301
|
Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol 2007; 184:53-68. [PMID: 17188755 PMCID: PMC1868538 DOI: 10.1016/j.jneuroim.2006.11.014] [Citation(s) in RCA: 898] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 12/17/2022]
Abstract
Recent works in the area of stroke and brain ischemia has demonstrated the significance of the inflammatory response accompanying necrotic brain injury. Acutely, this response appears to contribute to ischemic pathology, and anti-inflammatory strategies have become popular. This chapter will discuss the current knowledge of the contribution of systemic and local inflammation in experimental stroke. It will review the role of specific cell types including leukocytes, endothelium, glia, microglia, the extracellular matrix and neurons. Intracellular inflammatory signaling pathways such as nuclear factor kappa beta and mitogen-activated protein kinases, and mediators produced by inflammatory cells such as cytokines, chemokines, reactive oxygen species and arachidonic acid metabolites will be reviewed as well as the potential for therapy in stroke and hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Xian Nan Tang
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
| |
Collapse
|
302
|
Abstract
Currently, there are no disease-modifying therapies available for Alzheimer's disease (AD). Acetylcholinesterase inhibitors and memantine are licensed for AD and have moderate symptomatic benefits. Epidemiological studies have suggested that NSAIDs, estrogen, HMG-CoA reductase inhibitors (statins) or tocopherol (vitamin E) can prevent AD. However, prospective, randomised studies have not convincingly been able to demonstrate clinical efficacy. Major progress in molecular medicine suggests further drug targets. The metabolism of the amyloid-precursor protein and the aggregation of its Abeta fragment are the focus of current studies. Abeta peptides are produced by the enzymes beta- and gamma-secretase. Inhibition of gamma-secretase has been shown to reduce Abeta production. However, gamma-secretase activity is also involved in other vital physiological pathways. Involvement of gamma-secretase in cell differentiation may preclude complete blockade of gamma-secretase for prolonged times in vivo. Inhibition of beta-secretase seems to be devoid of serious adverse effects according to studies with knockout animals. However, targeting beta-secretase is hampered by the lack of suitable inhibitors to date. Other approaches focus on enzymes that cut inside the Abeta sequence such as alpha-secretase and neprilysin. Stimulation of the expression or activity of alpha-secretase or neprilysin has been shown to enhance Abeta degradation. Furthermore, inhibitors of Abeta aggregation have been described and clinical trials have been initiated. Peroxisome proliferator activated receptor-gamma agonists and selected NSAIDs may be suitable to modulate both Abeta production and inflammatory activation. On the basis of autopsy reports, active immunisation against Abeta in humans seems to have proven its ability to clear amyloid deposits from the brain. However, a first clinical trial with active vaccination against the full length Abeta peptide has been halted because of adverse effects. Further trials with vaccination or passive transfer of antibodies are planned.
Collapse
Affiliation(s)
- Michael Hüll
- Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
303
|
Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G. Non-steroidal anti-inflammatory drugs in Parkinson's disease. Exp Neurol 2007; 205:295-312. [PMID: 17433296 DOI: 10.1016/j.expneurol.2007.02.008] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/05/2007] [Accepted: 02/13/2007] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is known to be a chronic and progressive neurodegenerative disease caused by a selective degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). A large body of experimental evidence indicates that the factors involved in the pathogenesis of this disease are several, occurring inside and outside the DAergic neuron. Recently, the role of the neuron-glia interaction and the inflammatory process, in particular, has been the object of intense study by the research community. It seems to represent a new therapeutic approach opportunity for this neurological disorder. Indeed, it has been demonstrated that the cyclooxygenase type 2 (COX-2) is up-regulated in SNc DAergic neurons in both PD patients and animal models of PD and, furthermore, non-steroidal anti-inflammatory drugs (NSAIDs) pre-treatment protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6 hydroxydopamine (6-OHDA)-induced nigro-striatal dopamine degeneration. Moreover, recent epidemiological studies have revealed that the risk of developing PD is reduced in humans who make therapeutical use of NSAIDs. Consequently, it is hypothesized that they might delay or prevent the onset of PD. However, whether or not these common drugs may also be of benefit to those individuals who already have Parkinson's disease has not as yet been shown. In this paper, evidence relating to the protective effects of aspirin or other NSAIDs on DAergic neurons in animal models of Parkinson's disease will be discussed. In addition, the pharmacological mechanisms by which these molecules can exert their neuroprotective effects will be reviewed. Finally, epidemiological data exploring the effectiveness of NSAIDs in the prevention of PD and their possible use as adjuvants in the therapy of this neurodegenerative disease will also be examined.
