301
|
|
302
|
von Janowsky B, Major T, Knapp K, Voos W. The disaggregation activity of the mitochondrial ClpB homolog Hsp78 maintains Hsp70 function during heat stress. J Mol Biol 2006; 357:793-807. [PMID: 16460754 DOI: 10.1016/j.jmb.2006.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/22/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
Molecular chaperones are important components of mitochondrial protein biogenesis and are required to maintain the organellar function under normal and stress conditions. We addressed the functional role of the Hsp100/ClpB homolog Hsp78 during aggregation reactions and its functional cooperation with the main mitochondrial Hsp70, Ssc1, in mitochondria of the yeast Saccharomyces cerevisiae. By establishing an aggregation/disaggregation assay in intact mitochondria we demonstrated that Hsp78 is indispensable for the resolubilization of protein aggregates generated by heat stress under in vivo conditions. The ATP-dependent disaggregation activity of Hsp78 was capable of reversing the preprotein import defect of a destabilized mutant form of Ssc1. This role in disaggregation of Ssc1 is unique for Hsp78, since the recently identified, Hsp70-specific chaperone Zim17 had no effect on the resolubilization reaction. We observed only a minor effect of the second mitochondrial Hsp100 family member Mcx1 on protein disaggregation. A "holding" activity of the mitochondrial Hsp70 system was a prerequisite for a successful resolubilization of aggregated proteins. We conclude that the protective role of Hsp78 in thermotolerance is mainly based on maintaining the molecular chaperone Ssc1 in a soluble and functional state.
Collapse
Affiliation(s)
- Birgit von Janowsky
- Institut für Biochemie und Molekularbiologie, Hermann-Herder-Str. 7, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
303
|
Zietkiewicz S, Lewandowska A, Stocki P, Liberek K. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. J Biol Chem 2006; 281:7022-9. [PMID: 16415353 DOI: 10.1074/jbc.m507893200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to temperatures over a certain limit leads to massive protein aggregation in the cell. Disaggregation of such aggregates is largely dependent on the Hsp100 and Hsp70 chaperones. The exact role of the Hsp70 chaperone machine (composed of DnaK, DnaJ, and GrpE) in the Hsp100-dependent process remains unknown. In this study we focused on the Hsp70 role at the initial step of the disaggregation process. Two different aggregated model substrates, green fluorescent protein (GFP) and firefly luciferase, were incubated with the Hsp70 machine resulting in efficient fragmentation of large aggregates into smaller ones. Our data suggest that the observed fragmentation is achieved first by extraction of polypeptides from aggregates in Hsp70 chaperone machine-dependent manner and not by direct fragmentation of large aggregates. In the absence of Hsp100 (ClpB) these "extracted" polypeptides were not able to fold properly and promptly reassociated into new aggregates. The extracted GFP molecules were efficiently recognized and sequestered by a molecular trap, the mutant GroEL D87K, which binds stably to unfolded but not to native polypeptides. The binding of extracted GFP molecules to the GroEL trap prevented their reaggregation. We propose that the Hsp70 machine disentangles polypeptides from protein aggregates prior to Hsp100 action.
Collapse
Affiliation(s)
- Szymon Zietkiewicz
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | | | | | | |
Collapse
|
304
|
de Marco A, Vigh L, Diamant S, Goloubinoff P. Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones 2006; 10:329-39. [PMID: 16333986 PMCID: PMC1283876 DOI: 10.1379/csc-139r.1] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When massively expressed in bacteria, recombinant proteins often tend to misfold and accumulate as soluble and insoluble nonfunctional aggregates. A general strategy to improve the native folding of recombinant proteins is to increase the cellular concentration of viscous organic compounds, termed osmolytes, or of molecular chaperones that can prevent aggregation and can actively scavenge and convert aggregates into natively refoldable species. In this study, metal affinity purification (immobilized metal ion affinity chromatography [IMAC]), confirmed by resistance to trypsin digestion, was used to distinguish soluble aggregates from soluble nativelike proteins. Salt-induced accumulation of osmolytes during induced protein synthesis significantly improved IMAC yields of folding-recalcitrant proteins. Yet, the highest yields were obtained with cells coexpressing plasmid-encoded molecular chaperones DnaK-DnaJ-GrpE, ClpB, GroEL-GroES, and IbpA/B. Addition of the membrane fluidizer heat shock-inducer benzyl alcohol (BA) to the bacterial medium resulted in similar high yields as with plasmid-mediated chaperone coexpression. Our results suggest that simple BA-mediated induction of endogenous chaperones can substitute for the more demanding approach of chaperone coexpression. Combined strategies of osmolyte-induced native folding with heat-, BA-, or plasmid-induced chaperone coexpression can be thought to optimize yields of natively folded recombinant proteins in bacteria, for research and biotechnological purposes.
Collapse
Affiliation(s)
- Ario de Marco
- Protein Expression Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | |
Collapse
|
305
|
Giese KC, Basha E, Catague BY, Vierling E. Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proc Natl Acad Sci U S A 2005; 102:18896-901. [PMID: 16365319 PMCID: PMC1323161 DOI: 10.1073/pnas.0506169103] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Indexed: 11/18/2022] Open
Abstract
To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions throughout the protein and a C-terminal truncation of 5 aa were identified, representing the largest collection of sHsp mutants impaired in function in vivo. Ten mutant proteins were purified and tested for alterations in native oligomeric structure and in vitro chaperone activity. These biochemical assays separated the mutants into two groups. The C-terminal truncation and six mutations in the alpha-crystallin domain destabilized the sHsp oligomer and reduced in vitro chaperone activity. In contrast, the other three mutations had little effect on oligomer stability or chaperone activity in vitro. These mutations were clustered in the N terminus of Hsp16.6, pointing to a previously unrecognized, important function for this evolutionarily variable domain. Furthermore, the fact that the N-terminal mutations were impaired in function in vivo, but active as chaperones in vitro, indicates that current biochemical assays do not adequately measure essential features of the sHsp mechanism of action.
Collapse
Affiliation(s)
- Kim C Giese
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
306
|
Andersson FI, Blakytny R, Kirstein J, Turgay K, Bukau B, Mogk A, Clarke AK. Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity. J Biol Chem 2005; 281:5468-75. [PMID: 16361263 DOI: 10.1074/jbc.m509661200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HSP100 proteins are molecular chaperones that belong to the broader family of AAA+ proteins (ATPases associated with a variety of cellular activities) known to promote protein unfolding, disassembly of protein complexes and translocation of proteins across membranes. The ClpC form of HSP100 is an essential, highly conserved, constitutively expressed protein in cyanobacteria and plant chloroplasts, and yet little is known regarding its specific activity as a molecular chaperone. To address this point, ClpC from the cyanobacterium Synechococcus elongatus (SyClpC) was purified using an Escherichia coli-based overexpression system. Recombinant SyClpC showed basal ATPase activity, similar to that of other types of HSP100 protein in non-photosynthetic organisms but different to ClpC in Bacillus subtilis. SyClpC also displayed distinct intrinsic chaperone activity in vitro, first by preventing aggregation of unfolded polypeptides and second by resolubilizing and refolding aggregated proteins into their native structures. The refolding activity of SyClpC was enhanced 3-fold in the presence of the B. subtilis ClpC adaptor protein MecA. Overall, the distinctive ClpC protein in photosynthetic organisms indeed functions as an independent molecular chaperone, and it is so far unique among HSP100 proteins in having both "holding" and disaggregase chaperone activities without the need of other chaperones or adaptor proteins.
Collapse
|
307
|
Vera A, Arís A, Carrió M, González-Montalbán N, Villaverde A. Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. J Biotechnol 2005; 119:163-71. [PMID: 15967532 DOI: 10.1016/j.jbiotec.2005.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 04/14/2005] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
Aggregated protein is solubilized by the combined activity of chaperones ClpB, DnaK and small heat-shock proteins, and this could account, at least partially, for the physiological disintegration of bacterial inclusion bodies. In vivo, the involvement of proteases in this process had been suspected but not investigated. By using an aggregation prone beta-galactosidase fusion protein produced in Escherichia coli, we show in this study that the main ATP-dependent proteases Lon and ClpP participate in the physiological disintegration of cytoplasmic inclusion bodies, their absence minimizing the protein removal up to 40%. However, the role of these proteases is clearly distinguishable especially regarding the fate of solubilized protein. While Lon appears as a minor contributor in the disintegration process, ClpP directs an important attack on the released or releasable protein even not being irreversibly misfolded. ClpP is then observed as a wide-spectrum, main processor of aggregation-prone proteins and also of polypeptides physiologically released from inclusion bodies, even when occurring as soluble versions with a conformation compatible with their enzymatic activity.
