301
|
Davis LC, Morgan AJ, Chen JL, Snead CM, Bloor-Young D, Shenderov E, Stanton-Humphreys MN, Conway SJ, Churchill GC, Parrington J, Cerundolo V, Galione A. NAADP activates two-pore channels on T cell cytolytic granules to stimulate exocytosis and killing. Curr Biol 2012. [PMID: 23177477 PMCID: PMC3525857 DOI: 10.1016/j.cub.2012.10.035] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A cytotoxic T lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. Although inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum activates the store-operated Ca2+-influx pathway that is necessary for exocytosis, it is not a sufficient stimulus [1–4]. Here we identify the Ca2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and its recently identified molecular target, two-pore channels (TPCs) [5–7], as being important for T cell receptor signaling in CTLs. We demonstrate that cytolytic granules are not only reservoirs of cytolytic proteins but are also the acidic Ca2+ stores mobilized by NAADP via TPC channels on the granules themselves, so that TPCs migrate to the immunological synapse upon CTL activation. Moreover, NAADP activates TPCs to drive exocytosis in a way that is not mimicked by global Ca2+ signals induced by IP3 or ionomycin, suggesting that critical, local Ca2+ nanodomains around TPCs stimulate granule exocytosis. Hence, by virtue of the NAADP/TPC pathway, cytolytic granules generate Ca2+ signals that lead to their own exocytosis and to cell killing. This study highlights a selective role for NAADP in stimulating exocytosis crucial for immune cell function and may impact on stimulus-secretion coupling in wider cellular contexts.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
López-Sanjurjo CI, Tovey SC, Prole DL, Taylor CW. Lysosomes shape Ins(1,4,5)P3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. J Cell Sci 2012; 126:289-300. [PMID: 23097044 DOI: 10.1242/jcs.116103] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Most intracellular Ca(2+) signals result from opening of Ca(2+) channels in the plasma membrane or endoplasmic reticulum (ER), and they are reversed by active transport across these membranes or by shuttling Ca(2+) into mitochondria. Ca(2+) channels in lysosomes contribute to endo-lysosomal trafficking and Ca(2+) signalling, but the role of lysosomal Ca(2+) uptake in Ca(2+) signalling is unexplored. Inhibition of lysosomal Ca(2+) uptake by dissipating the H(+) gradient (using bafilomycin A1), perforating lysosomal membranes (using glycyl-L-phenylalanine 2-naphthylamide) or lysosome fusion (using vacuolin) increased the Ca(2+) signals evoked by receptors that stimulate inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] formation. Bafilomycin A1 amplified the Ca(2+) signals evoked by photolysis of caged Ins(1,4,5)P(3) or by inhibition of ER Ca(2+) pumps, and it slowed recovery from them. Ca(2+) signals evoked by store-operated Ca(2+) entry were unaffected by bafilomycin A1. Video-imaging with total internal reflection fluorescence microscopy revealed that lysosomes were motile and remained intimately associated with the ER. Close association of lysosomes with the ER allows them selectively to accumulate Ca(2+) released by Ins(1,4,5)P(3) receptors.
Collapse
|
303
|
Morgan AJ, Parrington J, Galione A. The luminal Ca(2+) chelator, TPEN, inhibits NAADP-induced Ca(2+) release. Cell Calcium 2012; 52:481-7. [PMID: 23099186 PMCID: PMC3526783 DOI: 10.1016/j.ceca.2012.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/06/2012] [Accepted: 09/19/2012] [Indexed: 10/31/2022]
Abstract
The regulation of Ca(2+) release by luminal Ca(2+) has been well studied for the ryanodine and IP(3) receptors but has been less clear for the NAADP-regulated channel. In view of conflicting reports, we have re-examined the issue by manipulating luminal Ca(2+) with the membrane-permeant, low affinity Ca(2+) buffer, TPEN, and monitoring NAADP-induced Ca(2+) release in sea urchin egg homogenate. NAADP-induced Ca(2+) release was almost entirely blocked by TPEN (IC(50) 17-25μM) which suppressed the maximal extent of Ca(2+) release without altering NAADP sensitivity. In contrast, Ca(2+) release via IP(3) receptors was 3- to 30-fold less sensitive to TPEN whereas that evoked by ionomycin was essentially unaffected. The effect of TPEN on NAADP-induced Ca(2+) release was not due to an increase in the luminal pH or chelation of trace metals since it could not be mimicked by NH(4)Cl or phenanthroline. The fact that TPEN had no effect upon ionophore-induced Ca(2+) release also argued against a substantial reduction in the driving force for Ca(2+) efflux. We propose that, in the sea urchin egg, luminal Ca(2+) is important for gating native NAADP-regulated two-pore channels.
Collapse
|
304
|
Abstract
Luminal acidification is of pivotal importance for the physiology of the secretory and endocytic pathways and its diverse trafficking events. Acidification by the proton-pumping V-ATPase requires charge compensation by counterion currents that are commonly attributed to chloride. The molecular identification of intracellular chloride transporters and the improvement of methodologies for measuring intraorganellar pH and chloride have facilitated the investigation of the physiology of vesicular chloride transport. New data question the requirement of chloride for pH regulation of various organelles and furthermore ascribe functions to chloride that are beyond merely electrically shunting the proton pump. This review surveys the currently established and proposed intracellular chloride transporters and gives an overview of membrane-trafficking steps that are affected by the perturbation of chloride transport. Finally, potential mechanisms of membrane-trafficking modulation by chloride are discussed and put into the context of organellar ion homeostasis in general.
