301
|
|
302
|
Loureiro LR, Carrascal MA, Barbas A, Ramalho JS, Novo C, Delannoy P, Videira PA. Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015; 5:1783-809. [PMID: 26270678 PMCID: PMC4598775 DOI: 10.3390/biom5031783] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/19/2015] [Accepted: 07/31/2015] [Indexed: 01/24/2023] Open
Abstract
The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.
Collapse
Affiliation(s)
- Liliana R Loureiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal.
- IHMT, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, Lisboa 1349-008, Portugal.
| | - Mylène A Carrascal
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
| | - Ana Barbas
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal.
| | - José S Ramalho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
| | - Carlos Novo
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- IHMT, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, Lisboa 1349-008, Portugal.
| | - Philippe Delannoy
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille, Villeneuve d'Ascq 59655, France.
| | - Paula A Videira
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| |
Collapse
|
303
|
|
304
|
|
305
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 or not 8785=9702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
306
|
|
307
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 order by 1-- sbqo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
308
|
|
309
|
|
310
|
|
311
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 order by 1-- pvli] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
312
|
|
313
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 or not 3512=3512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
314
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 having 4867=4867-- ymup] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
315
|
|
316
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and elt(7631=6626,6626)# hjsw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
317
|
|
318
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and 9969=5627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
319
|
|
320
|
|
321
|
|
322
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and 5942=7793-- wekp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
323
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 where 1308=1308 or not 3176=8140-- fmnx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
324
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 having 2903=4259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
325
|
|
326
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and 9876=9876#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
327
|
|
328
|
|
329
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 or not 3512=3512-- oniq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
330
|
|
331
|
|
332
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 or not 2016=9936-- tbsf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
333
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and make_set(3433=7054,7054)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
334
|
|
335
|
|
336
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 where 4062=4062 and 5081=5081-- ilyf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
337
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and make_set(2734=2878,2878)# lcij] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
338
|
|
339
|
|
340
|
|
341
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 having 4867=4867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
342
|
|
343
|
|
344
|
|
345
|
|
346
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and 5081=5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
347
|
Joshi S, Kumar S, Choudhury A, Ponnusamy MP, Batra SK. Altered Mucins (MUC) trafficking in benign and malignant conditions. Oncotarget 2015; 5:7272-84. [PMID: 25261375 PMCID: PMC4202122 DOI: 10.18632/oncotarget.2370] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mucins are high molecular weight O-glycoproteins that are predominantly expressed at the apical surface of epithelial cells and have wide range of functions. The functional diversity is attributed to their structure that comprises of a peptide chain with unique domains and multiple carbohydrate moieties added during posttranslational modifications. Tumor cells aberrantly overexpress mucins, and thereby promote proliferation, differentiation, motility, invasion and metastasis. Along with their aberrant expression, accumulating evidence suggest the critical role of altered subcellular localization of mucins under pathological conditions due to altered endocytic processes. The mislocalization of mucins and their interactions result in change in the density and activity of important cell membrane proteins (like, receptor tyrosine kinases) to facilitate various signaling, which help cancer cells to proliferate, survive and progress to more aggressive phenotype. In this review article, we summarize studies on mucins trafficking and provide a perspective on its importance to pathological conditions and to answer critical questions including its use for therapeutic interventions.
Collapse
Affiliation(s)
- Suhasini Joshi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, U.S.A
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, U.S.A
| | | | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, U.S.A
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, U.S.A. Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|
348
|
Wang XD, Gao NN, Diao YW, Liu Y, Gao D, Li W, Wan YY, Zhong JJ, Jin GY. Conjugation of toll-like receptor-7 agonist to gastric cancer antigen MG7-Ag exerts antitumor effects. World J Gastroenterol 2015; 21:8052-8060. [PMID: 26185376 PMCID: PMC4499347 DOI: 10.3748/wjg.v21.i26.8052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/01/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of our tumor vaccines on reversing immune tolerance and generating therapeutic response.
METHODS: Vaccines were synthesized by solid phase using an Fmoc strategy, where a small molecule toll-like receptor-7 agonist (T7) was conjugated to a monoclonal gastric cancer 7 antigen mono-epitope (T7-MG1) or tri-epitope (T7-MG3). Cytokines were measured in both mouse bone marrow dendritic cells and mouse spleen lymphocytes after exposed to the vaccines. BALB/c mice were intraperitoneally immunized with the vaccines every 2 wk for a total of three times, and then subcutaneously challenged with Ehrlich ascites carcinoma (EAC) cells. Three weeks later, the mice were killed, and the tumors were surgically removed and weighed. Serum samples were collected from the mice, and antibody titers were determined by ELISA using an alkaline phosphate-conjugated detection antibody for total IgG. Antibody-dependent cell-mediated cytotoxicity was detected by the lactate dehydrogenase method using natural killer cells as effectors and antibody-labeled EAC cells as targets. Cytotoxic T lymphocyte activities were also detected by the lactate dehydrogenase method using lymphocytes as effectors and EAC cells as targets.