Collapse
Affiliation(s)
- Andrea Vera
- Institut de Biotecnologia i de Biomedicina, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
308
|
Simão RCG, Susin MF, Alvarez-Martinez CE, Gomes SL. Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in Caulobacter crescentus. Mol Microbiol 2005; 57:592-603. [PMID: 15978087 DOI: 10.1111/j.1365-2958.2005.04713.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heat shock response in Caulobacter crescentus was previously shown to be positively regulated by the alternative sigma factor of RNA polymerase (RNAP) sigma(32), and negatively modulated by DnaK during the induction phase of the heat shock response but not during the recovery phase. In the present work we have investigated the involvement of the chaperone ClpB in the control of the heat shock response in C. crescentus. Data obtained indicated a role of ClpB in downregulation of heat shock protein (HSP) synthesis, as cells lacking this chaperone showed a prolonged shutoff phase of the heat shock response. In Escherichia coli, it has been proposed that the DnaK chaperone system switches transcription back to constitutively expressed genes through simultaneous reactivation of heat-aggregated sigma(70), as well as sequestration of sigma(32) away from RNAP. In C. crescentus, results obtained with a clpB null mutant indicate that ClpB could be involved in the reactivation of the major sigma factor sigma(73). In support of this hypothesis, we showed that transcription directed from sigma(73)-dependent promoters is not switched back in the clpB null mutant during the recovery phase. Furthermore, we observed that resolubilization of heat-aggregated sigma(73) is dependent on the presence of ClpB. Our findings also indicated that the absence of ClpB made cells more sensitive to heat shock and ethanol but not to other stresses, and unable to acquire thermotolerance.
Collapse
Affiliation(s)
- Rita C G Simão
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C. P. 26077, São Paulo, SP, 05513-970, Brazil
| | | | | | | |
Collapse
|
309
|
Weibezahn J, Schlieker C, Tessarz P, Mogk A, Bukau B. Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol Chem 2005; 386:739-44. [PMID: 16201868 DOI: 10.1515/bc.2005.086] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell survival under severe thermal stress requires the activity of a bi-chaperone system, consisting of the ring-forming AAA+ chaperone ClpB (Hsp104) and the DnaK (Hsp70) chaperone system, which acts to solubilize and reactivate aggregated proteins. Recent studies have provided novel insight into the mechanism of protein disaggregation, demonstrating that ClpB/Hsp104 extracts unfolded polypeptides from an aggregate by threading them through its central pore. This translocation activity is necessary but not sufficient for aggregate solubilization. In addition, the middle (M) domain of ClpB and the DnaK system have essential roles, possibly by providing an unfolding force, which facilitates the extraction of misfolded proteins from aggregates.
Collapse
Affiliation(s)
- Jimena Weibezahn
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
310
|
Burton BM, Baker TA. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Protein Sci 2005; 14:1945-54. [PMID: 16046622 PMCID: PMC2279306 DOI: 10.1110/ps.051417505] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiprotein complexes in the cell are dynamic entities that are constantly undergoing changes in subunit composition and conformation to carry out their functions. The protein-DNA complex that promotes recombination of the bacteriophage Mu is a prime example of a complex that must undergo specific changes to carry out its function. The Clp/Hsp100 family of AAA+ ATPases plays a critical role in mediating such changes. The Clp/Hsp100 unfolding enzymes have been extensively studied for the roles they play in protein degradation. However, degradation is not the only fate for proteins that come in contact with the ATP-dependent unfolding enzymes. The Clp/Hsp100 enzymes induce structural changes in their substrates. These structural changes, which we refer to as "remodeling", ultimately change the biological activity of the substrate. These biological changes include activation, inactivation (not associated with degradation), and relocation within the cell. Analysis of the interaction between Escherichia coli ClpX unfoldase and the Mu recombination complex, has provided molecular insight into the mechanisms of protein remodeling. We discuss the key mechanistic features of the remodeling reactions promoted by ClpX and possible implications of these findings for other biological reactions.
Collapse
Affiliation(s)
- Briana M Burton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
311
|
Kedzierska S, Chesnokova LS, Witt SN, Zolkiewski M. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli. Arch Biochem Biophys 2005; 444:61-5. [PMID: 16289019 DOI: 10.1016/j.abb.2005.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/30/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
ClpB and DnaK form a bi-chaperone system that reactivates strongly aggregated proteins in vivo and in vitro. Previously observed interaction between purified ClpB and DnaK suggested that one of the chaperones might recruit its partner during substrate reactivation. We show that ClpB from Escherichia coli binds at the substrate binding site of DnaK and the interaction is supported by the N-terminal domain and the middle domain of ClpB. Moreover, the interaction between ClpB and DnaK depends on the nucleotide-state of DnaK: it is stimulated by ADP and inhibited by ATP. These observations indicate that DnaK recognizes selected structural motifs in ClpB as "pseudo-substrates" and that ClpB may compete with bona fide substrates of DnaK. We conclude that direct interaction between ClpB and DnaK does not mediate a substrate transfer between the chaperones, it may, however, play a role in the recruitment of the bi-chaperone system to specific recognition sites in aggregated particles.
Collapse
|
312
|
Abstract
Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer's disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones are a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more "conventional" chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.
Collapse
Affiliation(s)
- Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
313
|
Schrödel A, Volz J, de Marco A. Fusion tags and chaperone co-expression modulate both the solubility and the inclusion body features of the recombinant CLIPB14 serine protease. J Biotechnol 2005; 120:2-10. [PMID: 16023240 DOI: 10.1016/j.jbiotec.2005.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/16/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
Chaperone co-expression and the fusion to different tags were used to modify the aggregation pattern of the putative serine protease CLIPB14 precipitated in Escherichia coli inclusion bodies. A set of common tags used in expression vectors has been selected, as well as two bacterial strains over-expressing the chaperones GroELS and ibpA/B, respectively. The presence of the fused tags resulted in an improved solubility of CLIPB14 but also in a higher presence of contaminants in the inclusion bodies, while chaperone co-expression promoted the binding of all the chaperone machinery involved into the disaggregation to the CLIPB14. Furthermore, each tag influenced in a specific manner the re-aggregation of the denatured CLIPB14 constructs during urea dilution and the preliminary trials indicated that the CLIPB14 fusions with higher homogeneity and lower re-aggregation rate were the optimal candidates for refolding assays. In conclusion, it is possible to tune the quality of the inclusion bodies by choosing the suitable combination of tag and chaperone co-expression that minimize the non-productive side reactions during refolding.
Collapse
|
314
|
Lenco J, Pavkova I, Hubalek M, Stulik J. Insights into the oxidative stress response in Francisella tularensis LVS and its mutant DeltaiglC1+2 by proteomics analysis. FEMS Microbiol Lett 2005; 246:47-54. [PMID: 15869961 DOI: 10.1016/j.femsle.2005.03.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/14/2005] [Accepted: 03/21/2005] [Indexed: 11/28/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen. Its capacity to induce disease depends on the ability to invade and multiply within a wide range of eukaryotic cells, such as professional phagocytes. The comparative disinterest in tularemia in the past relative to other human bacterial pathogens is reflected in the paucity of information concerning the mechanisms of pathogenesis. Only a few genes and gene products associated with Francisella virulence are known to date. The aim of this study was to find and identify proteins of F. tularensis live vaccine strain induced in the presence of hydrogen peroxide, and to investigate the role of the IglC protein in the regulation of genes expressed upon peroxide stress. The [(35)S]-radiolabelled protein patterns were examined for both the wild live vaccine strain and its DeltaiglC1+2 mutant defective in synthesis of the IglC protein that was found to be strongly up-regulated during intracellular growth in murine macrophages in vitro and upon exposure to hydrogen peroxide. Globally, we found 21 protein spots whose levels were significantly altered in the presence of hydrogen peroxide in both the wild-type and mutant strains.
