single- and double-stranded substrates but is slightly stronger with duplex DNA, which is different from aclarubicin, which only inhibits Tdp1 with the double-stranded substrate. Inhibition by neomycin can be overcome with excess Tdp1 and is greatest at low pH. To our knowledge, aminoglycoside antibiotics and the ribosome inhibitors thiostrepton, clindamycin-2-phosphate, and puromycin are the first reported pharmacological Tdp1 inhibitors.
Collapse
Affiliation(s)
- Zhiyong Liao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
350
|
El-Khamisy SF, Caldecott KW. TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis 2006; 21:219-24. [PMID: 16775218 DOI: 10.1093/mutage/gel024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DNA single-strand breaks (SSBs) are the commonest DNA lesions that arise spontaneously in living cells. Cells employ efficient processes for the rapid repair of these breaks and defects in these processes appear to preferentially impact on the nervous system, causing human ataxia. Spinocerebellar ataxia with axonal neuropathy (SCAN1) is a human disease that is associated with a defect in repairing certain types of SSBs. Although it is a rare neurodegenerative disease, understanding the molecular basis of SCAN1 will lead to better understanding of the mechanisms that underpin not only neurodegeneration but also cancer.
Collapse
Affiliation(s)
- Sherif F El-Khamisy
- Genome Damage and Stability Centre, University of Sussex Falmer, Brighton BN1 9RQ, UK.
| | | |
Collapse
|