Collapse
Affiliation(s)
- Ennio Esposito
- Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | | | |
Collapse
|
304
|
Kim E, Raval AP, Defazio RA, Perez-Pinzon MA. Ischemic preconditioning via epsilon protein kinase C activation requires cyclooxygenase-2 activation in vitro. Neuroscience 2007; 145:931-41. [PMID: 17307294 PMCID: PMC2153455 DOI: 10.1016/j.neuroscience.2006.12.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 12/21/2006] [Accepted: 12/23/2006] [Indexed: 11/23/2022]
Abstract
The signaling pathway of cyclooxygenase-2 (COX-2) induction following ischemic preconditioning (IPC) in brain remains undefined. To determine role of COX-2 in ischemic preconditioning, we used two in vitro models: mixed cortical neuron/astrocyte cell cultures and organotypic hippocampal slice cultures. We simulated IPC by exposing cell or slice cultures to 1 h or 15 min of oxygen/glucose deprivation (OGD), respectively, 48 h prior to ischemia. To mimic ischemia in vitro, we exposed cell or slice cultures to OGD of 4 h or 40 min, respectively. In cell cultures, these experiments revealed that COX-2 induction peaked at 24 h following IPC in cell culture. Inhibition of COX-2 activation with 50 microM NS-398 (a COX-2 selective inhibitor) abolished IPC-mediated neuroprotection in both in vitro models. Next, we tested whether epsilon protein kinase C (epsilonPKC) and extracellular signal regulated kinase 1/2 (ERK1/2) activation was involved in IPC-mediated neuroprotection and COX-2 expression in cell culture. Cell cultures were treated with an epsilonPKC-specific activating peptide (psiepsilonRACK, 100 nM) for 1 h, and 48 h later were exposed to OGD. epsilonPKC activation increased ERK1/2 phosphorylation and COX-2 induction and conferred neuroprotection similar to IPC. Additionally, inhibition of either epsilonPKC or ERK1/2 activation abolished COX-2 expression and neuroprotection due to ischemic preconditioning. These results demonstrate a crucial role for the epsilonPKC-->ERK1/2-->COX-2 pathway in the induction of neuroprotection via ischemic preconditioning.
Collapse
Affiliation(s)
- E Kim
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
305
|
Ahmad M, Ahmad AS, Zhuang H, Maruyama T, Narumiya S, Doré S. Stimulation of prostaglandin E2-EP3 receptors exacerbates stroke and excitotoxic injury. J Neuroimmunol 2007; 184:172-9. [PMID: 17275922 PMCID: PMC1914218 DOI: 10.1016/j.jneuroim.2006.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/22/2006] [Accepted: 12/15/2006] [Indexed: 11/26/2022]
Abstract
The effect of PGE(2) EP3 receptors on injury size was investigated following cerebral ischemia and induced excitotoxicity in mice. Treatment with the selective EP3 agonist ONO-AE-248 significantly and dose-dependently increased infarct size in the middle cerebral artery occlusion model. In a separate experiment, pretreatment with ONO-AE-248 exacerbated the lesion caused by N-methyl-d-aspartic acid-induced acute excitotoxicity. Conversely, genetic deletion of EP3 provided protection against N-methyl-d-aspartic acid-induced toxicity. The results suggest that PGE(2), by stimulating EP3 receptors, can contribute to the toxicity associated with cyclooxygenase and that antagonizing this receptor could be used therapeutically to protect against stroke- and excitotoxicity-induced brain damage.