Collapse
Affiliation(s)
- Juraj Lenco
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 38 Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
315
|
Chow IT, Baneyx F. Coordinated synthesis of the two ClpB isoforms improves the ability of Escherichia coli to survive thermal stress. FEBS Lett 2005; 579:4235-41. [PMID: 16038902 DOI: 10.1016/j.febslet.2005.06.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/09/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
Eubacteria synthesize a full-length (ClpB95) and a N-terminally truncated (ClpB80) version of the ClpB disaggregase owing to the presence of a translation initiation site within the clpB transcript. Why these two isoforms have been evolutionary conserved is poorly understood. Here, we constructed a series of E. coli strains and plasmids allowing production of the ClpB95/ClpB80 pair, ClpB95 alone, or ClpB80 alone from near physiological concentrations to a 6-10-fold excess over normal cellular levels. We found that although overexpressed ClpB95 or ClpB80 can independently restore basal thermotolerance to DeltaclpB cells, strains expressing ClpB80 from the clpB chromosomal locus do not exhibit increased resistance to thermal killing at 50 degrees C relative to clpB null cells. Furthermore, synthesis of physiological levels of ClpB95 is less effective than coordinated expression of ClpB95/ClpB80 in protecting E. coli from thermal killing. These results provide an explanation for the conservation of the two ClpB isoforms in eubacteria and are consistent with the fact that wild type E. coli maintains the ClpB80 to ClpB95 ratio at a nearly constant value of 0.4-0.5 under a variety of stress conditions.
Collapse
Affiliation(s)
- I-Ting Chow
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195, USA
| | | |
Collapse
|
316
|
Beinker P, Schlee S, Auvula R, Reinstein J. Biochemical coupling of the two nucleotide binding domains of ClpB: covalent linkage is not a prerequisite for chaperone activity. J Biol Chem 2005; 280:37965-73. [PMID: 16162497 DOI: 10.1074/jbc.m506672200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpB cooperates with the DnaK chaperone system in the reactivation of protein from aggregates and is a member of the ATPases associated with a variety of cellular activities (AAA+) protein family. The underlying disaggregation reaction is dependent on ATP hydrolysis at both AAA cassettes of ClpB but the role of each AAA cassette in the reaction cycle is largely unknown. Here we analyze the activity of the separately expressed and purified nucleotide binding domains of ClpB from Thermus thermophilus. The two fragments show different biochemical properties: the first construct is inactive in ATPase activity assays and binds nucleotides weakly, the second construct has a very high ATPase activity and interacts tightly with nucleotides. Both individual fragments have lost their chaperone function and are not able to form large oligomers. When combined in solution, however, the two fragments form a stable heterodimer with oligomerization capacities equivalent to wild-type ClpB. This non-covalent complex regains activity in reactivating protein aggregates in cooperation with the DnaK chaperone system. Upon complex formation the ATPase activity of fragment 2 is reduced to a level similar to wild-type ClpB. Hence functional ClpB can be reassembled from its isolated AAA cassettes showing that covalent linkage of these domains is not a prerequisite for the chaperone activity. The observation that the intrinsically high ATPase activity of AAA2 is suppressed by AAA1 allows a hypothetical assignment of their mechanistic function. Whereas the energy gained upon ATP hydrolysis at the AAA2 is likely to drive a conformational change of the structure of ClpB, AAA1 might function as a regulator of the chaperone cycle.
Collapse
Affiliation(s)
- Philipp Beinker
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | | | | | | |
Collapse
|
317
|
Nicoll WS, Boshoff A, Ludewig MH, Hennessy F, Jung M, Blatch GL. Approaches to the isolation and characterization of molecular chaperones. Protein Expr Purif 2005; 46:1-15. [PMID: 16199180 DOI: 10.1016/j.pep.2005.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/02/2005] [Accepted: 08/04/2005] [Indexed: 10/25/2022]
Abstract
Molecular chaperones are integral components of the cellular machinery involved in ensuring correct protein folding and the continued maintenance of protein structure. An understanding of these ubiquitous molecules is key to finding cures to protein misfolding diseases such as Alzheimer's and Creutzfeldt-Jacob diseases. In addition, further understanding of chaperones will enhance our comprehension of the way the body copes with the environmental stresses that humans encounter daily. Our laboratory and our collaborators specialize in the production and characterization of chaperones from a wide variety of sources in order to gain a fuller understanding of how chaperones function in the cell. In this review, we primarily use the Hsp70/Hsp40 chaperone pair as an example to discuss recent advances in technology and reductions in cost that lend themselves to chaperone purification from both native and recombinant sources. Common assays to assess purified chaperone activity are also discussed.
Collapse
Affiliation(s)
- William S Nicoll
- Chaperone Research Group, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | | | | | | | |
Collapse
|
318
|
Bösl B, Grimminger V, Walter S. Substrate binding to the molecular chaperone Hsp104 and its regulation by nucleotides. J Biol Chem 2005; 280:38170-6. [PMID: 16135516 DOI: 10.1074/jbc.m506149200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hsp104 protein from Saccharomyces cerevisiae is a member of the Hsp100/Clp family of molecular chaperones. It mediates the solubilization of aggregated proteins in an ATP-dependent process assisted by the Hsp70/40 system. Although the principal function of Hsp104 is well established, the mechanistic details of this catalyzed disaggregation are poorly understood. In this work, we have investigated the interaction of Hsp104 with reduced, carboxymethylated alpha-lactalbumin (RCMLa), a permanently unfolded model substrate. Our results demonstrate that the affinity of Hsp104 toward polypeptides is regulated by nucleotides. In the presence of ATP or adenosine-5' -O-(3-thiotriphosphate), the chaperone formed complexes with RCMLa, whereas no binding was observed in the presence of ADP. In particular, the occupation of the N-terminally located nucleotide-binding domain with ATP seems to be crucial for substrate interaction. When ATP binding to this domain was impaired by mutation, Hsp104 lost its ability to interact with RCMLa. Our results also indicate that upon association with a polypeptide, a conformational change occurs within Hsp104 that strongly reduces the dynamics of nucleotide exchange and commits the bound polypeptide to ATP hydrolysis.
Collapse
Affiliation(s)
- Benjamin Bösl
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | | | | |
Collapse
|
319
|
Abstract
The AAA+ (ATPases associated with various cellular activities) family is a large and functionally diverse group of enzymes that are able to induce conformational changes in a wide range of substrate proteins. The family's defining feature is a structurally conserved ATPase domain that assembles into oligomeric rings and undergoes conformational changes during cycles of nucleotide binding and hydrolysis. Here, we review the structural organization of AAA+ proteins, the conformational changes they undergo, the range of different reactions they catalyse, and the diseases associated with their dysfunction.
Collapse
Affiliation(s)
- Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
320
|
Barnett ME, Nagy M, Kedzierska S, Zolkiewski M. The amino-terminal domain of ClpB supports binding to strongly aggregated proteins. J Biol Chem 2005; 280:34940-5. [PMID: 16076845 DOI: 10.1074/jbc.m505653200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial heat-shock proteins, ClpB and DnaK form a bichaperone system that efficiently reactivates aggregated proteins. ClpB undergoes nucleotide-dependent self-association and forms ring-shaped oligomers. The ClpB-assisted dissociation of protein aggregates is linked to translocation of substrates through the central channel in the oligomeric ClpB. Events preceding the translocation step, such as recognition of aggregates by ClpB, have not yet been explored, and the location of the aggregate-binding site in ClpB has been under discussion. We investigated the reactivation of aggregated glucose-6-phosphate dehydrogenase (G6PDH) by ClpB and its N-terminally truncated variant ClpBDeltaN in the presence of DnaK, DnaJ, and GrpE. We found that the chaperone activity of ClpBDeltaN becomes significantly lower than that of the full-length ClpB as the size of G6PDH aggregates increases. Using a "substrate trap" variant of ClpB with mutations of Walker B motifs in both ATP-binding modules (E279Q/E678Q), we demonstrated that ClpBDeltaN binds to G6PDH aggregates with a significantly lower affinity than the full-length ClpB. Moreover, we identified two conserved acidic residues at the surface of the N-terminal domain of ClpB that support binding to G6PDH aggregates. Those N-terminal residues (Asp-103, Glu-109) contribute as much substrate-binding capability to ClpB as the conserved Tyr located at the entrance to the ClpB channel. In summary, we provided evidence for an essential role of the N-terminal domain of ClpB in recognition and binding strongly aggregated proteins.
