301
|
Lalioui L, Pellegrini E, Dramsi S, Baptista M, Bourgeois N, Doucet-Populaire F, Rusniok C, Zouine M, Glaser P, Kunst F, Poyart C, Trieu-Cuot P. The SrtA Sortase of Streptococcus agalactiae is required for cell wall anchoring of proteins containing the LPXTG motif, for adhesion to epithelial cells, and for colonization of the mouse intestine. Infect Immun 2005; 73:3342-50. [PMID: 15908360 PMCID: PMC1111822 DOI: 10.1128/iai.73.6.3342-3350.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) is the leading cause of neonatal pneumonia, sepsis, and meningitis. An in silico genome analysis indicated that GBS strain NEM316 encodes 35 proteins containing an LPXTG motif which are thought to be covalently linked to the peptidoglycan by an enzyme called sortase. The role of these cell wall-anchored proteins in GBS pathogenesis was evaluated on a global level by inactivating the srtA gene. This gene encodes the major sortase SrtA that anchors most of the LPXTG-containing proteins. We chose the C5a peptidase (ScpB) and Alp2, an abundant immunogenic protein, as prototypical LPXTG-containing proteins. As expected, the SrtA knockout mutant was unable to anchor the C5a peptidase (ScpB) and Alp2 to the cell wall. Complementation with plasmid-borne srtA inserted into the chromosome restored the correct surface localization of both ScpB and Alp2. Interestingly, the SrtA mutant was impaired for binding to the major extracellular matrix components fibronectin and fibrinogen and displayed a significant reduction in adherence to human (A549, HeLa, and Caco-2) and murine (L2) epithelial cells compared to the parental wild-type strain. Surprisingly, the inactivation of srtA had no effect on the virulence of the type III strain of GBS in a neonatal rat model (measured by the 50% lethal dose and lung colonization) but strongly impaired the capacity of the strain to colonize the intestines of gnotobiotic mice in a competition assay. These results demonstrate that LPXTG-containing proteins are involved in cell adhesion and GBS persistence in vivo.
Collapse
Affiliation(s)
- Lila Lalioui
- Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Kaito C, Kurokawa K, Matsumoto Y, Terao Y, Kawabata S, Hamada S, Sekimizu K. Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Mol Microbiol 2005; 56:934-44. [PMID: 15853881 DOI: 10.1111/j.1365-2958.2005.04596.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silkworms are killed by injection of pathogenic bacteria, such as Staphylococcus aureus and Streptococcus pyogenes, into the haemolymph. Gene disruption mutants of S. aureus whose open reading frames were previously uncharacterized and that are conserved among bacteria were examined for their virulence in silkworms. Of these 100 genes, three genes named cvfA, cvfB, and cvfC were required for full virulence of S. aureus in silkworms. Haemolysin production was decreased in these mutants. The cvfA and cvfC mutants also had attenuated virulence in mice. S. pyogenes cvfA-disrupted mutants produced less exotoxin and had attenuated virulence in both silkworms and mice. These results indicate that the silkworm-infection model is useful for identifying bacterial virulence genes.
Collapse
Affiliation(s)
- Chikara Kaito
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
303
|
García-Lara J, Needham AJ, Foster SJ. Invertebrates as animal models forStaphylococcus aureuspathogenesis: a window into hostâpathogen interaction. ACTA ACUST UNITED AC 2005; 43:311-23. [PMID: 15708304 DOI: 10.1016/j.femsim.2004.11.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 11/17/2004] [Indexed: 01/23/2023]
Abstract
Recently, the use of invertebrate models of infection has given exciting insights into host-pathogen interaction for a number of bacteria. In particular, this has revealed important factors of the host response with remarkable parallels in higher organisms. Here, we review the advances attained in the elucidation of virulence determinants of a major human pathogen, Staphylococcus aureus, in relation to the invertebrate models thus far applied, the silkworm (Bombyx mori), the fruit fly (Drosophila melanogaster) and the roundworm (Caenorhabditis elegans). Also, the major pathways of host defence are covered in light of the response to S. aureus and the similarities and divergences in innate immunity of vertebrates and invertebrates. Consequently, we comparatively consider pathogen recognition receptors, signal transduction pathways (including Toll, Imd and others), and the humoral and cellular antimicrobial effectors. The technically convenient and ethically acceptable invertebrates appear as a valuable first tool to discriminate molecules participating from both sides of the host-S. aureus interaction as well as a high throughput method for antimicrobial screening.
Collapse
Affiliation(s)
- Jorge García-Lara
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
304
|
Supuran CT, Scozzafava A, Mastrolorenzo A. Bacterial proteases: current therapeutic use and future prospects for the development of new antibiotics. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.2.221] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
305
|
Marraffini LA, Schneewind O. Anchor structure of staphylococcal surface proteins. V. Anchor structure of the sortase B substrate IsdC. J Biol Chem 2005; 280:16263-71. [PMID: 15718231 DOI: 10.1074/jbc.m500071200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus sortase A cleaves surface protein precursors bearing C-terminal LPXTG motif sorting signals between the threonine and glycine residues. Using lipid II precursor as cosubstrate, sortase A catalyzes the amide linkage between the carboxyl group of threonine and the amino group of pentaglycine cross-bridges, thereby tethering C-terminal ends of surface proteins to the bacterial cell wall envelope. Staphylococcal sortase B also anchors its only known substrate, the IsdC precursor with a C-terminal NPQTN motif sorting signal, to the cell wall envelope. Herein, we determined the cell wall anchor structure of IsdC. The sorting signal of IsdC is cleaved between threonine and asparagine of the NPQTN motif, and the carboxyl group of threonine is amide-linked to the amino group of pentaglycine crossbridges. In contrast to sortase A substrates, the anchor structure of IsdC displays shorter glycan strands and significantly less cell wall cross-linking. A model is proposed whereby sortases A and B recognize unique features of sorting signals and peptidoglycan substrates to deposit proteins with distinct topologies in the cell wall envelope.
Collapse
Affiliation(s)
- Luciano A Marraffini
- Departments of Microbiology and Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
306
|
Zhang R, Wu R, Joachimiak G, Mazmanian SK, Missiakas DM, Gornicki P, Schneewind O, Joachimiak A. Structures of sortase B from Staphylococcus aureus and Bacillus anthracis reveal catalytic amino acid triad in the active site. Structure 2005; 12:1147-56. [PMID: 15242591 PMCID: PMC2792001 DOI: 10.1016/j.str.2004.06.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 04/26/2004] [Accepted: 04/28/2004] [Indexed: 01/29/2023]
Abstract
Surface proteins attached by sortases to the cell wall envelope of bacterial pathogens play important roles during infection. Sorting and attachment of these proteins is directed by C-terminal signals. Sortase B of S. aureus recognizes a motif NPQTN, cleaves the polypeptide after the Thr residue, and attaches the protein to pentaglycine cross-bridges. Sortase B of B. anthracis is thought to recognize the NPKTG motif, and attaches surface proteins to m-diaminopimelic acid cross-bridges. We have determined crystal structure of sortase B from B. anthracis and S. aureus at 1.6 and 2.0 A resolutions, respectively. These structures show a beta-barrel fold with alpha-helical elements on its outside, a structure thus far exclusive to the sortase family. A putative active site located on the edge of the beta-barrel is comprised of a Cys-His-Asp catalytic triad and presumably faces the bacterial cell surface. A putative binding site for the sorting signal is located nearby.