RESULTS: Vaccines were successfully synthesized and validated by analytical high performance liquid chromatography and electrospray mass spectrometry, including T7, T7-MG1, and T7-MG3. Rapid inductions of tumor necrosis factor-α and interleukin-12 in bone marrow dendritic cells and interferon γ and interleukin-12 in lymphocytes occurred in vitro after T7, T7-MG1, and T7-MG3 treatment. Immunization with T7-MG3 reduced the EAC tumor burden in BALB/c mice to 62.64% ± 5.55% compared with PBS control (P < 0.01). Six or nine weeks after the first immunization, the monoclonal gastric cancer 7 antigen antibody increased significantly in the T7-MG3 group compared with the PBS control (P < 0.01). As for antibody-dependent cell-mediated cytotoxicity, antisera obtained by immunization with T7-MG3 were able to markedly enhance cell lysis compared to PBS control (31.58% ± 2.94% vs 18.02% ± 2.26%; P < 0.01). As for cytotoxic T lymphocytes, T7-MG3 exhibited obviously greater cytotoxicity compared with PBS control (40.92% ± 4.38% vs 16.29% ± 1.90%; P < 0.01).
CONCLUSION: A successful method is confirmed for the design of gastric cancer vaccines by chemical conjugation of T7 and multi-repeat-epitope of monoclonal gastric cancer 7 antigen.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Carcinoma, Ehrlich Tumor/drug therapy
- Carcinoma, Ehrlich Tumor/immunology
- Carcinoma, Ehrlich Tumor/pathology
- Cells, Cultured
- Cytokines/metabolism
- Epitopes
- Female
- Immunization Schedule
- Immunoconjugates/administration & dosage
- Immunoconjugates/pharmacology
- Injections, Intraperitoneal
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Membrane Glycoproteins/agonists
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice, Inbred BALB C
- Signal Transduction/drug effects
- Superantigens
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Time Factors
- Toll-Like Receptor 7/agonists
- Toll-Like Receptor 7/immunology
- Toll-Like Receptor 7/metabolism
- Tumor Burden
- Tumor Escape/drug effects
Collapse
|
349
|
Song K, Herzog BH, Fu J, Sheng M, Bergstrom K, McDaniel JM, Kondo Y, McGee S, Cai X, Li P, Chen H, Xia L. Loss of Core 1-derived O-Glycans Decreases Breast Cancer Development in Mice. J Biol Chem 2015; 290:20159-66. [PMID: 26124270 DOI: 10.1074/jbc.m115.654483] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/06/2022] Open
Abstract
Mucin-type core 1-derived O-glycans, one of the major types of O-glycans, are highly expressed in mammary gland epithelium. Abnormal O-glycans such as Tn antigen are found in over 90% of breast cancers; however, the in vivo role of these aberrant O-glycans in the etiology of breast cancer is unclear. We generated mice with mammary epithelial specific deletion of core 1-derived O-glycans. By crossing with two spontaneous mouse breast cancer models, we determined that loss of core 1-derived O-glycans delays the onset and progression of breast cancer development. Deficiency of core 1 O-glycosylation impaired the localization of Muc1, a major O-glycoprotein, on the apical surfaces of mammary epithelium. Signaling mediated by Muc1, which is critical for breast cancer development, was also defective in the absence of core 1 O-glycans. This study reveals an unexpected role of core 1-derived O-glycans in breast cancer development in mice.
Collapse
Affiliation(s)
- Kai Song
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Brett H Herzog
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jianxin Fu
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Minjia Sheng
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, China-Japan Union Hospital of Jilin University, 130033 Changchun, China, and
| | - Kirk Bergstrom
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - J Michael McDaniel
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Yuji Kondo
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Samuel McGee
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Xiaofeng Cai
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, China
| | - Hong Chen
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104,
| | - Lijun Xia
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China,
| |
Collapse
|
350
|
Martínez-Sáez N, Castro-López J, Valero-González J, Madariaga D, Compañón I, Somovilla VJ, Salvadó M, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Bernardes GJL, Peregrina JM, Hurtado-Guerrero R, Corzana F. Deciphering the Non-Equivalence of Serine and Threonine O-Glycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an anti-MUC1 Antibody. Angew Chem Int Ed Engl 2015; 54:9830-4. [PMID: 26118689 PMCID: PMC4552995 DOI: 10.1002/anie.201502813] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/06/2015] [Indexed: 11/11/2022]
Abstract
The structural features of MUC1-like glycopeptides bearing the Tn antigen (α-O-GalNAc-Ser/Thr) in complex with an anti MUC-1 antibody are reported at atomic resolution. For the α-O-GalNAc-Ser derivative, the glycosidic linkage adopts a high-energy conformation, barely populated in the free state. This unusual structure (also observed in an α-S-GalNAc-Cys mimic) is stabilized by hydrogen bonds between the peptidic fragment and the sugar. The selection of a particular peptide structure by the antibody is thus propagated to the carbohydrate through carbohydrate/peptide contacts, which force a change in the orientation of the sugar moiety. This seems to be unfeasible in the α-O-GalNAc-Thr glycopeptide owing to the more limited flexibility of the side chain imposed by the methyl group. Our data demonstrate the non-equivalence of Ser and Thr O-glycosylation points in molecular recognition processes. These features provide insight into the occurrence in nature of the APDTRP epitope for anti-MUC1 antibodies.
Collapse
Affiliation(s)
- Nuria Martínez-Sáez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain).,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain)
| | - Jessika Valero-González
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain).,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain)
| | - David Madariaga
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Víctor J Somovilla
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Míriam Salvadó
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcellí Domingo s/n, 43007 Tarragona (Spain)
| | - Juan L Asensio
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)
| | - Jesús Jiménez-Barbero
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia Building 801 A, 48160 Derio (Spain).,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain).,Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Jesús H Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa (Portugal)
| | - Jesús M Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain). .,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain).
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).
| |
Collapse
|