Collapse
Affiliation(s)
- Micheal E Barnett
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
321
|
Hansen J, Gregersen N, Bross P. Differential degradation of variant medium-chain acyl-CoA dehydrogenase by the protein quality control proteases Lon and ClpXP. Biochem Biophys Res Commun 2005; 333:1160-70. [PMID: 15978546 DOI: 10.1016/j.bbrc.2005.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/06/2005] [Indexed: 11/19/2022]
Abstract
The coordinated activities of chaperones and proteases that supervise protein folding and degradation are important factors for deciding the fate of proteins whose folding is impaired by missense variations. We have studied the role of Lon and ClpXP proteases in handling of wild-type and a folding-impaired disease-associated variant (R28C) of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). Using an Escherichia coli model system, we co-overexpressed the MCAD variants and the respective proteases at two conditions: at 31 degrees C where R28C MCAD protein folds partially and at 37 degrees C where it misfolds and aggregates. Co-overexpression of Lon protease considerably accelerated the degradation rate of a pool of R28C variant MCAD synthesised during a 30min pulse and counteracted accumulation of aggregates at 37 degrees C, whereas increasing the amounts of ClpXP protease had no clear effect. Co-overexpression of either Lon or ClpXP protease markedly decreased the steady state levels of both wild-type and R28C mutant MCAD at 37 degrees C but not at 31 degrees C. Our results suggest that Lon is more efficient than ClpXP in elimination of non-native MCAD protein conformations, and accordingly, that Lon can recognise a broader spectrum of MCAD protein conformations.
Collapse
Affiliation(s)
- Jakob Hansen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Faculty of Health Sciences, University of Aarhus, Denmark.
| | | | | |
Collapse
|
322
|
Chow IT, Barnett ME, Zolkiewski M, Baneyx F. The N-terminal domain ofEscherichia coliClpB enhances chaperone function. FEBS Lett 2005; 579:4242-8. [PMID: 16051221 DOI: 10.1016/j.febslet.2005.06.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/09/2005] [Accepted: 06/29/2005] [Indexed: 11/16/2022]
Abstract
ClpB/Hsp104 collaborates with the Hsp70 system to promote the solubilization and reactivation of proteins that misfold and aggregate following heat shock. In Escherichia coli and other eubacteria, two ClpB isoforms (ClpB95 and ClpB80) that differ by the presence or absence of a highly mobile 149-residues long N-terminus domain are synthesized from the same transcript. Whether and how the N-domain contributes to ClpB chaperone activity remains controversial. Here, we show that, whereas fusion of a 20-residues long hexahistidine extension to the N-terminus of ClpB95 interferes with its in vivo and in vitro activity, the same tag has no detectable effect on ClpB80 function. In addition, ClpB95 is more effective than ClpB80 at restoring the folding of the model protein preS2-beta-galactosidase as stress severity increases, and is superior to ClpB80 in improving the high temperature growth and low temperature recovery of dnaK756 DeltaclpB cells. Our results are consistent with a model in which the N-domain of ClpB95 maximizes substrate processing under conditions where the cellular supply of free DnaK-DnaJ is limiting.
Collapse
Affiliation(s)
- I-Ting Chow
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
323
|
Andersen MT, Brøndsted L, Pearson BM, Mulholland F, Parker M, Pin C, Wells JM, Ingmer H. Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. MICROBIOLOGY-SGM 2005; 151:905-915. [PMID: 15758235 DOI: 10.1099/mic.0.27513-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. The role of a homologue of the negative transcriptional regulatory protein HspR, which in other organisms participates in the control of the heat-shock response, was investigated. Following inactivation of hspR in C. jejuni, members of the HspR regulon were identified by DNA microarray transcript profiling. In agreement with the predicted role of HspR as a negative regulator of genes involved in the heat-shock response, it was observed that the transcript amounts of 13 genes were increased in the hspR mutant, including the chaperone genes dnaK, grpE and clpB, and a gene encoding the heat-shock regulator HrcA. Proteomic analysis also revealed increased synthesis of the heat-shock proteins DnaK, GrpE, GroEL and GroES in the absence of HspR. The altered expression of chaperones was accompanied by heat sensitivity, as the hspR mutant was unable to form colonies at 44 degrees C. Surprisingly, transcriptome analysis also revealed a group of 17 genes with lower transcript levels in the hspR mutant. Of these, eight were predicted to be involved in the formation of the flagella apparatus, and the decreased expression is likely to be responsible for the reduced motility and ability to autoagglutinate that was observed for hspR mutant cells. Electron micrographs showed that mutant cells were spiral-shaped and carried intact flagella, but were elongated compared to wild-type cells. The inactivation of hspR also reduced the ability of Campylobacter to adhere to and invade human epithelial INT-407 cells in vitro, possibly as a consequence of the reduced motility or lower expression of the flagellar export apparatus in hspR mutant cells. It was concluded that, in C. jejuni, HspR influences the expression of several genes that are likely to have an impact on the ability of the bacterium to successfully survive in food products and subsequently infect the consumer.
Collapse
Affiliation(s)
- Marianne Thorup Andersen
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1958 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1958 Frederiksberg C, Denmark
| | | | | | - Mary Parker
- Institute of Food Research, Colney, Norwich NR4 7UA, UK
| | - Carmen Pin
- Institute of Food Research, Colney, Norwich NR4 7UA, UK
| | - Jerry M Wells
- Institute of Food Research, Colney, Norwich NR4 7UA, UK
| | - Hanne Ingmer
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
324
|
Schrödel A, de Marco A. Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC BIOCHEMISTRY 2005; 6:10. [PMID: 15927061 PMCID: PMC1175841 DOI: 10.1186/1471-2091-6-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 05/31/2005] [Indexed: 11/21/2022]
Abstract
Background The first aim of the work was to analyze in detail the complexity of the aggregates formed upon overexpression of recombinant proteins in E. coli. A sucrose step gradient succeeded in separating aggregate subclasses of a GFP-GST fusion protein with specific biochemical and biophysical features, providing a novel approach for studying recombinant protein aggregates. Results The total lysate separated into 4 different fractions whereas only the one with the lowest density was detected when the supernatant recovered after ultracentrifugation was loaded onto the sucrose gradient. The three further aggregate sub-classes were otherwise indistinctly precipitated in the pellet. The distribution of the recombinant protein among the four subclasses was strongly dependent on the DnaK availability, with larger aggregates formed in Dnak- mutants. The aggregation state of the GFP-GST recovered from each of the four fractions was further characterized by examining three independent biochemical parameters. All of them showed an increased complexity of the recombinant protein aggregates starting from the top of the sucrose gradient (lower mass aggregates) to the bottom (larger mass aggregates). These results were also confirmed by electron microscopy analysis of the macro-structure formed by the different aggregates. Large fibrils were rapidly assembled when the recombinant protein was incubated in the presence of cellular extracts, but the GFP-GST fusion purified soon after lysis failed to undergo amyloidation, indicating that other cell components probably participate in the active formation of large aggregates. Finally, we showed that aggregates of lower complexity are more efficiently disaggregated by a combination of molecular chaperones. Conclusion An additional analytical tool is now available to investigate the aggregation process and separate subclasses by their mass. It was possible to demonstrate the complexity of the aggregation pattern of a recombinant protein expressed in bacteria and to characterize biochemically the different aggregate subclasses. Furthermore, we have obtained evidence that the cellular environment plays a role in the development of the aggregates and the problem of the artifact generation of aggregates has been discussed using in vitro models. Finally, the possibility of separating aggregate fractions with different complexities offers new options for biotechnological strategies aimed at improving the yield of folded and active recombinant proteins.
Collapse
Affiliation(s)
- Andrea Schrödel
- EMBL, Protein Expression Core Facility, Meyerhofstr. 1, D-69117, Heidelberg – Germany
| | - Ario de Marco
- EMBL, Protein Expression Core Facility, Meyerhofstr. 1, D-69117, Heidelberg – Germany
| |
Collapse
|
325
|
Stegemann J, Ventzki R, Schrödel A, de Marco A. Comparative analysis of protein aggregates by blue native electrophoresis and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a three-dimensional geometry gel. Proteomics 2005; 5:2002-9. [PMID: 15841497 DOI: 10.1002/pmic.200401091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe the comparative analysis of protein aggregates by combining blue native electrophoresis and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using a 3-D geometry gel for simultaneous processing of many samples. The first native electrophoresis step, separating the aggregates, is carried out for a series of samples in parallel lanes within a slab gel. This gel is then placed on the top surface of a cylindrical, 3-D geometry gel for the second denaturing electrophoresis step, separating the proteins composing the aggregates. The samples migrate parallel to the vertical axis of the gel cylinder. Data are acquired online by photodetection of laser-induced fluorescence during electrophoresis. For this purpose, the samples are fluorescently labeled within the slab gel after the first separation step. A 3-D geometry gel separates the equivalent of many conventional SDS slab gels represented by vertical layers in the 3-D gel body. In this way, many samples are analyzed in the same gel under identical conditions, improving comparability and resolution and making the process considerably more efficient. This novel technique allowed the identification of several aggregate classes of recombinant proteins expressed in bacteria. We observed that proteins preferentially bind to homolog polypeptides, but also seem to form a trapping mesh co-aggregating with other proteins. The aggregation pattern revealed by this technique supplements data obtained from standard two-dimensional gel electrophoresis analysis. We expect interesting applications, for instance in aggregate monitoring of clinical samples. It should be feasible to quickly gain a diagnostic picture during amyloid-related neurodegenerative disease development or to observe drug effects on protein aggregation.