Collapse
Affiliation(s)
- Rongguang Zhang
- Structural Biology Center and Midwest Center for Structural Genomics, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, Illinois 60439
| | - Ruiying Wu
- Structural Biology Center and Midwest Center for Structural Genomics, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, Illinois 60439
| | - Grazyna Joachimiak
- Structural Biology Center and Midwest Center for Structural Genomics, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, Illinois 60439
| | - Sarkis K. Mazmanian
- Committee on Microbiology, University of Chicago, 920 East 58 Street, Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58 Street, Chicago, Illinois 60637
| | - Dominique M. Missiakas
- Committee on Microbiology, University of Chicago, 920 East 58 Street, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58 Street, Chicago, Illinois 60637
| | - Piotr Gornicki
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58 Street, Chicago, Illinois 60637
| | - Olaf Schneewind
- Committee on Microbiology, University of Chicago, 920 East 58 Street, Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58 Street, Chicago, Illinois 60637
| | - Andrzej Joachimiak
- Structural Biology Center and Midwest Center for Structural Genomics, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, Illinois 60439
- Corresponence:
| |
Collapse
|
307
|
Dramsi S, Trieu-Cuot P, Bierne H. Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res Microbiol 2005; 156:289-97. [PMID: 15808931 DOI: 10.1016/j.resmic.2004.10.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 10/08/2004] [Indexed: 11/21/2022]
Abstract
Bacterial surface proteins constitute a diverse group of molecules with important functions, such as adherence, invasion, signaling and interaction with the host immune system or the environment. In Gram-positive bacteria, many surface proteins are anchored to the cell wall envelope by an enzyme named sortase, which recognizes a conserved carboxylic sorting motif. The sequence of the prototype staphylococcal SrtA has been widely used to identify homologs in bacterial genomes, revealing a profusion of sortases in almost all Gram-positive bacteria, often with more than one sortase-like protein per genome [M.J. Pallen, A.C. Lam, M. Antonio, K. Dunbar, Trends Microbiol. 9 (2001) 97-102]. In light of increasing reports on the identification and/or characterization of paralogous sortase genes, a classification of sortases now appears necessary. This report provides an analysis of sixty-one sortases from complete Gram-positive genomes, and suggests the existence of four structural groups of sortases. We propose the classification of sortases into 4 classes designated A, B, C and D. This classification should help to discriminate between sortases in the future.
Collapse
Affiliation(s)
- Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram-positif, URA CNRS 2172, 25, rue du Dr. Roux, 75724 Paris, France.
| | | | | |
Collapse
|
308
|
Burts ML, Williams WA, DeBord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 2005; 102:1169-74. [PMID: 15657139 PMCID: PMC545836 DOI: 10.1073/pnas.0405620102] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium tuberculosis secretes ESAT-6, a virulence factor that triggers cell-mediated immune responses and IFN-gamma production during tuberculosis. ESAT-6 is transported across the bacterial envelope by a specialized secretion system with a FSD (FtsK-SpoIIIE domain) membrane protein. Although the presence of ESAT-6-like genes has been identified in the genomes of other microbes, the possibility that they may encode general virulence functions has hitherto not been addressed. Herein we show that the human pathogen Staphylococcus aureus secretes EsxA and EsxB, ESAT-6-like proteins, across the bacterial envelope. Staphylococcal esxA and esxB are clustered with six other genes and some of these are required for synthesis or secretion of EsxA and EsxB. Mutants that failed to secrete EsxA and EsxB displayed defects in the pathogenesis of S. aureus murine abscesses, suggesting that this specialized secretion system may be a general strategy of human bacterial pathogenesis.
Collapse
Affiliation(s)
- Monica L Burts
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
309
|
Murai C, Inoue M, Sasa R, Igarashi T. Streptococcus mutans sortase catalyzes cell wall anchoring of WapA and FruA. PEDIATRIC DENTAL JOURNAL 2005. [DOI: 10.1016/s0917-2394(05)70041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
310
|
Alekshun MN, Levy SB. Targeting virulence to prevent infection: to kill or not to kill? ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ddstr.2004.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
311
|
Ton-That H, Marraffini LA, Schneewind O. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol Microbiol 2004; 53:251-61. [PMID: 15225319 DOI: 10.1111/j.1365-2958.2004.04117.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Corynebacterium diphtheriae SpaA pili are composed of three pilin subunits, SpaA, SpaB and SpaC. SpaA, the major pilin protein, is distributed uniformly along the pilus shaft, whereas SpaB is observed at regular intervals, and SpaC seems to be positioned at the pilus tip. Pilus assembly in C. diphtheriae requires the pilin motif and the C-terminal sorting signal of SpaA, and is proposed to occur by a mechanism of ordered cross-linking, whereby pilin-specific sortase enzymes cleave precursor proteins at sorting signals and involve the side-chain amino groups of pilin motif sequences to generate covalent linkages between pilin subunits. We show here that two elements of SpaA pilin precursor, the pilin motif and the sorting signal, are together sufficient to promote the polymerization of an otherwise secreted protein by a process requiring the function of the sortase A gene (srtA). Five other sortase genes are dispensable for SpaA pilus assembly. Further, the incorporation of SpaB into SpaA pili requires a glutamic acid residue within the E box motif of SpaA, a feature that is found to be conserved in other Gram-positive pathogens that encode sortase and pilin subunit genes with sorting signals and pilin motifs. When the main fimbrial subunit of Actinomyces naeslundii type I fimbriae, FimA, is expressed in corynebacteria, C. diphtheriae strain NCTC13129 polymerized FimA to form short fibres. Although C. diphtheriae does not depend on other actinomycetal genes for FimA polymerization, this process involves the pilin motif and the sorting signal of FimA as well as corynebacterial sortase D (SrtD). Thus, pilus assembly in Gram-positive bacteria seems to occur by a universal mechanism of ordered cross-linking of precursor proteins, the multiple conserved features of which are recognized by designated sortase enzymes.
Collapse
Affiliation(s)
- Hung Ton-That
- Committee on Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
312
|
Ton-That H, Marraffini LA, Schneewind O. Protein sorting to the cell wall envelope of Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:269-78. [PMID: 15546671 DOI: 10.1016/j.bbamcr.2004.04.014] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 04/28/2004] [Accepted: 04/28/2004] [Indexed: 02/06/2023]
Abstract
The covalent anchoring of surface proteins to the cell wall envelope of Gram-positive bacteria occurs by a universal mechanism requiring sortases, extracellular transpeptidases that are positioned in the plasma membrane. Surface protein precursors are first initiated into the secretory pathway of Gram-positive bacteria via N-terminal signal peptides. C-terminal sorting signals of surface proteins, bearing an LPXTG motif or other recognition sequences, provide for sortase-mediated cleavage and acyl enzyme formation, a thioester linkage between the active site cysteine residue of sortase and the C-terminal carboxyl group of cleaved surface proteins. During cell wall anchoring, sortase acyl enzymes are resolved by the nucleophilic attack of peptidoglycan substrates, resulting in amide bond formation between the C-terminal end of surface proteins and peptidoglycan cross-bridges within the bacterial cell wall envelope. The genomes of Gram-positive bacteria encode multiple sortase genes. Recent evidence suggests that sortase enzymes catalyze protein anchoring reactions of multiple different substrate classes with different sorting signal motif sequences, protein linkage to unique cell wall anchor structures as well as protein polymerization leading to the formation of pili on the surface of Gram-positive bacteria.
Collapse
Affiliation(s)
- Hung Ton-That
- Committee on Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
313
|
Barnett TC, Patel AR, Scott JR. A novel sortase, SrtC2, from Streptococcus pyogenes anchors a surface protein containing a QVPTGV motif to the cell wall. J Bacteriol 2004; 186:5865-75. [PMID: 15317792 PMCID: PMC516832 DOI: 10.1128/jb.186.17.5865-5875.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The important human pathogen Streptococcus pyogenes (group A streptococcus GAS), requires several surface proteins to interact with its human host. Many of these are covalently linked by a sortase enzyme to the cell wall via a C-terminal LPXTG motif. This motif is followed by a hydrophobic region and charged C terminus, which are thought to retard the protein in the cell membrane to facilitate recognition by the membrane-localized sortase. Previously, we identified two sortase enzymes in GAS. SrtA is found in all GAS strains and anchors most proteins containing LPXTG, while SrtB is present only in some strains and anchors a subset of LPXTG-containing proteins. We now report the presence of a third sortase in most strains of GAS, SrtC. We show that SrtC mediates attachment of a protein with a QVPTGV motif preceding a hydrophobic region and charged tail. We also demonstrate that the QVPTGV sequence is a substrate for anchoring of this protein by SrtC. Furthermore, replacing this motif with LPSTGE, found in the SrtA-anchored M protein of GAS, leads to SrtA-dependent secretion of the protein but does not lead to its anchoring by SrtA. We conclude that srtC encodes a novel sortase that anchors a protein containing a QVPTGV motif to the surface of GAS.