Collapse
MESH Headings
- Animals
- Body Temperature/drug effects
- Brain Infarction/etiology
- Brain Infarction/pathology
- Brain Injuries/chemically induced
- Brain Injuries/pathology
- Brain Injuries/physiopathology
- Cerebrovascular Circulation/drug effects
- Dinoprostone/adverse effects
- Dinoprostone/analogs & derivatives
- Dose-Response Relationship, Drug
- Drug Synergism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- N-Methylaspartate
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/deficiency
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP3 Subtype
Collapse
Affiliation(s)
- Muzamil Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Abdullah Shafique Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Hean Zhuang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Takayuki Maruyama
- Discovery Research Institute I, Ono Pharmaceutical Co. Ltd., Mishima-gun, Osaka, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | - Sylvain Doré
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
306
|
Candelario-Jalil E, González-Falcón A, García-Cabrera M, León OS, Fiebich BL. Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 2007; 100:1108-20. [PMID: 17176264 DOI: 10.1111/j.1471-4159.2006.04280.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies suggest that cyclooxygenase (COX)-2 plays a pivotal role in the progression of ischaemic brain damage. In the present study, we investigated the effects of selective inhibition of COX-2 with nimesulide (12 mg/kg) and selective inhibition of COX-1 with valeryl salicylate (VAS, 12-120 mg/kg) on prostaglandin E(2) (PGE(2)) levels, myeloperoxidase (MPO) activity, Evans blue (EB) extravasation and infarct volume in a standardized model of transient focal cerebral ischaemia in the rat. Post-ischaemic treatment with nimesulide markedly reduced the increase in PGE(2) levels in the ischaemic cerebral cortex 24 h after stroke and diminished infarct size by 48% with respect to vehicle-treated animals after 3 days of reperfusion. Furthermore, nimesulide significantly attenuated the blood-brain barrier (BBB) damage and leukocyte infiltration (as measured by EB leakage and MPO activity, respectively) seen at 48 h after the initial ischaemic episode. These studies provide the first experimental evidence that COX-2 inhibition with nimesulide is able to limit BBB disruption and leukocyte infiltration following transient focal cerebral ischaemia. Neuroprotection afforded by nimesulide is observed even when the treatment is delayed until 6 h after the onset of ischaemia, confirming a wide therapeutic window of COX-2 inhibitors in experimental stroke. On the contrary, selective inhibition of COX-1 with VAS had no significant effect on the evaluated parameters. These data suggest that COX-2 activity, but not COX-1 activity, contributes to the progression of focal ischaemic brain injury, and that the beneficial effects observed with non-selective COX inhibitors are probably associated to COX-2 rather than to COX-1 inhibition.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Neurochemistry Research Group, Department of Psychiatry, University of Freiburg Medical School, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
307
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
308
|
Kelsen J, Kjær K, Chen G, Pedersen M, Røhl L, Frøkiær J, Nielsen S, Nyengaard JR, Rønn LCB. Parecoxib is neuroprotective in spontaneously hypertensive rats after transient middle cerebral artery occlusion: a divided treatment response? J Neuroinflammation 2006; 3:31. [PMID: 17150094 PMCID: PMC1764728 DOI: 10.1186/1742-2094-3-31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 12/06/2006] [Indexed: 02/05/2023] Open
Abstract
Background Anti-inflammatory treatment affects ischemic damage and neurogenesis in rodent models of cerebral ischemia. We investigated the potential benefit of COX-2 inhibition with parecoxib in spontaneously hypertensive rats (SHRs) subjected to transient middle cerebral artery occlusion (tMCAo). Methods Sixty-four male SHRs were randomized to 90 min of intraluminal tMCAo or sham surgery. Parecoxib (10 mg/kg) or isotonic saline was administered intraperitoneally (IP) during the procedure, and twice daily thereafter. Nineteen animals were euthanized after 24 hours, and each hemisphere was examined for mRNA expression of pro-inflammatory cytokines and COX enzymes by quantitative RT-PCR. Twenty-three tMCAo animals were studied with diffusion and T2 weighted MRI within the first 24 hours, and ten of the SHRs underwent follow-up MRI six days later. Thirty-three SHRs were given 5-bromo-2'-deoxy-uridine (BrdU) twice daily on Day 4 to 7 after tMCAo. Animals were euthanized on Day 8 and the brains were studied with free-floating immunohistochemistry for activated microglia (ED-1), hippocampal granule cell BrdU incorporation, and neuronal nuclei (NeuN). Infarct volume estimation was done using the 2D nucleator and Cavalieri principle on NeuN-stained coronal brain sections. The total number of BrdU+ cells in the dentate gyrus (DG) of the hippocampus was estimated using the optical fractionator. Results We found a significant reduction in infarct volume in parecoxib treated animals one week after tMCAo (p < 0.03). Cortical ADC values in the parecoxib group were markedly less increased on Day 8 (p < 0.01). Interestingly, the parecoxib treated rats were segregated into two subgroups, suggesting a responder vs. non-responder phenomenon. We found indications of mRNA up-regulation of IL-1β, IL-6, TNF-α and COX-2, whereas COX-1 remained unaffected. Hippocampal granule cell BrdU incorporation was not affected by parecoxib treatment. Presence of ED-1+ activated microglia in the hippocampus was related to an increase in BrdU uptake in the DG. Conclusion IP parecoxib administration during tMCAo was neuroprotective, as evidenced by a large reduction in mean infarct volume and a lower cortical ADC increment. Increased pro-inflammatory cytokine mRNA levels and hippocampal granule cell BrdU incorporation remained unaffected.