Collapse
Affiliation(s)
- Josef Stegemann
- Scientific Core Facilities, Services and Technology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
326
|
Abstract
Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
Collapse
Affiliation(s)
- M. P. Mayer
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - B. Bukau
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
327
|
Ventura S. Sequence determinants of protein aggregation: tools to increase protein solubility. Microb Cell Fact 2005; 4:11. [PMID: 15847694 PMCID: PMC1087874 DOI: 10.1186/1475-2859-4-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 04/22/2005] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. However, very often the target protein accumulates into insoluble aggregates in a misfolded and biologically inactive form. Bacterial inclusion bodies are major bottlenecks in protein production and are hampering the development of top priority research areas such structural genomics. Inclusion body formation was formerly considered to occur via non-specific association of hydrophobic surfaces in folding intermediates. Increasing evidence, however, indicates that protein aggregation in bacteria resembles to the well-studied process of amyloid fibril formation. Both processes appear to rely on the formation of specific, sequence-dependent, intermolecular interactions driving the formation of structured protein aggregates. This similarity in the mechanisms of aggregation will probably allow applying anti-aggregational strategies already tested in the amyloid context to the less explored area of protein aggregation inside bacteria. Specifically, new sequence-based approaches appear as promising tools to tune protein aggregation in biotechnological processes.
Collapse
Affiliation(s)
- Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
328
|
Frees D, Chastanet A, Qazi S, Sørensen K, Hill P, Msadek T, Ingmer H. Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 2005; 54:1445-62. [PMID: 15554981 DOI: 10.1111/j.1365-2958.2004.04368.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Hsp100/Clp ATPases constitute a family of closely related proteins of which some members function solely as chaperones whereas others additionally can associate with the unrelated ClpP peptidase forming a Clp proteolytic complex. We have investigated the role of four Clp ATPases in the versatile pathogen, Staphylococcus aureus. Previously, we showed that ClpX is required for expression of major virulence factors and for virulence of S. aureus, but not for survival during heat shock. In the present study, we have inactivated clpC, clpB and clpL and, while none of these mutations affected toxin production, both ClpC and ClpB and to a minor extent ClpL were required for intracellular multiplication within bovine mammary epithelial cells. These defects were paralleled by an inability of the clpC mutant to grow at high temperature and of the clpB mutant to induce thermotolerance indicating that the protective functions of these proteins are required both at high temperature and during infection. By primer extension analysis and footprint studies, we show that expression of clpC and clpB is controlled by the negative heat-shock regulator, CtsR, and that ClpC is required for its repressor activity. Thus, ClpC is a likely sensor of stress encountered during both environmental stress and infection. In addition to virulence factor production the ability to form biofilms is of importance to S. aureus as a nosocomial pathogen. Interestingly, biofilm formation was reduced in the absence of ClpX or ClpC whereas it was enhanced in the absence of ClpP. Thus, our data show that Clp proteolytic complexes and the Clp ATPases control several key processes of importance to the success of S. aureus as a pathogen.
Collapse
Affiliation(s)
- Dorte Frees
- Department of Veterinary Pathobiology, Royal Veterinary and Agricultural University (KVL), Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
329
|
Watanabe YH, Takano M, Yoshida M. ATP binding to nucleotide binding domain (NBD)1 of the ClpB chaperone induces motion of the long coiled-coil, stabilizes the hexamer, and activates NBD2. J Biol Chem 2005; 280:24562-7. [PMID: 15809298 DOI: 10.1074/jbc.m414623200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone ClpB can rescue the heat-damaged proteins from an aggregated state in cooperation with other chaperones. It has two nucleotide binding domains (NBD1 and NBD2) and forms a hexamer ring in a manner dependent on ATP binding to NBD1. In the crystal structure of ClpB with both NBDs filled by nucleotides, the linker between two NBDs forms an 85-A-long coiled-coil that extends on the outside of the hexamer and leans to NBD1. To probe the possible motion of the coiled-coil, we tested the accessibility of a labeling reagent, fluorescence change of a labeled dye, and cross-linking between the coiled-coil and NBD1 by using the mutants with defective NBD1 or NBD2. The results suggest that the coiled-coil is more or less parallel to the main body of ClpB in the absence of nucleotide and that ATP binding to NBD1 brings it to the leaning position as seen in the crystal structure. This motion results in stabilization of the hexamer form of ClpB and promotion of ATP hydrolysis at NBD2.
Collapse
Affiliation(s)
- Yo-Hei Watanabe
- Chemical Resources Laboratory, R-1, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8503, Japan
| | | | | |
Collapse
|
330
|
Abstract
The past 20 years have seen enormous progress in the understanding of the mechanisms used by the enteric bacterium Escherichia coli to promote protein folding, support protein translocation and handle protein misfolding. Insights from these studies have been exploited to tackle the problems of inclusion body formation, proteolytic degradation and disulfide bond generation that have long impeded the production of complex heterologous proteins in a properly folded and biologically active form. The application of this information to industrial processes, together with emerging strategies for creating designer folding modulators and performing glycosylation all but guarantee that E. coli will remain an important host for the production of both commodity and high value added proteins.
Collapse
Affiliation(s)
- François Baneyx
- Departments of Chemical Engineering and Bioengineering, University of Washington, Box 351750, Seattle, Washington 98195, USA.
| | | |
Collapse
|
331
|
|
332
|
LeThanh H, Neubauer P, Hoffmann F. The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies. Microb Cell Fact 2005; 4:6. [PMID: 15707488 PMCID: PMC552319 DOI: 10.1186/1475-2859-4-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 02/11/2005] [Indexed: 11/23/2022] Open
Abstract
Background The permanently impaired protein folding during recombinant protein production resembles the stress encountered at extreme temperatures, under which condition the putative holding chaperones, IbpA/IbpB, play an important role. We evaluated the impact of ibpAB deletion or overexpression on stress responses and the inclusion body metabolism during production of yeast α-glucosidase in Escherichia coli. Results Deletion of ibpAB, which is innocuous under physiological conditions, impaired culture growth during α-glucosidase production. At higher temperatures, accumulation of stress proteins including disaggregation chaperones (DnaK and ClpB) and components of the RNA degradosome, enolase and PNP, was intensified. Overexpression of ibpAB, conversely, suppressed the heat-shock response under these conditions. Inclusion bodies of α-glucosidase started to disaggregate after arrest of protein synthesis in a ClpB and DnaK dependent manner, followed by degradation or reactivation. IbpA/IbpB decelerated disaggregation and degradation at higher temperatures, but did hardly influence the disaggregation kinetics at 15°C. Overexpression of ibpAB concomitant to production at 42°C increased the yield of α-glucosidase activity during reactivation. Conclusions IbpA/IbpB attenuate the accumulation of stress proteins, and – at high temperatures – save disaggregated proteins from degradation, at the cost, however, of delayed removal of aggregates. Without ibpAB, inclusion body removal is faster, but cells encounter more intense stress and growth impairment. IbpA/IbpB thus exert a major function in cell protection during stressful situations.