Collapse
Affiliation(s)
- Timothy C Barnett
- Department of Microbiology and Immunology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
314
|
Kruger RG, Dostal P, McCafferty DG. Development of a high-performance liquid chromatography assay and revision of kinetic parameters for the Staphylococcus aureus sortase transpeptidase SrtA. Anal Biochem 2004; 326:42-8. [PMID: 14769334 DOI: 10.1016/j.ab.2003.10.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Indexed: 10/26/2022]
Abstract
The SrtA isoform of the Staphylococcus aureus sortase transpeptidase is responsible for the covalent attachment of virulence- and colonization-associated proteins to the bacterial peptidoglycan. Sortase utilizes two substrates, undecaprenol-pyrophosphoryl-MurNAc(GlcNAc)-Ala-d-isoGlu-Lys(-Gly5)-d-Ala-d-Ala (branched Lipid II) and secreted proteins containing a highly conserved LPXTG sequence near their C termini. SrtA simultaneously cleaves the Thr-Gly bond of the LPXTG-containing protein and forms a new amide bond with the nucleophilic amino group of the Gly5 portion of branched Lipid II, anchoring the protein to this key intermediate that is subsequently polymerized into peptidoglycan. Here we show that reported fluorescence quenching activity assays for SrtA are subject to marked fluorescence inner filter effect quenching, resulting in prematurely hyperbolic velocity versus substrate profiles and underestimates of the true kinetic parameters kcat and Km. We therefore devised a discontinuous high-performance liquid chromatography (HPLC)-based assay to monitor the SrtA reaction employing the same substrates used in the fluorescence quenching assay: Gly5 and Abz-LPETG-Dap(Dnp)-NH2. Fluorescence or UV detection using these substrates facilitates separate analysis of both the acylation and the transpeptidation steps of the reaction. Because HPLC was performed using fast-flow analytical columns (<8min/run), high-throughput applications of this assay for analysis of SrtA substrate specificity, kinetic mechanism, and inhibition are now feasible. Kinetic analysis using the HPLC assay revealed that the kinetic parameters for SrtA with Abz-LPETG-Dap(Dnp)-NH2 are 5.5mM for Km and 0.27s-1 for kcat. The Km for Gly5 was determined to be 140microM. These values represent a 300-fold increase in Km for the LPXTG substrate and a 12,000-fold increase in kcat over literature-reported values, suggesting that SrtA is more a robust enzyme than previous analyses indicated.
Collapse
Affiliation(s)
- Ryan G Kruger
- Johnson Research Foundation and the Department of Biochemistry and Biophysics, The University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | | | | |
Collapse
|
315
|
Zong Y, Mazmanian SK, Schneewind O, Narayana SVL. The structure of sortase B, a cysteine transpeptidase that tethers surface protein to the Staphylococcus aureus cell wall. Structure 2004; 12:105-12. [PMID: 14725770 DOI: 10.1016/j.str.2003.11.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Many surface proteins of Gram-positive bacteria, which play important roles during the pathogenesis of human infections, are anchored to the cell wall envelope by a mechanism requiring sortases. Sortase B, a cysteine transpeptidase from Staphylococcus aureus, cleaves the C-terminal sorting signal of IsdC at the NPQTN motif and tethers the polypeptide to the pentaglycine cell wall cross-bridge. During catalysis, the active site cysteine of sortase and the cleaved substrate form an acyl intermediate, which is then resolved by the amino group of pentaglycine cross-bridges. We report here the crystal structures of SrtBDeltaN30 in complex with two active site inhibitors, MTSET and E64, and with the cell wall substrate analog tripleglycine. These structures reveal, for the first time, the active site disposition and the unique Cys-Arg catalytic machinery of the cysteine transpeptidase, and they also provide useful information for the future design of anti-infective agents against sortases.
Collapse
Affiliation(s)
- Yinong Zong
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
316
|
Dessen A. A new catalytic dyad regulates anchoring of molecules to the Gram-positive cell wall by sortases. Structure 2004; 12:6-7. [PMID: 14725759 DOI: 10.1016/j.str.2003.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
317
|
Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 2004; 101:12312-7. [PMID: 15304642 PMCID: PMC514475 DOI: 10.1073/pnas.0404728101] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus aureus is the leading cause of wound and hospital-acquired infections worldwide. The emergence of S. aureus strains with resistance to multiple antibiotics requires the identification of bacterial virulence genes and the development of novel therapeutic strategies. Herein, bursa aurealis, a mariner-based transposon, was used for random mutagenesis and for the isolation of 10,325 S. aureus variants with defined insertion sites. By screening for loss-of-function mutants in a Caenorhabditis elegans killing assay, 71 S. aureus virulence genes were identified. Some of these genes are also required for S. aureus abscess formation in a murine infection model.
Collapse
Affiliation(s)
- Taeok Bae
- Committee on Microbiology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
318
|
Marraffini LA, Ton-That H, Zong Y, Narayana SVL, Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. A conserved arginine residue is required for efficient catalysis of sortase A. J Biol Chem 2004; 279:37763-70. [PMID: 15247224 DOI: 10.1074/jbc.m405282200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Surface proteins of Staphylococcus aureus are anchored to the cell wall envelope by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Sortase A cleaves surface proteins between the threonine (T) and the glycine (G) residues of the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine at the C-terminal end of polypeptides and the amino group of pentaglycine cross-bridges of cell wall peptidoglycan. Previous work showed that Cys(184) and His(120) of sortase A are absolutely essential for catalysis; however an active site thiolateimidazolium ion pair may not be formed. The three-dimensional crystal structure of sortase A revealed that Arg(197) is located in close proximity to both the active site Cys(184) and the scissile peptide bond between threonine and glycine. We show here that substitution of Arg(197) with alanine, lysine, or histidine severely reduced sortase A function both in vivo and in vitro, whereas Asn(98), which had earlier been implicated in hydrogen bonding to His(120), was found to be dispensable for catalysis. As the structural proximity of Arg(197) and Cys(184) is conserved in sortase enzymes and as ionization of the Cys(184) sulfhydryl group seems required for sortase activity, we propose that Arg(197) may function as a base, facilitating thiolate formation during sortase-mediated cleavage and transpeptidation reactions.
Collapse
|
319
|
Liew CK, Smith BT, Pilpa R, Suree N, Ilangovan U, Connolly KM, Jung ME, Clubb RT. Localization and mutagenesis of the sorting signal binding site on sortase A fromStaphylococcus aureus. FEBS Lett 2004; 571:221-6. [PMID: 15280046 DOI: 10.1016/j.febslet.2004.06.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 06/21/2004] [Accepted: 06/29/2004] [Indexed: 02/05/2023]
Abstract
Surface proteins in Gram-positive bacteria are anchored to the cell wall by the action of sortase enzymes. The Staphylococcus aureus sortase A (SrtA) protein anchors proteins by recognizing a cell wall sorting signal containing the amino acid sequence LPXTG. To understand how SrtA binds this sequence, we carried out NMR studies of new peptidyl-cyanoalkene and peptidyl-sulfhydryl inhibitors that contain the sorting signal sequence LPAT. These studies combined with amino acid mutagenesis identified a catalytically important and conserved binding surface formed by residues A118, T180, and I182. Compatible with its recently proposed role as a general base, R197 is also shown to be required for catalysis.