Collapse
Affiliation(s)
- Jesper Kelsen
- The Water and Salt Research Centre, University of Aarhus, DK-8000 Aarhus C, Denmark
- Department of Neurosurgery NK, University Hospital of Aarhus, Noerrebrogade 44, DK-8000 Aarhus C, Denmark
- Institute of Clinical Medicine, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Katrine Kjær
- NEUROSEARCH A/S, Pederstrupvej 93, DK-2750 Ballerup, Denmark
| | - Gang Chen
- Institute of Clinical Medicine, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
- MR Research Centre, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Michael Pedersen
- Institute of Clinical Medicine, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
- MR Research Centre, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Lisbeth Røhl
- Department of Radiology, University Hospital of Aarhus, Noerrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Jørgen Frøkiær
- The Water and Salt Research Centre, University of Aarhus, DK-8000 Aarhus C, Denmark
- Institute of Clinical Medicine, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Søren Nielsen
- The Water and Salt Research Centre, University of Aarhus, DK-8000 Aarhus C, Denmark
- Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Jens R Nyengaard
- Institute of Clinical Medicine, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
- Stereology and EM Research Laboratory and MIND Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
309
|
Culmsee C, Krieglstein J. Emerging pharmacotherapeutic strategies for the treatment of ischemic stroke. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddstr.2006.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
310
|
Hewett SJ, Bell SC, Hewett JA. Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 2006; 112:335-57. [PMID: 16750270 DOI: 10.1016/j.pharmthera.2005.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase (COX) enzymes, or prostaglandin-endoperoxide synthases (PTGS), are heme-containing bis-oxygenases that catalyze the first committed reaction in metabolism of arachidonic acid (AA) to the potent lipid mediators, prostanoids and thromboxanes. Two isozymes of COX enzymes (COX-1 and COX-2) have been identified to date. This review will focus specifically on the neurobiological and neuropathological consequences of AA metabolism via the COX-2 pathway and discuss the potential therapeutic benefit of COX-2 inhibition in the setting of neurological disease. However, given the controversy surrounding the use of COX-2 selective inhibitors with respect to cardiovascular health, it will be important to move beyond COX to identify which down-stream effectors are responsible for the deleterious and/or potentially protective effects of COX-2 activation in the setting of neurological disease. Important advances toward this goal are highlighted herein. Identification of unique effectors in AA metabolism could direct the development of new therapeutics holding significant promise for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Neuroscience MC3401, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
311
|
Abstract
Lipids are essential components of plasma- and organelle-membranes, not only providing a frame for embedded proteins (e.g., receptors and ion channels) but also functioning as reservoirs for lipid mediators. Increasing evidence indicates that bioactive lipids such as eicosanoids, endocannabinoids, and lysophospholipids serve as intercellular and intracellular signaling molecules participating in physiological and pathological functions in the brain. The discovery of some of these lipid receptors and novel lipid signaling mediators has sparked an intense interest in lipidomic neurobiology research. Classic prostaglandins (PGD(2), PGE(2), PGF(2alpha), PGI(2), and TXA(2)), catalyzed by cyclooxygenases (COX), are synthesized from arachidonic acid (AA). Experimental studies demonstrate that prostaglandin E(2) (PGE(2)), mainly derived from the COX-2 reaction, is an important mediator, acting as a retrograde messenger via a presynaptic PGE(2) subtype 2 receptor (EP(2)) in modulation of synaptic events. Novel prostaglandins (prostaglandin glycerol esters and prostaglandin ethanolamides) are COX-2 oxidative metabolites of endogenous cannabinoids (2-arachidonyl glycerol and arachidonyl ethanolamide). Recent evidence suggests that these new types of prostaglandins are likely novel signaling mediators involved in synaptic transmission and plasticity. This means that COX- 2 plays a central role in metabolisms of AA and endocannabinoids (eCBs) and productions of AA- and eCB- derived prostaglandins. Thus, in the present review article, the authors will mainly discuss COX-2 regulation of prostaglandin signaling in modulation of hippocampal synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Nan Sang