Collapse
Affiliation(s)
- Ha LeThanh
- Institute for Biotechnology, Department of Biochemistry/Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Peter Neubauer
- Bioprocess Engineering Laboratory, P.O. Box 4300, Department of Process and Environmental Engineering, Biocenter Oulu, University of Oulu, FIN-90014 Oulu, Finland
| | - Frank Hoffmann
- Institute for Biotechnology, Department of Biochemistry/Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| |
Collapse
|
333
|
Siegenthaler RK, Christen P. The importance of having thermosensor control in the DnaK chaperone system. J Biol Chem 2005; 280:14395-401. [PMID: 15705578 DOI: 10.1074/jbc.m413803200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to the sigma(32)-mediated heat shock response, the DnaK/DnaJ/GrpE molecular chaperone system of Escherichia coli directly adapts to elevated temperatures by sequestering a higher fraction of substrate. This immediate heat shock response is due to the differential temperature dependence of the activity of DnaJ, which stimulates the hydrolysis of DnaK-bound ATP, and the activity of GrpE, which facilitates ADP/ATP exchange and converts DnaK from its high-affinity ADP-liganded state into its low-affinity ATP-liganded state. GrpE acts as thermosensor with its ADP/ATP exchange activity decreasing above 40 degrees C. To assess the importance of this reversible thermal adaptation for the chaperone action of the DnaK/DnaJ/GrpE system during heat shock, we used glucose-6-phosphate dehydrogenase and luciferase as substrates. We compared the performance of wild-type GrpE as a component of the chaperone system with that of GrpE R40C. In this mutant, the thermosensing helices are stabilized with an intersubunit disulfide bond and its nucleotide exchange activity thus increases continuously with increasing temperature. Wild-type GrpE with intact thermosensor proved superior to GrpE R40C with desensitized thermosensor. The chaperone system with wild-type GrpE yielded not only a higher fraction of refolding-competent protein at the end of a heat shock but also protected luciferase more efficiently against inactivation during heat shock. Consistent with their differential thermal behavior, the protective effects of wild-type GrpE and GrpE R40C diverged more and more with increasing temperature. Thus, the direct thermal adaptation of the DnaK chaperone system by thermosensing GrpE is essential for efficient chaperone action during heat shock.
Collapse
|
334
|
Lee U, Wie C, Escobar M, Williams B, Hong SW, Vierling E. Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. THE PLANT CELL 2005; 17:559-71. [PMID: 15659638 PMCID: PMC548826 DOI: 10.1105/tpc.104.027540] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/11/2004] [Indexed: 05/20/2023]
Abstract
We have defined amino acids important for function of the Arabidopsis thaliana Hsp100/ClpB chaperone (AtHsp101) in acquired thermotolerance by isolating recessive, loss-of-function mutations and a novel semidominant, gain-of-function allele [hot1-4 (A499T)]. The hot1-4 allele is unusual in that it not only fails to develop thermotolerance to 45 degrees C after acclimation at 38 degrees C, but also is sensitive to 38 degrees C, which is a permissive temperature for wild-type and loss-of-function mutants. hot1-4 lies between nucleotide binding domain 1 (NBD1) and NBD2 in a coiled-coil domain that is characteristic of the Hsp100/ClpB proteins. We then isolated two classes of intragenic suppressor mutations of hot1-4: loss-of-function mutations (Class 1) that eliminated the 38 degrees C sensitivity, but did not restore thermotolerance function to hot1-4, and Class 2 suppressors that restored acquired thermotolerance function to hot1-4. Location of the hot1-4 Class 2 suppressors supports a functional link between the coiled-coil domain and both NBD1 and the axial channel of the Hsp100/ClpB hexamer. In addition, the strongest Class 2 suppressors restored solubility of aggregated small heat shock proteins (sHsps) after heat stress, revealing genetic interaction of the Hsp100/ClpB and sHsp chaperone systems. These results also demonstrate that quantitative phenotypes can be used for in vivo genetic dissection of protein mechanism in Arabidopsis.
Collapse
Affiliation(s)
- Ung Lee
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
335
|
Schlieker C, Tews I, Bukau B, Mogk A. Solubilization of aggregated proteins by ClpB/DnaK relies on the continuous extraction of unfolded polypeptides. FEBS Lett 2005; 578:351-6. [PMID: 15589844 DOI: 10.1016/j.febslet.2004.11.051] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 11/04/2004] [Accepted: 11/17/2004] [Indexed: 11/24/2022]
Abstract
The AAA+ chaperone ClpB solubilizes in cooperation with the DnaK chaperone system aggregated proteins. The mechanistic features of the protein disaggregation process are poorly understood. Here, we investigated the mechanism of ClpB/DnaK-dependent solubilization of heat-aggregated malate dehydrogenase (MDH) by following characteristics of MDH aggregates during the disaggregation reaction. We demonstrate that disaggregation is achieved by the continuous extraction of unfolded MDH molecules and not by fragmentation of large MDH aggregates. These findings support a ClpB-dependent threading mechanism as an integral part of the disaggregation reaction.
Collapse
Affiliation(s)
- Christian Schlieker
- ZMBH, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | | | |
Collapse
|
336
|
Matuszewska M, Kuczyńska-Wiśnik D, Laskowska E, Liberek K. The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 2005; 280:12292-8. [PMID: 15665332 DOI: 10.1074/jbc.m412706200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small heat shock proteins are ubiquitous stress proteins proposed to increase cellular tolerance to heat shock conditions. We isolated IbpA, the Escherichia coli small heat shock protein, and tested its ability to keep thermally inactivated substrate proteins in a disaggregation competent state. We found that the presence of IbpA alone during substrate thermal inactivation only weakly influences the ability of the bi-chaperone Hsp70-Hsp100 system to disaggregate aggregated substrate. Similar minor effects were observed for IbpB alone, the other E. coli small heat shock protein. However, when both IbpA and IbpB are simultaneously present during substrate inactivation they efficiently stabilize thermally aggregated proteins in a disaggregation competent state. The properties of the aggregated protein substrates are changed in the presence of IbpA and IbpB, resulting in lower hydrophobicity and the ability of aggregates to withstand sizing chromatography conditions. IbpA and IbpB form mixed complexes, and IbpA stimulates association of IbpB with substrate.
Collapse
Affiliation(s)
- Marlena Matuszewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | | | | | | |
Collapse
|
337
|
Piszczek G, Rozycki J, Singh SK, Ginsburg A, Maurizi MR. The molecular chaperone, ClpA, has a single high affinity peptide binding site per hexamer. J Biol Chem 2005; 280:12221-30. [PMID: 15657062 DOI: 10.1074/jbc.m411733200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrate recognition by Clp chaperones is dependent on interactions with motifs composed of specific peptide sequences. We studied the binding of short motif-bearing peptides to ClpA, the chaperone component of the ATP-dependent ClpAP protease of Escherichia coli in the presence of ATPgammaS and Mg2+ at pH 7.5. Binding was measured by isothermal titration calorimetry (ITC) using the peptide, AANDENYALAA, which corresponds to the SsrA degradation motif found at the C terminus of abnormal nascent polypeptides in vivo. One SsrA peptide was bound per hexamer of ClpA with an association constant (K(A)) of 5 x 10(6) m(-1). Binding was also assayed by changes in fluorescence of an N-terminal dansylated SsrA peptide, which bound with the same stoichiometry of one per ClpA hexamer (K(A) approximately 1 x 10(7) m(-1)). Similar results were obtained when ATP was substituted for ATPgammaS at 6 degrees C. Two additional peptides, derived from the phage P1 RepA protein and the E. coli HemA protein, which bear different substrate motifs, were competitive inhibitors of SsrA binding and bound to ClpA hexamers with K(A)' > 3 x 10(7) m(-1). DNS-SsrA bound with only slightly reduced affinity to deletion mutants of ClpA missing either the N-terminal domain or the C-terminal nucleotide-binding domain, indicating that the binding site for SsrA lies within the N-terminal nucleotide-binding domain. Because only one protein at a time can be unfolded and translocated by ClpA hexamers, restricting the number of peptides initially bound should avoid nonproductive binding of substrates and aggregation of partially processed proteins.
Collapse
Affiliation(s)
- Grzegorz Piszczek
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, MD 20892-8012, USA.
| | | | | | | | | |
Collapse
|
338
|
Liu CP, Perrett S, Zhou JM. Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding. J Biol Chem 2005; 280:13315-20. [PMID: 15632130 DOI: 10.1074/jbc.m414151200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trigger factor (TF) is the first chaperone encountered by the nascent chain in bacteria and forms a stoichiometric complex with the ribosome. However, the functional significance of the high cytosolic concentration of uncomplexed TF, the majority of which is dimeric, is unknown. To gain insight into TF function, we investigated the TF concentration dependence of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reactivation yield in the presence and absence of the DnaK-DnaJ-GrpE chaperone system in vitro. Cross-linking results indicate that the observed decrease in the reactivation yield of GAPDH at high concentrations of TF is due to the formation of a stable complex between TF dimer and GAPDH intermediates. In the absence of TF, or at low TF concentrations, the DnaK-DnaJ-GrpE chaperone system had negligible effect on the GAPDH refolding yield. However, GAPDH intermediates bound and held by dimeric TF could be specifically rescued by the DnaK-DnaJ-GrpE chaperone system in an ATP-dependent manner. This indicates the potential of TF, in its dimeric form, to act as a binding chaperone, maintaining non-native proteins in a refolding competent conformation and cooperating with downstream molecular chaperones to facilitate post-translational or post-stress protein folding.