Collapse
Affiliation(s)
- Chu Kong Liew
- Department of Chemistry and Biochemistry, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1570, USA
| | | | | | | | | | | | | | | |
Collapse
|
320
|
Lee SF, McGavin MKH. Identification of a point mutation resulting in loss of cell wall anchoring activity of SrtA of Streptococcus mutans NG5. Infect Immun 2004; 72:4314-7. [PMID: 15213182 PMCID: PMC427452 DOI: 10.1128/iai.72.7.4314-4317.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 03/09/2004] [Accepted: 04/01/2004] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans NG5 failed to anchor antigen P1 to the cell surface, and such a failure could be attributed to a defective SrtA, which was made defective by a point mutation within the srtA gene. Without a functional SrtA, S. mutans NG5 was not able to perform a number of cell surface-related activities, including saliva-mediated adherence and aggregation.
Collapse
Affiliation(s)
- Song F Lee
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.
| | | |
Collapse
|
321
|
Kruger RG, Barkallah S, Frankel BA, McCafferty DG. Inhibition of the Staphylococcus aureus sortase transpeptidase SrtA by phosphinic peptidomimetics. Bioorg Med Chem 2004; 12:3723-9. [PMID: 15186858 DOI: 10.1016/j.bmc.2004.03.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 03/30/2004] [Accepted: 03/30/2004] [Indexed: 01/31/2023]
Abstract
During pathogenesis, Gram-positive bacteria utilize surface protein virulence factors such as the MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) to aid the initiation and propagation of infection through adherence to host endothelial tissue and immune system evasion. These virulence-associated proteins generally contain a C-terminal LPXTG motif that becomes covalently anchored to the peptidoglycan biosynthesis intermediate lipid II. In Staphylococcus aureus, deletion of the sortase isoform SrtA results in marked reduction in virulence and infection potential, making it an important antivirulence target. Here we describe the chemical synthesis and kinetic characterization of a nonhydrolyzable phosphinic peptidomimetic inhibitor of SrtA derived from the LPXTG substrate sequence.
Collapse
Affiliation(s)
- Ryan G Kruger
- Department of Biochemistry and Biophysics and the Johnson Research Foundation, The University of Pennsylvania School of Medicine, 905A Stellar-Chance Building, 422 Curie Blvd., Philadelphia, PA 19104-6059, USA
| | | | | | | |
Collapse
|
322
|
Frankel BA, Bentley M, Kruger RG, McCafferty DG. Vinyl sulfones: inhibitors of SrtA, a transpeptidase required for cell wall protein anchoring and virulence in Staphylococcus aureus. J Am Chem Soc 2004; 126:3404-5. [PMID: 15025450 DOI: 10.1021/ja0390294] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several small molecule vinyl sulfones were found to exhibit irreversible time-dependent inhibition of the Staphylococcus aureus sortase SrtA in vitro. A representative of these compounds was shown to impair the ability of S. aureus bacteria to bind fibronectin-coated surfaces through in vivo inhibition of SrtA-mediated linkage of fibronectin to the cell surface. These data highlight the potential use of small molecule vinyl sulfones as chemotherapeutics to prevent adhesion to and colonization of host tissues during S. aureus infection.
Collapse
Affiliation(s)
- Brenda A Frankel
- Johnson Research Foundation and the Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | | | | | | |
Collapse
|
323
|
Abstract
Our previous studies on Streptococcus mutans have demonstrated that surface proteins containing a C-terminal sorting signal, such as surface protein antigen (PAc), glucan-binding protein C (GbpC) and dextranase (Dex), are anchored to the cell wall by a sortase (SrtA). In this study we found that, unlike other strains of S. mutans, strain Ingbritt did not exhibit cell wall-anchoring of PAc, GbpC and Dex. It is speculated that the SrtA of strain Ingbritt did not function in the cell wall-anchoring process of these surface proteins. Sequence analysis revealed a deletion of an 11-bp nucleotide sequence in the srtA gene of strain Ingbritt, resulting in the generation of a new termination codon, resulting in production of an incomplete SrtA enzyme protein. As a result, strain Ingbritt showed a localization change of PAc, GbpC and Dex in the cell, implying that strain Ingbritt loses the biological functions mediated by the cell surface-associated proteins of S. mutans. These results suggest that strain Ingbritt could be less cariogenic than other strains of S. mutans.
Collapse
Affiliation(s)
- T Igarashi
- Department of Oral Microbiology, Showa University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
324
|
Comfort D, Clubb RT. A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infect Immun 2004; 72:2710-22. [PMID: 15102780 PMCID: PMC387863 DOI: 10.1128/iai.72.5.2710-2722.2004] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Surface proteins in gram-positive bacteria are frequently required for virulence, and many are attached to the cell wall by sortase enzymes. Bacteria frequently encode more than one sortase enzyme and an even larger number of potential sortase substrates that possess an LPXTG-type cell wall sorting signal. In order to elucidate the sorting pathways present in gram-positive bacteria, we performed a comparative analysis of 72 sequenced microbial genomes. We show that sortase enzymes can be partitioned into five distinct subfamilies based upon their primary sequences and that most of their substrates can be predicted by making a few conservative assumptions. Most bacteria encode sortases from two or more subfamilies, which are predicted to function nonredundantly in sorting proteins to the cell surface. Only approximately 20% of sortase-related proteins are most closely related to the well-characterized Staphylococcus aureus SrtA protein, but nonetheless, these proteins are responsible for anchoring the majority of surface proteins in gram-positive bacteria. In contrast, most sortase-like proteins are predicted to play a more specialized role, with each anchoring far fewer proteins that contain unusual sequence motifs. The functional sortase-substrate linkage predictions are available online (http://www.doe-mbi.ucla.edu/Services/Sortase/) in a searchable database.
Collapse
Affiliation(s)
- David Comfort
- Department of Chemistry and Biochemistry, Molecular Biology Institute, and the UCLA-DOE Center for Genomics and Proteomics, University of California, Los Angeles, California 90095-1570, USA
| | | |
Collapse
|
325
|
Abstract
Surface proteins of Gram-positive pathogens play various key roles in pathogenicity. Therefore, these proteins are of great interest in terms of understanding the infection process and have potential as targets for therapy. A major mechanism for the surface display of proteins by Gram-positive bacteria is sortase-mediated covalent attachment to the cell wall. The importance of sortase enzymes in the virulence of several pathogens is now becoming apparent, as are some of the more detailed workings of the enzyme and anchoring pathway. These recent advances are discussed.
Collapse
Affiliation(s)
- Gavin K Paterson
- Division of Infection and Immunity, The Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, UK G12 8QQ
| | | |
Collapse
|
326
|
Cazzola M, Page CP, Matera MG. Alternative and/or integrative therapies for pneumonia under development. Curr Opin Pulm Med 2004; 10:204-10. [PMID: 15071372 DOI: 10.1097/00063198-200405000-00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Increasing antimicrobial resistance among common respiratory bacteria has created challenges in selecting appropriate therapy for pneumonia. Fortunately, the analysis of genome sequences has allowed us to find novel, nontraditional targets that are involved in disease pathogenesis or in adaptation and growth in infection sites. The advantage of the nonclassical targets is that targeting these sites could ablate infection without inducing resistance. Interfering with bacterial adhesion, inhibiting, neutralizing and clearing endotoxin, and administering cytokines as immunoadjuvants are the most promising alternative or integrative treatments for pneumonia that are under development. RECENT FINDINGS Interference with bacterial adhesion is possible using inhibitors of sortase or inactivators of the srtA gene against gram-positive bacteria, inhibitors of the periplasmic chaperone or those of usher function against gram-negative bacteria, novel polysaccharides that are present on echinoderm surfaces, antiadhesin vaccines, or the passive administration of antiadhesin antibodies. Inhibition, neutralization, and clearance of endotoxin possibly interferes in the lipid A biosynthetic pathway or using lipid A analogues with reduced or lack of ability to activate the major endotoxin receptors or proteins such as recombinant Limulus antilipopolysaccharide factor, bactericidal/permeability increasing protein, or lipopolysaccharide binding protein. Tumor necrosis factor 70-80, an adenoviral vector that encodes murine tumor necrosis factor alpha, and recombinant interferon gamma seem to be the most promising cytokines for use as immunoadjuvants for the treatment of pneumonia. SUMMARY Ideally, potential treatment of life-threatening bacterial pneumonia will combine immunoadjuvant and conventional antibiotic therapy. Compounds capable of stimulating early host defense and microbial clearance, but not the later phases of inflammatory tissue injury associated with sepsis, may be advantageous.