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
312
|
Abstract
The fact that traumatic brain injury is the leading cause of death and disability in the most active population (< 45 years of age) of industrialised countries underscores the need for intensified efforts to define and implement effective neuroprotective strategies. However, despite progressively growing knowledge on the mechanisms involved in the pathobiology of traumatic brain injury and promising preclinical findings, most of the neuroprotection trials have failed to deliver the expected level of beneficial effects. Some of the possible reasons underlying the lack of success of these clinical trials are addressed in this review, which describes some of the most promising and/or controversial ongoing clinical trials from their pathophysiological basis. In addition, new neurobiological findings and their consequence for novel neuroprotective approaches are discussed.
Collapse
Affiliation(s)
- Ibolja Cernak
- Johns Hopkins University Applied Physics Laboratory, Biomedicine Business Area, 11100 Johns Hopkins Road, Laurel, MD 20723-6099, USA.
| |
Collapse
|
313
|
Hewett SJ, Silakova JM, Hewett JA. Oral treatment with rofecoxib reduces hippocampal excitotoxic neurodegeneration. J Pharmacol Exp Ther 2006; 319:1219-24. [PMID: 16963621 DOI: 10.1124/jpet.106.109876] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine whether the selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib [4-[4-(methylsulfonyl)phenyl]-3-phenyl-2(5H)-furanone] could effectively prevent hippocampal neuronal injury in an animal model of excitotoxic neurodegeneration. COX-2 protein levels increased between 3 and 6 h, peaked at 12 h, and declined to near baseline levels 24 h after injection of N-methyl-d-aspartate (NMDA; 18 nmol) into the CA1 region of the left hippocampus. Mice that were fed ad libitum a control rodent diet for 4 days before and 3 days after injection of NMDA demonstrated marked neuronal loss in the primary cell layers of the ipsilateral CA1, CA3, and dentate gyrus (50, 30, and 20% cell loss, respectively). This injury was potently and dose-dependently reduced by feeding animals a diet standardized to deliver 15 or 30 mg/kg rofecoxib per day. Neurodegeneration in the CA1 region was reduced by 30.1 +/- 5.6 and 51.5 +/- 9.0%, respectively; in the CA3 by 64.6 +/- 12.4 and 69.0 +/- 14.1%, respectively; and in the dentate gyrus by 47.8 +/- 15.2 and 58.0 +/- 18.2%, respectively. Moreover, rofecoxib chow slightly but significantly reduced injury-induced brain edema. These findings demonstrate that rofecoxib can ameliorate excitotoxic neuronal injury in vivo and, as such, may be a particularly promising pharmaceutical for the treatment of neurological diseases associated with overactivation of NMDA receptors.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Neuroscience, Program in Cellular and Molecular Pharmacology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| | | | | |
Collapse
|
314
|
Arnaud L, Robakis NK, Figueiredo-Pereira ME. It may take inflammation, phosphorylation and ubiquitination to 'tangle' in Alzheimer's disease. NEURODEGENER DIS 2006; 3:313-9. [PMID: 16954650 DOI: 10.1159/000095638] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 05/16/2006] [Indexed: 01/08/2023] Open
Abstract
Neurofibrillary tangles (NFT) are one of the pathologic hallmarks of Alzheimer's disease (AD). Their major component is tau, a protein that becomes hyperphosphorylated and accumulates into insoluble paired helical filaments. During the course of the disease such filaments aggregate into bulky NFT that get ubiquitinated. What triggers their formation is not known, but neuroinflammation could play a role. Neuroinflammation is an active process detectable in the earliest stages of AD. The neuronal toxicity associated with inflammation makes it a potential risk factor in the pathogenesis of chronic neurodegenerative diseases, such as AD. Determining the sequence of events