Collapse
Affiliation(s)
- Chuan-Peng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | |
Collapse
|
339
|
Schlieker C, Zentgraf H, Dersch P, Mogk A. ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem 2005; 386:1115-27. [PMID: 16307477 DOI: 10.1515/bc.2005.128] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hsp100/Clp proteins are key players in the protein quality control network of prokaryotic cells and function in the degradation and refolding of misfolded or aggregated proteins. Here we report the identification of a new class of Hsp100/Clp proteins, termed ClpV (virulent strain), that are present in bacteria interacting with eukaryotic cells, including human pathogens. The ClpV proteins are most similar to ClpB proteins within the Hsp100/Clp family, but cluster in a separate phylogenetic tree with a remarkable distance to ClpB. ClpV representatives from Salmonella typhimurium and enteropathogenic Escherichia coli form oligomeric assemblies and display ATP hydrolysis rates comparable to ClpB. However, unlike ClpB, both ClpV proteins failed to solubilize aggregated proteins. This lack of disaggregation activity correlated with the inability of ClpB model substrates to stimulate the ATPase activity of ClpV proteins, indicating differences in substrate selection. Furthermore, we show that clpV genes are generally organized in a conserved gene cluster, encoding a potential secretion system, and we demonstrate that increased levels of a dominant negative variant of either S. typhimurium or Yersinia pseudotuberculosis ClpV strongly reduce the ability of these pathogenic bacteria to invade epithelial cells. We propose a role of this novel and unique class of AAA+ proteins in bacteria-host cell interactions.
Collapse
Affiliation(s)
- Christian Schlieker
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
340
|
García-Fruitós E, Carrió MM, Arís A, Villaverde A. Folding of a misfolding-prone β-galactosidase in absence of DnaK. Biotechnol Bioeng 2005; 90:869-75. [PMID: 15849697 DOI: 10.1002/bit.20496] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In absence of chaperone DnaK, bacterially produced misfolding-prone proteins aggregate into large inclusion bodies, but still a significant part of these polypeptides remains in the soluble cell fraction. The functional analysis of the model beta-galactosidase fusion protein VP1LAC produced in DnaK(-) cells has revealed that the soluble version exhibits important folding defects and that it is less stable and less active than when produced in wild-type DnaK(+) cells. In addition, we have observed that the induction of gene expression at the very late exponential phase enhances twofold the stability of VP1LAC, a fact that in DnaK(-) background results in a dramatic increase of its specific activity up to phenotypically detectable levels. These results indicate that the chaperone DnaK is critical for the folding of misfolding-prone proteins and also that the soluble form reached in its absence by a fraction of polypeptides is not necessarily supportive of biological activity. In the case of E. coli beta-galactosidase, the catalytic activity requires assembling into tetramers and the fine organization of the activating interfaces holding the active sites, what might not be properly reached in absence of DnaK.
Collapse
Affiliation(s)
- Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
341
|
Zhang C, Guy CL. Co-immunoprecipitation of Hsp101 with cytosolic Hsc70. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:13-8. [PMID: 15763661 DOI: 10.1016/j.plaphy.2004.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 10/20/2004] [Indexed: 05/24/2023]
Abstract
In animals and yeast, cytosolic Hsp70s function in concert with other molecular chaperones. Hsp70 is a major chaperone in the Hsp90 multi-chaperone complexes that participate in maturation of steroid receptors and several other proteins. Hsp70s also appear to form a complex with Hsp90 and Hsp110/sHsp. A 100 kDa protein was co-immunoprecipitated with cytosolic Hsc70 from maize seedlings (Zea mays). The presence of this complex was further confirmed using gel-filtration chromatography. Mass spectrometric analysis showed that the 100 kDa protein is homologous with Arabidopsis Hsp101. Treatment with apyrase enhanced the co-immunoprecipitation of Hsp101 with Hsc70, while ATP had the opposite effect. In the presence of carboxymethylated alpha-lactalbumin (CMLA), which is permanently unfolded, the complex dissociated. Based on these observations, it is concluded that Hsc70 and Hsp101 are present in a complex in the plant cytosol.
Collapse
Affiliation(s)
- Chun Zhang
- Plant Molecular and Cellular Biology Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611-0675, USA
| | | |
Collapse
|
342
|
Lee S, Sowa ME, Choi JM, Tsai FTF. The ClpB/Hsp104 molecular chaperone-a protein disaggregating machine. J Struct Biol 2004; 146:99-105. [PMID: 15037241 DOI: 10.1016/j.jsb.2003.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 11/06/2003] [Indexed: 11/16/2022]
Abstract
ClpB and Hsp104 (ClpB/Hsp104) are essential proteins of the heat-shock response and belong to the class 1 family of Clp/Hsp100 AAA+ ATPases. Members of this family form large ring structures and contain two AAA+ modules, which consist of a RecA-like nucleotide-binding domain (NBD) and an alpha-helical domain. Furthermore, ClpB/Hsp104 has a longer middle region, the ClpB/Hsp104-linker, which is essential for chaperone activity. Unlike other Clp/Hsp100 proteins, however, ClpB/Hsp104 neither associates with a cellular protease nor directs the degradation of its substrate proteins. Rather, ClpB/Hsp104 is a bona fide molecular chaperone, which has the remarkable ability to rescue proteins from an aggregated state. The full recovery of these proteins requires the assistance of the cognate DnaK/Hsp70 chaperone system. The mechanism of this "bi-chaperone" network, however, remains elusive. Here we review the current understanding of the structure-function relationship of the ClpB/Hsp104 molecular chaperone and its role in protein disaggregation.
Collapse
Affiliation(s)
- Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston TX, 77030, USA
| | | | | | | |
Collapse
|
343
|
Mogk A, Dougan D, Weibezahn J, Schlieker C, Turgay K, Bukau B. Broad yet high substrate specificity: the challenge of AAA+ proteins. J Struct Biol 2004; 146:90-8. [PMID: 15037240 DOI: 10.1016/j.jsb.2003.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2003] [Revised: 10/09/2003] [Indexed: 11/21/2022]
Abstract
AAA+ proteins remodel target substrates in an ATP-dependent manner, an activity that is of central importance for a plethora of cellular processes. While sharing a similar hexameric structure AAA+ proteins must exhibit differences in substrate recognition to fulfil their diverse biological functions. Here we describe strategies of AAA+ proteins to ensure substrate specificity. AAA domains can directly mediate substrate recognition, however, in general extra domains, added to the core AAA domain, control substrate interaction. Such extra domains may either directly recognize substrates or serve as a platform for adaptor proteins, which transfer bound substrates to their AAA+ partner proteins. The positioning of adaptor proteins in substrate recognition can enable them to control the activity of their partner proteins by coupling AAA+ protein activation to substrate availability.
Collapse
Affiliation(s)
- Axel Mogk
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany.
| | | | | | | | | | | |
Collapse
|
344
|
Tanaka N, Tani Y, Hattori H, Tada T, Kunugi S. Interaction of the N-terminal domain of Escherichia coli heat-shock protein ClpB and protein aggregates during chaperone activity. Protein Sci 2004; 13:3214-21. [PMID: 15537752 PMCID: PMC2287305 DOI: 10.1110/ps.04780704] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/22/2004] [Accepted: 08/05/2004] [Indexed: 10/26/2022]
Abstract
The Escherichia coli heat-shock protein ClpB reactivates protein aggregates in cooperation with the DnaK chaperone system. The ClpB N-terminal domain plays an important role in the chaperone activity, but its mechanism remains unknown. In this study, we investigated the effect of the ClpB N-terminal domain on malate dehydrogenase (MDH) refolding. ClpB reduced the yield of MDH refolding by a strong interaction with the intermediate. However, the refolding kinetics was not affected by deletion of the ClpB N-terminal domain (ClpBDeltaN), indicating that MDH refolding was affected by interaction with the N-terminal domain. In addition, the MDH refolding yield increased 50% in the presence of the ClpB N-terminal fragment (ClpBN). Fluorescence polarization analysis showed that this chaperone-like activity is explained best by a weak interaction between ClpBN and the reversible aggregate of MDH. The dissociation constant of ClpBN and the reversible aggregate was estimated as 45 muM from the calculation of the refolding kinetics. Amino acid substitutions at Leu 97 and Leu 110 on the ClpBN surface reduced the chaperone-like activity and the affinity to the substrate. In addition, these residues are involved in stimulation of ATPase activity in ClpB. Thus, Leu 97 and Leu 110 are responsible for the substrate recognition and the regulation of ATP-induced ClpB conformational change.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Polymer Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.