Collapse
Affiliation(s)
- Tobias Stauber
- Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany.
| | | |
Collapse
|
305
|
Funk KE, Kuret J. Lysosomal fusion dysfunction as a unifying hypothesis for Alzheimer's disease pathology. Int J Alzheimers Dis 2012; 2012:752894. [PMID: 22970406 PMCID: PMC3437286 DOI: 10.1155/2012/752894] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease is characterized pathologically by extracellular senile plaques, intracellular neurofibrillary tangles, and granulovacuolar degeneration. It has been debated whether these hallmark lesions are markers or mediators of disease progression, and numerous paradigms have been proposed to explain the appearance of each lesion individually. However, the unfaltering predictability of these lesions suggests a single pathological nidus central to disease onset and progression. One of the earliest pathologies observed in Alzheimer's disease is endocytic dysfunction. Here we review the recent literature of endocytic dysfunction with particular focus on disrupted lysosomal fusion and propose it as a unifying hypothesis for the three most-studied lesions of Alzheimer's disease.
Collapse
Affiliation(s)
- Kristen E. Funk
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jeff Kuret
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
306
|
Lee HC. Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem 2012; 287:31633-40. [PMID: 22822066 DOI: 10.1074/jbc.r112.349464] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate were discovered >2 decades ago. That they are second messengers for mobilizing Ca(2+) stores has since been firmly established. Separate stores and distinct Ca(2+) channels are targeted, with cyclic ADP-ribose acting on the ryanodine receptors in the endoplasmic reticulum, whereas nicotinic acid adenine dinucleotide phosphate mobilizes the endolysosomes via the two-pore channels. Despite the structural and functional differences, both messengers are synthesized by a ubiquitous enzyme, CD38, whose crystal structure and catalytic mechanism have now been well elucidated. How this novel signaling enzyme is regulated remains largely unknown and is the focus of this minireview.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
307
|
Abstract
A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca2+ signals being set either too high or too low. Such subtle dysregulation of Ca2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease.
Collapse
|
308
|
Larisch N, Schulze C, Galione A, Dietrich P. An N-Terminal Dileucine Motif Directs Two-Pore Channels to the Tonoplast of Plant Cells. Traffic 2012; 13:1012-22. [DOI: 10.1111/j.1600-0854.2012.01366.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Nina Larisch
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| | - Christina Schulze
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| | - Antony Galione
- Department of Pharmacology; Oxford University; Oxford; OX1 3QT; UK
| | - Petra Dietrich
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| |
Collapse
|
309
|
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-releasing second messenger that might regulate different ion channels, including the ryanodine receptor, two-pore channels, and TRP-ML1 (transient receptor potential channel, subtype mucolipin 1), a Ca(2+) channel localized to lysosomes. New evidence suggests that a 22- and 23-kilodalton pair of proteins could be the receptor for NAADP. Labeling of NAADP binding proteins was independent of overexpression or knockout of two-pore channels, indicating that two-pore channels, although regulated by NAADP, are not the NAADP receptors. I propose that NAADP binding proteins could bind to different ion channels and thus may explain how NAADP regulates diverse ion channels.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Signal Transduction, Centre of Experimental Medicine, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
310
|
Wilhelm F, Hirrlinger J. Multifunctional roles of NAD⁺ and NADH in astrocytes. Neurochem Res 2012; 37:2317-25. [PMID: 22476700 DOI: 10.1007/s11064-012-0760-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/27/2022]
Abstract
The control and maintenance of the intracellular redox state is an essential task for cells and organisms. NAD(+) and NADH constitute a redox pair crucially involved in cellular metabolism as a cofactor for many dehydrogenases. In addition, NAD(+) is used as a substrate independent of its redox-carrier function by enzymes like poly(ADP)ribose polymerases, sirtuins and glycohydrolases like CD38. The activity of these enzymes affects the intracellular pool of NAD(+) and depends in turn on the availability of NAD(+). In addition, both NAD(+) and NADH as well as the NAD(+)/NADH redox ratio can modulate gene expression and Ca(2+) signals. Therefore, the NAD(+)/NADH redox state constitutes an important metabolic node involved in the control of many cellular events ranging from the regulation of metabolic fluxes to cell fate decisions and the control of cell death. This review summarizes the different functions of NAD(+) and NADH with a focus on astrocytes, a pivotal glial cell type contributing to brain metabolism and signaling.
Collapse
Affiliation(s)
- Franziska Wilhelm
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Liebigstrasse 27, 04103 Leipzig, Germany
| | | |
Collapse
|
311
|
Dyve Lingelem AB, Bergan J, Sandvig K. Inhibitors of intravesicular acidification protect against Shiga toxin in a pH-independent manner. Traffic 2011; 13:443-54. [PMID: 22132807 DOI: 10.1111/j.1600-0854.2011.01319.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 01/01/2023]
Abstract
Shiga toxin inhibits protein synthesis after being transported from the cell surface to endosomes and retrogradely through the Golgi apparatus to the endoplasmic reticulum (ER) and into the cytosol. In this study, we have abolished proton gradients across internal membranes in different ways and investigated the effect on the various transport steps of Shiga toxin. Although inhibitors of the proton pump such as bafilomycin A1 and concanamycin A as well as some ionophores and chloroquine all protect against Shiga toxin, they mediate protection by inhibiting different transport steps. For instance, chloroquine protects the cells, although the toxin is transported to the ER. Importantly, our data indicate that proton pump activity is required for efficient endosome-to-Golgi transport of Shiga toxin, although acidification as such does not seem to be required.
Collapse
Affiliation(s)
- Anne Berit Dyve Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | | | | |
Collapse
|