that lead to this devastating disease has become one of the most important goals for AD prevention and treatment. In this review we focus on three topics relevant to AD pathology and to NFT formation: (1) what triggers CNS inflammation resulting in glia activation and neuronal toxicity; (2) how products of inflammation might change the substrate specificity of kinases/phosphatases leading to tau phosphorylation at pathological sites; (3) the relationship between the ubiquitin/proteasome pathway and tau ubiquitination and accumulation in NFT. The overall aim of this review is to provide a challenging and sometimes provocative survey of important contributions supporting the view that CNS inflammation might be a critical contributor to AD pathology. Neuronal cell death resulting from neuroinflammatory processes may have devastating effects as, in the vast majority of cases, neurons lost to disease cannot be replaced. In order to design therapies that will prevent endangered neurons from dying, it is critical that we learn more about the effects of neuroinflammation and its products.
Collapse
Affiliation(s)
- Lisette Arnaud
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10021, USA
| | | | | |
Collapse
|
315
|
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. ACTA ACUST UNITED AC 2006; 52:201-43. [PMID: 16647138 DOI: 10.1016/j.brainresrev.2006.02.002] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
Three enzyme systems, cyclooxygenases that generate prostaglandins, lipoxygenases that form hydroxy derivatives and leukotrienes, and epoxygenases that give rise to epoxyeicosatrienoic products, metabolize arachidonic acid after its release from neural membrane phospholipids by the action of phospholipase A(2). Lysophospholipids, the other products of phospholipase A(2) reactions, are either reacylated or metabolized to platelet-activating factor. Under normal conditions, these metabolites play important roles in synaptic function, cerebral blood flow regulation, apoptosis, angiogenesis, and gene expression. Increased activities of cyclooxygenases, lipoxygenases, and epoxygenases under pathological situations such as ischemia, epilepsy, Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease produce neuroinflammation involving vasodilation and vasoconstriction, platelet aggregation, leukocyte chemotaxis and release of cytokines, and oxidative stress. These are closely associated with the neural cell injury which occurs in these neurological conditions. The metabolic products of docosahexaenoic acid, through these enzymes, generate a new class of lipid mediators, namely docosatrienes and resolvins. These metabolites antagonize the effect of metabolites derived from arachidonic acid. Recent studies provide insight into how these arachidonic acid metabolites interact with each other and other bioactive mediators such as platelet-activating factor, endocannabinoids, and docosatrienes under normal and pathological conditions. Here, we review present knowledge of the functions of cyclooxygenases, lipoxygenases, and epoxygenases in brain and their association with neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
316
|
Doré S. GPCR antagonists as an alternative to COX-2 inhibitors: a case for the PGE2 EP1 receptor. Trends Pharmacol Sci 2006; 27:458-60. [PMID: 16870271 DOI: 10.1016/j.tips.2006.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recent article supports the concept that prostaglandin (PG)E(2) EP(1)-receptor antagonists reduce stroke severity and cell damage; could these agents become a substitute for cyclooxygenase (COX)-2 inhibitors? The total activity of COXs--rate-limiting enzymes of PGE(2) synthesis--increases following acute neurological insult. Drugs that offer the beneficial anti-inflammatory and neuroprotective effects of PGs but that limit the negative effects of COX-2 inhibition could provide the next generation of treatment for acute neuronal damage.
Collapse
Affiliation(s)
- Sylvain Doré
- Departments of Anesthesiology and Critical Care Medicine, and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
317
|
Barton S. Making steps in stroke therapy. Nat Rev Neurosci 2006. [DOI: 10.1038/nrn1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
318
|
Barton S. Making steps in stroke therapy. Nat Rev Drug Discov 2006. [DOI: 10.1038/nrd2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|