Collapse
Affiliation(s)
- Mario Cazzola
- A. Cardarelli Hospital, Department of Respiratory Medicine, Unit of Pneumology and Allergology, Naples, Italy.
| | | | | |
Collapse
|
327
|
Affiliation(s)
- Hung Ton-That
- Committee on Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
328
|
Oh KB, Kim SH, Lee J, Cho WJ, Lee T, Kim S. Discovery of Diarylacrylonitriles as a Novel Series of Small Molecule Sortase A Inhibitors. J Med Chem 2004; 47:2418-21. [PMID: 15115384 DOI: 10.1021/jm0498708] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
On the basis of a hit from random screening, a novel class of small-molecule sortase A inhibitors was generated. The primary structure-activity relationship and the minimal structural requirements for potency were established through structural modifications and molecular modeling studies.
Collapse
Affiliation(s)
- Ki-Bong Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 28 Yungun, Jongro, Seoul 110-460, Korea
| | | | | | | | | | | |
Collapse
|
329
|
Zong Y, Bice TW, Ton-That H, Schneewind O, Narayana SVL. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. J Biol Chem 2004; 279:31383-9. [PMID: 15117963 DOI: 10.1074/jbc.m401374200] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cell wall envelope of staphylococci and other Gram-positive pathogens is coated with surface proteins that interact with human host tissues. Surface proteins of Staphylococcus aureus are covalently linked to the cell wall envelope by a mechanism requiring C-terminal sorting signals with an LPXTG motif. Sortase (SrtA) cleaves surface proteins between the threonine (T) and the glycine (G) of the LPXTG motif and catalyzes the formation of an amide bond between threonine at the C-terminal end of polypeptides and cell wall cross-bridges. The active site architecture and catalytic mechanism of sortase A has hitherto not been revealed. Here we present the crystal structures of native SrtA, of an active site mutant of SrtA, and of the mutant SrtA complexed with its substrate LPETG peptide and describe the substrate binding pocket of the enzyme. Highly conserved proline (P) and threonine (T) residues of the LPXTG motif are held in position by hydrophobic contacts, whereas the glutamic acid residue (E) at the X position points out into the solvent. The scissile T-G peptide bond is positioned between the active site Cys(184) and Arg(197) residues and at a greater distance from the imidazolium side chain of His(120). All three residues, His(120), Cys(184), and Arg(197), are conserved in sortase enzymes from Gram-positive bacteria. Comparison of the active sites of S. aureus sortase A and sortase B provides insight into substrate specificity and suggests a universal sortase-catalyzed mechanism of bacterial surface protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Yinong Zong
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
330
|
Igarashi T, Asaga E, Goto N. Roles of Streptococcus mutans dextranase anchored to the cell wall by sortase. ACTA ACUST UNITED AC 2004; 19:102-5. [PMID: 14871349 DOI: 10.1046/j.0902-0055.2003.00123.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to clarify the role that sortase (SrtA) plays in anchoring dextranase (Dex) to the cell wall of Streptococcus mutans, both Dex- and SrtA- mutants were constructed by insertional inactivation of the respective genes. Western blot analysis with a Dex antiserum showed that in the srtA mutant the Dex was not bound to the cell wall but was secreted into the culture supernatant. In contrast, in the wild type, Dex remained cell-wall-associated. Biological properties of the srtA mutant were examined in dextran fermentation, colony morphology and adherence to a smooth surface. The srtA mutant, as well as the wild type, retained the ability to ferment dextran. However, the colony morphology of the srtA mutant on Todd Hewitt agar containing sucrose was much larger than that of the wild type and showed a ring-like structure. In addition, the srtA mutant was more adhesive to a smooth surface than the wild type when sucrose was present. However, the adhesion of the srtA mutant remarkably decreased by addition of exogenous dextranase. These studies suggest that the SrtA mediates Dex-anchoring to the cell wall in S. mutans, and cell wall-anchored Dex plays a role in controlling both the adhesive properties of extracellular glucan and the ability to utilize extracellular glucan as a nutrient source. In contrast, extracellular Dex is only responsible for degrading extracellular glucan as a nutrient source.
Collapse
Affiliation(s)
- T Igarashi
- Department of Oral Microbiology, Showa University School of Dentistry, Tokyo, Japan.
| | | | | |
Collapse
|
331
|
Bierne H, Garandeau C, Pucciarelli MG, Sabet C, Newton S, Garcia-del Portillo F, Cossart P, Charbit A. Sortase B, a new class of sortase in Listeria monocytogenes. J Bacteriol 2004; 186:1972-82. [PMID: 15028680 PMCID: PMC374393 DOI: 10.1128/jb.186.7.1972-1982.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 12/02/2003] [Indexed: 01/30/2023] Open
Abstract
Sortases are transamidases that covalently link proteins to the peptidoglycan of gram-positive bacteria. The genome of the pathogenic bacterium Listeria monocytogenes encodes two sortases genes, srtA and srtB. The srtA gene product anchors internalin and some other LPXTG-containing proteins to the listerial surface. Here, we focus on the role of the second sortase, SrtB. Whereas SrtA acts on most of the proteins in the peptidoglycan fraction, SrtB appears to target minor amounts of surface polypeptides. We identified one of the SrtB-anchored proteins as the virulence factor SvpA, a surface-exposed protein which does not contain the LPXTG motif. Therefore, as in Staphylococcus aureus, the listerial SrtB represents a second class of sortase in L. monocytogenes, involved in the attachment of a subset of proteins to the cell wall, most likely by recognizing an NXZTN sorting motif. The DeltasrtB mutant strain does not have defects in bacterial entry, growth, or motility in tissue-cultured cells and does not show attenuated virulence in mice. SrtB-mediated anchoring could therefore be required to anchor surface proteins involved in the adaptation of this microorganism to different environmental conditions.
Collapse
Affiliation(s)
- Hélène Bierne
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
332
|
Igarashi T, Asaga E, Sato Y, Goto N. Inactivation of srtA gene of Streptococcus mutans inhibits dextran-dependent aggregation by glucan-binding protein C. ACTA ACUST UNITED AC 2004; 19:57-60. [PMID: 14678475 DOI: 10.1046/j.0902-0055.2003.00104.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A sortase-deficient mutant of Streptococcus mutans was prepared by insertional inactivation of a sortase gene (srtA). The srtA mutant was defective in cell wall-anchoring of two surface proteins 200 and 75 kDa in size. A previous study has shown that the 200 kDa protein is a surface protein antigen PAc and that the sortase catalyzes cell wall-anchoring of PAc in S. mutans. In this study another surface protein 75 kDa in size was examined by immunologic and physiologic methods. Western blot analysis with a specific antiserum showed that the 75 kDa protein was a surface protein, glucan-binding protein C. The protein was overexpressed under a stress condition including a sublethal concentration of tetracycline. The srtA mutant cells also lost the ability of dextran-dependent aggregation. These results suggest that the S. mutans sortase mediates cell wall-anchoring of the glucan-binding protein C and dextran-dependent aggregation of this organism.
Collapse
Affiliation(s)
- T Igarashi
- Department of Oral Microbiology, Showa University School of Dentistry, Tokyo, Japan.
| | | | | | | |
Collapse
|
333
|
Connolly KM, Smith BT, Pilpa R, Ilangovan U, Jung ME, Clubb RT. Sortase from Staphylococcus aureus does not contain a thiolate-imidazolium ion pair in its active site. J Biol Chem 2003; 278:34061-5. [PMID: 12824164 DOI: 10.1074/jbc.m305245200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many surface proteins are anchored to the cell wall by the action of sortase enzymes, a recently discovered family of cysteine transpeptidases. As the surface proteins of human pathogens are frequently required for virulence, the sortase-mediated anchoring reaction represents a potential target for new anti-infective agents. It has been suggested that the sortase from Staphylococcus aureus (SrtA), may use a similar catalytic strategy as the papain cysteine proteases, holding its Cys184 side chain in an active configuration through a thiolate-imidazolium ion interaction with residue His120. To investigate the mechanism of transpeptidation, we have synthesized a peptidyl-vinyl sulfone substrate mimic that irreversibly inhibits SrtA. Through the study of the pH dependence of SrtA inhibition and NMR, we have estimated the pKas of the active site thiol (Cys184) and imidazole (His120) to be approximately 9.4 and 7.0, respectively. These measurements are inconsistent with the existence of a thiolate-imidazolium ion pair and suggest a general base catalysis mechanism during transpeptidation.