| | | | | | | | | |
Collapse
|
345
|
Allen KD, Wegrzyn RD, Chernova TA, Müller S, Newnam GP, Winslett PA, Wittich KB, Wilkinson KD, Chernoff YO. Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genetics 2004; 169:1227-42. [PMID: 15545639 PMCID: PMC1449557 DOI: 10.1534/genetics.104.037168] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[PSI(+)] is a prion isoform of the yeast release factor Sup35. In some assays, the cytosolic chaperones Ssa1 and Ssb1/2 of the Hsp70 family were previously shown to exhibit "pro-[PSI(+)]" and "anti-[PSI(+)]" effects, respectively. Here, it is demonstrated for the first time that excess Ssa1 increases de novo formation of [PSI(+)] and that pro-[PSI(+)] effects of Ssa1 are shared by all other Ssa proteins. Experiments with chimeric constructs show that the peptide-binding domain is a major determinant of differences in the effects of Ssa and Ssb proteins on [PSI(+)]. Surprisingly, overproduction of either chaperone increases loss of [PSI(+)] when Sup35 is simultaneously overproduced. Excess Ssa increases both the average size of prion polymers and the proportion of monomeric Sup35 protein. Both in vivo and in vitro experiments uncover direct physical interactions between Sup35 and Hsp70 proteins. The proposed model postulates that Ssa stimulates prion formation and polymer growth by stabilizing misfolded proteins, which serve as substrates for prion conversion. In the case of very large prion aggregates, further increase in size may lead to the loss of prion activity. In contrast, Ssb either stimulates refolding into nonprion conformation or targets misfolded proteins for degradation, in this way counteracting prion formation and propagation.
Collapse
Affiliation(s)
- Kim D Allen
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332-0363, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Gao H, Wang Y, Liu X, Yan T, Wu L, Alm E, Arkin A, Thompson DK, Zhou J. Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 2004; 186:7796-803. [PMID: 15516594 PMCID: PMC524878 DOI: 10.1128/jb.186.22.7796-7803.2004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 05/26/2004] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress by using whole-genome DNA microarrays for S. oneidensis. Approximately 15% (n = 711) of the total predicted S. oneidensis genes (n = 4,648) represented on the microarray were significantly up- or downregulated (P < 0.05) over a 25-min period after shift to the heat shock temperature. As expected, the majority of the genes that showed homology to known chaperones and heat shock proteins in other organisms were highly induced. In addition, a number of predicted genes, including those encoding enzymes in glycolysis and the pentose cycle, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed downregulated coexpression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, a putative regulatory site with high conservation to the Escherichia coli sigma32-binding consensus sequence was identified upstream of a number of heat-inducible genes.
Collapse
Affiliation(s)
- Haichun Gao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban EU, Dougan DA, Tsai FTF, Mogk A, Bukau B. Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB. Cell 2004; 119:653-65. [PMID: 15550247 DOI: 10.1016/j.cell.2004.11.027] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2004] [Revised: 08/20/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
Cell survival under severe thermal stress requires the activity of the ClpB (Hsp104) AAA+ chaperone that solubilizes and reactivates aggregated proteins in concert with the DnaK (Hsp70) chaperone system. How protein disaggregation is achieved and whether survival is solely dependent on ClpB-mediated elimination of aggregates or also on reactivation of aggregated proteins has been unclear. We engineered a ClpB variant, BAP, which associates with the ClpP peptidase and thereby is converted into a degrading disaggregase. BAP translocates substrates through its central pore directly into ClpP for degradation. ClpB-dependent translocation is demonstrated to be an integral part of the disaggregation mechanism. Protein disaggregation by the BAP/ClpP complex remains dependent on DnaK, defining a role for DnaK at early stages of the disaggregation reaction. The activity switch of BAP to a degrading disaggregase does not support thermotolerance development, demonstrating that cell survival during severe thermal stress requires reactivation of aggregated proteins.
Collapse
Affiliation(s)
- Jimena Weibezahn
- Zentrum für Molekulare Biologie der Universität Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Akoev V, Gogol EP, Barnett ME, Zolkiewski M. Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB. Protein Sci 2004; 13:567-74. [PMID: 14978298 PMCID: PMC1828688 DOI: 10.1110/ps.03422604] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ClpB is a member of the bacterial protein-disaggregating chaperone machinery and belongs to the AAA(+) superfamily of ATPases associated with various cellular activities. The mechanism of ClpB-assisted reactivation of strongly aggregated proteins is unknown and the oligomeric state of ClpB has been under discussion. Sedimentation equilibrium and sedimentation velocity show that, under physiological ionic strength in the absence of nucleotides, ClpB from Escherichia coli undergoes reversible self-association that involves protein concentration-dependent populations of monomers, heptamers, and intermediate-size oligomers. Under low ionic strength conditions, a heptamer becomes the predominant form of ClpB. In contrast, ATP gamma S, a nonhydrolyzable ATP analog, as well as ADP stabilize hexameric ClpB. Consistently, electron microscopy reveals that ring-type oligomers of ClpB in the absence of nucleotides are larger than those in the presence of ATP gamma S. Thus, the binding of nucleotides without hydrolysis of ATP produces a significant change in the self-association equilibria of ClpB: from reactions supporting formation of a heptamer to those supporting a hexamer. Our results show how ClpB and possibly other related AAA(+) proteins can translate nucleotide binding into a major structural transformation and help explain why previously published electron micrographs of some AAA(+) ATPases detected both six- and sevenfold particle symmetry.
Collapse
Affiliation(s)
- Vladimir Akoev
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
349
|
Zzaman S, Reddy JM, Bastia D. The DnaK-DnaJ-GrpE chaperone system activates inert wild type pi initiator protein of R6K into a form active in replication initiation. J Biol Chem 2004; 279:50886-94. [PMID: 15485812 DOI: 10.1074/jbc.m407531200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasmid R6K is an interesting model system for investigating initiation of DNA replication, not only near the primary binding sites of the initiator protein pi but also at a distance, caused by pi -mediated DNA looping. An important milestone in the mechanistic analysis of this replicon was the development of a reconstituted replication system consisting of 22 different highly purified proteins (Abhyankar, M. A., Zzaman, S., and Bastia, D. (2003) J. Biol. Chem. 278, 45476-45484). Although the in vitro reconstituted system promotes ori gamma-specific initiation of replication by a mutant form of the initiator called pi*, the wild type (WT) pi is functionally inert in this system. Here we show that the chaperone DnaK along with its co-chaperone DnaJ and the nucleotide exchange factor GrpE were needed to activate WT pi and caused it to initiate replication in vitro at the correct origin. We show further that the reaction was relatively chaperone-specific and that other chaperones, such as ClpB and ClpX, were incapable of activating WT pi. The molecular mechanism of activation appeared to be a chaperone-catalyzed facilitation of dimeric inert WT pi into iteron-bound monomers. Protein-protein interaction analysis by enzyme-linked immunosorbent assay revealed that, in the absence of ATP, DnaJ directly interacted with pi but its binary interactions with DnaK and GrpE and with ClpB and ClpX were at background levels, suggesting that pi is recruited by protein-protein interaction with DnaJ and then fed into the DnaK chaperone machine to promote initiator activation.
Collapse
Affiliation(s)
- Shamsu Zzaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
350
|
Mogk A, Deuerling E, Vorderwülbecke S, Vierling E, Bukau B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 2004; 50:585-95. [PMID: 14617181 DOI: 10.1046/j.1365-2958.2003.03710.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small heat shock proteins (sHsps) can efficiently prevent the aggregation of unfolded proteins in vitro. However, how this in vitro activity translates to function in vivo is poorly understood. We demonstrate that sHsps of Escherichia coli, IbpA and IbpB, co-operate with ClpB and the DnaK system in vitro and in vivo, forming a functional triade of chaperones. IbpA/IbpB and ClpB support independently and co-operatively the DnaK system in reversing protein aggregation. A delta ibpAB delta clpB double mutant exhibits strongly increased protein aggregation at 42 degrees C compared with the single mutants. sHsp and ClpB function become essential for cell viability at 37 degrees C if DnaK levels are reduced. The DnaK requirement for growth is increasingly higher for delta ibpAB, delta clpB, and the double delta ibpAB delta clpB mutant cells, establishing the positions of sHsps and ClpB in this chaperone triade.
Collapse
Affiliation(s)
- Axel Mogk
- ZMBH, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany.
| | | | | | | | | |
Collapse
|