Collapse
Affiliation(s)
- Kevin M Connolly
- Department of Chemistry and Biochemistry, Molecular Biology Institute and UCLA-Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095-1570, USA
| | | | | | | | | | | |
Collapse
|
334
|
Igarashi T, Asaga E, Goto N. The sortase of Streptococcus mutans mediates cell wall anchoring of a surface protein antigen. ORAL MICROBIOLOGY AND IMMUNOLOGY 2003; 18:266-9. [PMID: 12823805 DOI: 10.1034/j.1399-302x.2003.00076.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sortase has been shown to be a protease that catalyzes the cell wall anchoring of surface proteins containing an LPXTG motif in gram-positive bacteria. In this study, we determined the complete nucleotide sequence of the sortase gene (srtA) of Streptococcus mutans and found a surface protein that was linked to the cell wall by the sortase. The results show that srtA gene of S. mutans consisted of 741 bp and encoded for a sortase protein of 246 amino acids with a molecular weight of 27 489. The deduced amino acid sequence of the S. mutans sortase was highly homologous (65-58%) to those of other Streptococcal species. In a S. mutans mutant lacking sortase, two surface proteins of 200 and 75 kDa were released to the culture supernatant. Western blot analysis with specific antiserum showed that the 200 kDa protein was a surface protein antigen designated PAc. These results suggest that the sortase catalyzes anchoring of the antigen PAc to the cell wall.
Collapse
Affiliation(s)
- T Igarashi
- Department of Oral Microbiology, Showa University School of Dentistry, Tokyo, Japan.
| | | | | |
Collapse
|
335
|
Jonsson IM, Mazmanian SK, Schneewind O, Bremell T, Tarkowski A. The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes Infect 2003; 5:775-80. [PMID: 12850203 DOI: 10.1016/s1286-4579(03)00143-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gram-positive pathogenic bacteria display proteins on their surface that play important roles during infection. In Staphylococcus aureus, these surface proteins are anchored to the cell wall by two sortase enzymes, SrtA and SrtB, that recognize specific surface protein sorting signals. The role of sortase enzymes in bacterial virulence was examined using a murine septic arthritis model. Intravenous inoculation with any of the Delta(srtA), Delta(srtB) or Delta(srtAB) mutants resulted in significantly increased survival and significantly lower weight loss compared with the parental strain. Mice inoculated with the Delta(srtA) mutant did not express severe arthritis, while arthritis in mice inoculated with the Delta(srtB) mutant was not different from that seen in mice that were infected with the wild-type parent strain. Furthermore, persistence of staphylococci in kidneys and joints following intravenous inoculation of mice was more pronounced for wild-type and Delta(srtB) mutant strains than for Delta(srtA) or Delta(srtAB) variants. Together these results indicate that sortase B (srtB) plays a contributing role during the pathogenesis of staphylococcal infections, whereas sortase A (srtA) is an essential virulence factor for the establishment of septic arthritis.
Collapse
Affiliation(s)
- Ing-Marie Jonsson
- Department of Rheumatology and Inflammation Research, University of Göteborg, Guldhedsgatan 10, 413 46 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
336
|
Bae T, Schneewind O. The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. J Bacteriol 2003; 185:2910-9. [PMID: 12700270 PMCID: PMC154403 DOI: 10.1128/jb.185.9.2910-2919.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many surface proteins of pathogenic gram-positive bacteria are linked to the cell wall envelope by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins of Streptococcus pneumoniae harbor another motif, YSIRK-G/S, which is positioned within signal peptides. The signal peptides of some, but not all, of the 20 surface proteins of Staphylococcus aureus carry a YSIRK-G/S motif, whereas those of surface proteins of Listeria monocytogenes and Bacillus anthracis do not. To determine whether the YSIRK-G/S motif is required for the secretion or cell wall anchoring of surface proteins, we analyzed variants of staphylococcal protein A, an immunoglobulin binding protein with an LPXTG sorting signal. Deletion of the YSIR sequence or replacement of G or S significantly reduced the rate of signal peptide processing of protein A precursors. In contrast, cell wall anchoring or the functional display of protein A was not affected. The fusion of cell wall sorting signals to reporter proteins bearing N-terminal signal peptides with or without the YSIRK-G/S motif resulted in hybrid proteins that were anchored in a manner similar to that of wild-type protein A. The requirement of the YSIRK-G/S motif for efficient secretion implies the existence of a specialized mode of substrate recognition by the secretion pathway of gram-positive cocci. It seems, however, that this mechanism is not essential for surface protein anchoring to the cell wall envelope.
Collapse
Affiliation(s)
- Taeok Bae
- Committee on Microbiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
337
|
Affiliation(s)
- Franklin D Lowy
- Departments of Medicine and Pathology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
338
|
Roche FM, Massey R, Peacock SJ, Day NPJ, Visai L, Speziale P, Lam A, Pallen M, Foster TJ. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. MICROBIOLOGY (READING, ENGLAND) 2003; 149:643-654. [PMID: 12634333 DOI: 10.1099/mic.0.25996-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Twenty-one genes encoding surface proteins belonging to the LPXTG family have been identified by in silico analysis of six Staphylococcus aureus genome sequences. Eleven genes encode previously described proteins, while 10 have not yet been characterized. Of these, eight contain the cell-wall sorting signal LPXTG responsible for covalently anchoring proteins to the cell-wall peptidoglycan. The remaining two, SasF and SasD, harbour a single residue variation in the fourth position of the LPXTG motif (LPXAG). Western blotting of lysostaphin-solubilized S. aureus cell-wall proteins demonstrated the release of SasF in the cell-wall fraction, indicating that proteins carrying LPXAG are sorted normally. Analysis of primary sequences of the Staphylococcus aureus surface (Sas) proteins indicated that several share a similar structural organization and a common signal sequence with previously characterized LPXTG proteins of S. aureus and other Gram-positive cocci. Protein SasG has 128 residue B repeats that are almost identical at the DNA level. PCR analysis indicated that recombinants with repeat length variations are present in the bacterial population whereas they are not detectable in the B-repeat-encoding region of sdrD. The sasG and sasH genes are significantly associated with invasive disease isolates compared to nasal carriage isolates. Several IgG samples purified from patients recovering from S. aureus infections had higher titres against Sas proteins than control IgG, suggesting that expression occurred during infection in some patients.
Collapse
Affiliation(s)
- Fiona M Roche
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Ruth Massey
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sharon J Peacock
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Nicholas P J Day
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Livia Visai
- Department of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Pietro Speziale
- Department of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Alex Lam
- Department of Microbiology and Immunobiology, The Queen's University of Belfast, Grosvenor Road, Belfast BT12 6BN, UK
| | - Mark Pallen
- Department of Microbiology and Immunobiology, The Queen's University of Belfast, Grosvenor Road, Belfast BT12 6BN, UK
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
339
|
Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 2003; 299:906-9. [PMID: 12574635 DOI: 10.1126/science.1081147] [Citation(s) in RCA: 453] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The cell wall envelope of Gram-positive pathogens functions as a scaffold for the attachment of virulence factors and as a sieve that prevents diffusion of molecules. Here the isd genes (iron-regulated surface determinant) of Staphylococcus aureus were found to encode factors responsible for hemoglobin binding and passage of heme-iron to the cytoplasm, where it acts as an essential nutrient. Heme-iron passage required two sortases that tether Isd proteins to unique locations within the cell wall. Thus, Isd appears to act as an import apparatus that uses cell wall-anchored proteins to relay heme-iron across the bacterial envelope.
Collapse
Affiliation(s)
- Sarkis K Mazmanian
- Committee on Microbiology, Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Lee SF, Boran TL. Roles of sortase in surface expression of the major protein adhesin P1, saliva-induced aggregation and adherence, and cariogenicity of Streptococcus mutans. Infect Immun 2003; 71:676-81. [PMID: 12540545 PMCID: PMC145395 DOI: 10.1128/iai.71.2.676-681.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sortase is a newly discovered transpeptidase that covalently links LPXTGX-containing surface proteins to the gram-positive bacterial cell wall. In this study, the sortase gene (srtA) was isolated from Streptococcus mutans NG8 by PCR. The gene encoded a 246-amino-acid protein, including a 40-amino-acid signal peptide. The srtA gene was insertionally inactivated by a tetracycline resistance cassette. P1, a major surface protein adhesin previously shown to anchor to the peptidoglycan by the LPXTGX motif, was secreted into the culture medium by the srtA mutant. In contrast, the wild-type P1 remained cell wall associated. Complementation of the mutant with srtA restored the P1 surface expression phenotype. P1 produced by the mutant, but not that produced by the wild type and the srtA-complemented mutant, was recognized by an antibody raised against the hydrophobic domain and charged tail C terminal to the LPXTGX motif. These results suggest that the failure to anchor P1 to the cell wall is due to the lack of cleavage of P1 at the LPXTGX motif. The srtA mutant was markedly less hydrophobic than the wild type and the complemented mutant. The srtA mutant failed to aggregate in the presence of saliva or salivary agglutinin and adhered poorly to saliva- or salivary agglutinin-coated hydroxylapatite. In rats, the srtA mutant colonized the teeth poorly when sucrose was absent. When sucrose was present, the srtA mutant colonized the teeth but less effectively and induced significantly less caries (P < 0.05) than the wild-type strain. In conclusion, the sortase enzyme in S. mutans is responsible for anchoring P1 to the cell surface and plays a role in modulating the surface properties and cariogenicity of S. mutans.
Collapse
Affiliation(s)
- Song F Lee
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.
| | | |
Collapse
|
341
|
Lee SG, Pancholi V, Fischetti VA. Characterization of a unique glycosylated anchor endopeptidase that cleaves the LPXTG sequence motif of cell surface proteins of Gram-positive bacteria. J Biol Chem 2002; 277:46912-22. [PMID: 12370182 DOI: 10.1074/jbc.m208660200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The precursors of most surface proteins on Gram-positive bacteria have a C-terminal hydrophobic domain and charged tail, preceded by a conserved LPXTG motif that signals the anchoring process. This motif is the substrate for an enzyme, termed sortase, which has transpeptidation activity resulting in the cleavage of the LPXTG sequence and ultimate attachment of the protein to the peptidoglycan. While screening a group A streptococcal membrane extract for cleavage activity of the LPXTG motif, we identified an enzyme (which we term "LPXTGase") that differs significantly from sortase but also cleaves this motif. The enzyme is heavily glycosylated, which is required for its activity. Amino acid composition and sequence analysis revealed that LPXTGase differs from other enzymes, in that the molecule, which is about 14 kDa in size, has no aromatic amino acids, is rich in alanine, and is 30% composed of uncommon amino acids, suggesting a nonribosomal construction. A similar enzyme found in the membrane extract of Staphylococcus aureus, indicates that this unusual molecule may be common among Gram-positive bacteria. Whereas peptide antibiotics have been reported from bacillus species that also contain unusual amino acids and are synthesized non-ribosomally on amino acid-activating polyenzyme templates, this would be the first reported enzyme that may be similarly synthesized.
Collapse
Affiliation(s)
- Sung G Lee
- Laboratory of Bacterial Pathogenesis Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
342
|
Kim SW, Chang IM, Oh KB. Inhibition of the bacterial surface protein anchoring transpeptidase sortase by medicinal plants. Biosci Biotechnol Biochem 2002; 66:2751-4. [PMID: 12596883 DOI: 10.1271/bbb.66.2751] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inhibition by medicinal plant extracts of a recombinant sortase was evaluated for antibacterial drug discovery. The coding region of sortase, a transpeptidase that cleaves surface proteins of gram-positive bacteria, was amplified by PCR from the chromosome of Staphylococcus aureus ATCC 6538p with the exception of an N-terminal membrane anchor sequence, expressed in Escherichia coli, and purified by metal chelate affinity chromatography. The purified sortase had maximum activity at pH 7.5 and was stable at 20-45 degrees C for the cleavage of a synthetic fluorophore substrate. The enzyme inhibitory activity in medicinal plants was also evaluated for antibacterial drug discovery. Among 80 medicinal plants tested, Cocculus trilobus, Fritillaria verticillata, Liriope platyphylla, and Rhus verniciflua had strong inhibitory activity. The extract with the greatest activity was the ethyl acetate fraction derived from the rhizome of Cocculus trilobus (IC50 = 1.52 microg/ml).
Collapse
Affiliation(s)
- Soo-Whan Kim
- Natural Products Research Institute, Seoul National University, 28 Yungun, Jongro, Seoul 110-460, Korea
| | | | | |
Collapse
|
343
|
Scott CJ, McDowell A, Martin SL, Lynas JF, Vandenbroeck K, Walker B. Irreversible inhibition of the bacterial cysteine protease-transpeptidase sortase (SrtA) by substrate-derived affinity labels. Biochem J 2002; 366:953-8. [PMID: 12069686 PMCID: PMC1222829 DOI: 10.1042/bj20020602] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 06/05/2002] [Accepted: 06/17/2002] [Indexed: 11/17/2022]
Abstract
We report on the first synthesis, kinetic evaluation and application of novel substrate-derived inhibitors against the Staphylococcus aureus cysteine protease-transpeptidase, sortase (staphylococcal surface protein sorting A, SrtA). The peptidyl-diazomethane and peptidyl-chloromethane analogues, Cbz (benzyloxycarbonyl)-Leu-Pro-Ala-Thr-CHN(2) (I) and Cbz-Leu-Pro-Ala-Thr-CH(2)Cl (II) respectively were found to act as time-dependent irreversible inhibitors of recombinant sortase (SrtA(DeltaN)). The peptidyl-chloromethane analogue (II) was the most powerful with an inhibitor specificity constant (k(i)/K(i)) of 5.3x10(4) M(-1).min(-1), approx. 2-fold greater than that determined for the peptidyl-diazomethane (I). Additionally, using Western-blot analysis, we have been able to demonstrate that a biotinylated version of the peptidyl-diazomethane analogue, biotin-Ahx (aminohexanoyl)-Leu-Pro-Ala-Thr-CHN(2) (III), can be used as an affinity label to detect the presence of wild-type SrtA in crude cell lysates prepared from S. aureus.
Collapse
Affiliation(s)
- Christopher J Scott
- Biomolecular Sciences Group, School of Pharmacy, The Queen's University of Belfast, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
344
|
Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, Msadek T, Zouine M, Couvé E, Lalioui L, Poyart C, Trieu-Cuot P, Kunst F. Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 2002; 45:1499-513. [PMID: 12354221 DOI: 10.1046/j.1365-2958.2002.03126.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Streptococcus agalactiae is a commensal bacterium colonizing the intestinal tract of a significant proportion of the human population. However, it is also a pathogen which is the leading cause of invasive infections in neonates and causes septicaemia, meningitis and pneumonia. We sequenced the genome of the serogroup III strain NEM316, responsible for a fatal case of septicaemia. The genome is 2 211 485 base pairs long and contains 2118 protein coding genes. Fifty-five per cent of the predicted genes have an ortholog in the Streptococcus pyogenes genome, representing a conserved backbone between these two streptococci. Among the genes in S. agalactiae that lack an ortholog in S. pyogenes, 50% are clustered within 14 islands. These islands contain known and putative virulence genes, mostly encoding surface proteins as well as a number of genes related to mobile elements. Some of these islands could therefore be considered as pathogenicity islands. Compared with other pathogenic streptococci, S. agalactiae shows the unique feature that pathogenicity islands may have an important role in virulence acquisition and in genetic diversity.
Collapse
Affiliation(s)
- Philippe Glaser
- Laboratoire de Génomique des Microorganismes Pathogènes, Institute Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Abstract
Bacterial resistance to present day antibiotics has become a dangerous threat to public health. Consequently, the pharmaceutical industry must provide new agents and novel classes to combat bacterial disease and to stay a step ahead of the rapid evolution of bacterial resistance mechanisms. The need for novel antibacterials has resulted in a search for previously unexplored targets for chemotherapy, utilising the new techniques of genomics to identify them. Several targets currently under investigation are involved in the process of bacterial virulence. These targets are unique in that their inhibition, by definition, should interfere with the process of infection rather than with bacterial viability. If successful, virulence inhibition may represent a 'kinder, gentler' approach to chemotherapy in which the pathogen is disarmed rather than killed outright.
Collapse
Affiliation(s)
- Lefa E Alksne
- Wyeth Research, 401 North Middletown Road, Pearl River, NY 10965, USA.
| |
Collapse
|
346
|
Abstract
Serine-, cysteine-, and metalloproteases are widely spread in many pathogenic bacteria, where they play critical functions related to colonization and evasion of host immune defenses, acquisition of nutrients for growth and proliferation, facilitation of dissemination, or tissue damage during infection. Since all the antibiotics used clinically at the moment share a common mechanism of action, acting as inhibitors of the bacterial cell wall biosynthesis or affecting protein synthesis on ribosomes, resistance to these pharmacological agents represents a serious medical problem, which might be resolved by using new generation of antibiotics, possessing a different mechanism of action. Bacterial protease inhibitors constitute an interesting such possibility, due to the fact that many specific as well as ubiquitous proteases have recently been characterized in some detail in both gram-positive as well as gram-negative pathogens. Few potent, specific inhibitors for such bacterial proteases have been reported at this moment except for some signal peptidase, clostripain, Clostridium histolyticum collagenase, botulinum neurotoxin, and tetanus neurotoxin inhibitors. No inhibitors of the critically important and ubiquitous AAA proteases, degP or sortase have been reported, although such compounds would presumably constitute a new class of highly effective antibiotics. This review presents the state of the art in the design of such enzyme inhibitors with potential therapeutic applications, as well as recent advances in the use of some of these proteases in therapy.
Collapse
Affiliation(s)
- Claudiu T Supuran
- University of Florence, Dipartimento di Chimica, Laboratorio di Chimica Inorganica e Bioinorganica, Firenze, Italy.
| | | | | |
Collapse
|
347
|
Abstract
Display of heterologous proteins on the surface of microorganisms, enabled by means of recombinant DNA technology, has become an increasingly used strategy in various applications in microbiology, biotechnology and vaccinology. Gram-negative, Gram-positive bacteria, viruses and phages are all being investigated in such applications. This review will focus on the bacterial display systems and applications. Live bacterial vaccine delivery vehicles are being developed through the surface display of foreign antigens on the bacterial surfaces. In this field, 'second generation' vaccine delivery vehicles are at present being generated by the addition of mucosal targeting signals, through co-display of adhesins, in order to achieve targeting of the live bacteria to immunoreactive sites to thereby increase immune responses. Engineered bacteria are further being evaluated as novel microbial biocatalysts with heterologous enzymes immobilized as surface exposed on the bacterial cell surface. A discussion has started whether bacteria can find use as new types of whole-cell diagnostic devices since single-chain antibodies and other type of tailor-made binding proteins can be displayed on bacteria. Bacteria with increased binding capacity for certain metal ions can be created and potential environmental or biosensor applications for such recombinant bacteria as biosorbents are being discussed. Certain bacteria have also been employed for display of various poly-peptide libraries for use as devices in in vitro selection applications. Through various selection principles, individual clones with desired properties can be selected from such libraries. This article explains the basic principles of the different bacterial display systems, and discusses current uses and possible future trends of these emerging technologies.
Collapse
Affiliation(s)
- Patrik Samuelson
- Division of Molecular Biotechnology, Department of Biotechnology, SCFAB, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
348
|
Cucarella C, Tormo MA, Knecht E, Amorena B, Lasa I, Foster TJ, Penadés JR. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 2002; 70:3180-6. [PMID: 12011013 PMCID: PMC127991 DOI: 10.1128/iai.70.6.3180-3186.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 12/17/2001] [Accepted: 02/26/2002] [Indexed: 01/29/2023] Open
Abstract
The adherence of Staphylococcus aureus to soluble proteins and extracellular-matrix components of the host is one of the key steps in the pathogenesis of staphylococcal infections. S. aureus presents a family of adhesins called MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) that specifically recognize host matrix components. We examined the influence of biofilm-associated protein (Bap) expression on S. aureus adherence to host proteins, epithelial cell cultures, and mammary gland sections and on colonization of the mammary gland in an in vivo infection model. Bap-positive strain V329 showed lower adherence to immobilized fibrinogen and fibronectin than isogenic Bap-deficient strain m556. Bacterial adherence to histological sections of mammary gland and bacterial internalization into 293 cells were significantly lower in the Bap-positive strains. In addition, the Bap-negative strain showed significantly higher colonization in vivo of sheep mammary glands than the Bap-positive strain. Taken together, these results strongly suggest that the expression of the Bap protein interferes with functional properties of the MSCRAMM proteins, preventing initial bacterial attachment to host tissues and cellular internalization.
Collapse
Affiliation(s)
- Carme Cucarella
- Unit of Biochemistry, Department of Basic Biomedical Science, Cardenal Herrera-C. E. U. University, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
349
|
Perry AM, Ton-That H, Mazmanian SK, Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring. J Biol Chem 2002; 277:16241-8. [PMID: 11856734 DOI: 10.1074/jbc.m109194200] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Surface proteins of Staphylococcus aureus are anchored to the cell wall peptidoglycan by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins are first synthesized in the bacterial cytoplasm and then transported across the cytoplasmic membrane. Cleavage of the N-terminal signal peptide of the cytoplasmic surface protein P1 precursor generates the extracellular P2 species, which is the substrate for the cell wall anchoring reaction. Sortase, a membrane-anchored transpeptidase, cleaves P2 between the threonine (T) and the glycine (G) of the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine and the amino group of cell wall cross-bridges. We have used metabolic labeling of staphylococcal cultures with [(32)P]phosphoric acid to reveal a P3 intermediate. The (32)P-label of immunoprecipitated surface protein is removed by treatment with lysostaphin, a glycyl-glycine endopeptidase that separates the cell wall anchor structure. Furthermore, the appearance of P3 is prevented in the absence of sortase or by the inhibition of cell wall synthesis. (32)P-Labeled cell wall anchor species bind to nisin, an antibiotic that is known to form a complex with lipid II. Thus, it appears that the P3 intermediate represents surface protein linked to the lipid II peptidoglycan precursor. The data support a model whereby lipid II-linked polypeptides are incorporated into the growing peptidoglycan via the transpeptidation and transglycosylation reactions of cell wall synthesis, generating mature cell wall-linked surface protein.
Collapse
Affiliation(s)
- Adrienne M Perry
- Committee on Microbiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
350
|
Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 2002; 10:238-45. [PMID: 11973158 DOI: 10.1016/s0966-842x(02)02342-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
On the basis of the recently determined genome sequence of Listeria monocytogenes, we performed a global analysis of the surface-protein-encoding genes. Only proteins displaying a signal peptide were taken into account. Forty-one genes encoding LPXTG proteins, including the previously known internalin gene family, were detected. Several genes encoding proteins that, like InlB and Ami, possess GW modules that attach them to lipoteichoic acids were also identified. Additionally, the completed genome sequence revealed genes encoding proteins potentially anchored in the cell membrane by a hydrophobic tail as well as genes encoding P60-like proteins and lipoproteins. We describe these families and discuss their putative implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Didier Cabanes
- Unité des Interactions Bactéries Cellules, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|