301
|
O'Toole ET, Giddings TH, McIntosh JR, Dutcher SK. Three-dimensional organization of basal bodies from wild-type and delta-tubulin deletion strains of Chlamydomonas reinhardtii. Mol Biol Cell 2003; 14:2999-3012. [PMID: 12857881 PMCID: PMC165693 DOI: 10.1091/mbc.e02-11-0755] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Improved methods of specimen preparation and dual-axis electron tomography have been used to study the structure and organization of basal bodies in the unicellular alga Chlamydomonas reinhardtii. Novel structures have been found in both wild type and strains with mutations that affect specific tubulin isoforms. Previous studies have shown that strains lacking delta-tubulin fail to assemble the C-tubule of the basal body. Tomographic reconstructions of basal bodies from the delta-tubulin deletion mutant uni3-1 have confirmed that basal bodies contain mostly doublet microtubules. Our methods now show that the stellate fibers, which are present only in the transition zone of wild-type cells, repeat within the core of uni3-1 basal bodies. The distal striated fiber is incomplete in this mutant, rootlet microtubules can be misplaced, and multiflagellate cells have been observed. A suppressor of uni3-1, designated tua2-6, contains a mutation in alpha-tubulin. tua2-6; uni3-1 cells build both flagella, yet they retain defects in basal body structure and in rootlet microtubule positioning. These data suggest that the presence of specific tubulin isoforms in Chlamydomonas directly affects the assembly and function of both basal bodies and basal body-associated structures.
Collapse
Affiliation(s)
- Eileen T O'Toole
- Boulder Laboratory for 3-D Fine Structure, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| | | | | | | |
Collapse
|
302
|
Faragher AJ, Fry AM. Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell 2003; 14:2876-89. [PMID: 12857871 PMCID: PMC165683 DOI: 10.1091/mbc.e03-02-0108] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 03/21/2003] [Accepted: 03/24/2003] [Indexed: 01/26/2023] Open
Abstract
Nek2A is a cell cycle-regulated kinase of the never in mitosis A (NIMA) family that is highly enriched at the centrosome. One model for Nek2A function proposes that it regulates cohesion between the mother and daughter centriole through phosphorylation of C-Nap1, a large coiled-coil protein that localizes to centriolar ends. Phosphorylation of C-Nap1 at the G2/M transition may trigger its displacement from centrioles, promoting their separation and subsequent bipolar spindle formation. To test this model, we generated tetracycline-inducible cell lines overexpressing wild-type and kinase-dead versions of Nek2A. Live cell imaging revealed that active Nek2A stimulates the sustained splitting of interphase centrioles indicative of loss of cohesion. However, this splitting is accompanied by only a partial reduction in centriolar C-Nap1. Strikingly, induction of kinase-dead Nek2A led to formation of monopolar spindles with unseparated spindle poles that lack C-Nap1. Furthermore, kinase-dead Nek2A interfered with chromosome segregation and cytokinesis and led to an overall change in the DNA content of the cell population. These results provide the first direct evidence in human cells that Nek2A function is required for the correct execution of mitosis, most likely through promotion of centrosome disjunction. However, they suggest that loss of centriole cohesion and C-Nap1 displacement may be distinct mitotic events.
Collapse
Affiliation(s)
- Alison J Faragher
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | |
Collapse
|
303
|
Abstract
In eukaryotic cells, basal bodies and their structural equivalents, centrioles, play essential roles. They are needed for the assembly of flagella or cilia as well as for cell division. Chlamydomonas reinhardtii provides an excellent model organism for the study of the basal body and centrioles. Genes for two new members of the tubulin superfamily are needed for basal body/centriole duplication. In addition, other genes that play roles in the duplication and segregation of basal bodies are discussed.
Collapse
Affiliation(s)
- Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| |
Collapse
|
304
|
Stenoien DL, Sen S, Mancini MA, Brinkley BR. Dynamic association of a tumor amplified kinase, Aurora-A, with the centrosome and mitotic spindle. CELL MOTILITY AND THE CYTOSKELETON 2003; 55:134-46. [PMID: 12740874 DOI: 10.1002/cm.10120] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aurora-A kinase, also known as STK15/BTAK kinase, is a member of a serine/threonine kinase superfamily that includes the prototypic yeast Ipl1 and Drosophila aurora kinases as well as other mammalian and non-mammalian aurora kinases involved in the regulation of centrosomes and chromosome segregation. The Aurora-A gene is amplified and overexpressed in a wide variety of human tumors. Aurora-A is centrosome-associated during interphase, and binds the poles and half-spindle during mitosis; its over-expression has been associated with centrosome amplification and multipolar spindles. GFP-Aurora-A was used to mark centrosomes and spindles, and monitor their movements in living cells. Centrosome pairs labeled with GFP-Aurora-A are motile throughout interphase undergoing oscillations and tumbling motions requiring intact microtubules and ATP. Fluorescence recovery after photobleaching (FRAP) was used to examine the relative molecular mobility of GFP-Aurora-A, and GFP-labeled alpha-tubulin, gamma-tubulin, and NuMA. GFP-Aurora-A rapidly exchanges in and out of the centrosome and mitotic spindle (t(1/2) approximately 3 sec); in contrast, both tubulins are relatively immobile indicative of a structural role. GFP-NuMA mobility was intermediate in both interphase nuclei and at the mitotic spindle (t(1/2) approximately 23-30 sec). Deletion mapping identifies a central domain of Aurora-A as essential for its centrosomal localization that is augmented by both the amino and the carboxyl terminal ends of the protein. Interestingly, amino or carboxy terminal deletion mutants that maintained centrosomal targeting exhibited significantly slower molecular exchange. Collectively, these studies contrast the relative cellular dynamics of Aurora-A with other cytoskeletal proteins that share its micro-domains, and identify essential regions required for targeting and dynamics.
Collapse
Affiliation(s)
- D L Stenoien
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
305
|
Abstract
It is now clear that both centrioles and their surrounding pericentriolar material (PCM) are capable of self-assembly. Whereas centrioles are normally duplicated during G1-S phase, PCM components may be loaded onto centrosomes in both a microtubule-dependent and -independent manner at all stages of the cell cycle. Centrosomes enlarge dramatically after mitotic entry, when both Aurora A and Polo-like kinases cooperate to recruit additional gamma-tubulin ring complexes and microtubule-associated proteins to assist spindle formation.
Collapse
Affiliation(s)
- Sarah P Blagden
- Cancer Research UK Cell Cycle Genetics Research Group, University of Cambridge, Department of Genetics, Downing Street, Cambridge, CB2 3EH, UK
| | | |
Collapse
|
306
|
Keryer G, Witczak O, Delouvée A, Kemmner WA, Rouillard D, Tasken K, Bornens M. Dissociating the centrosomal matrix protein AKAP450 from centrioles impairs centriole duplication and cell cycle progression. Mol Biol Cell 2003; 14:2436-46. [PMID: 12808041 PMCID: PMC194891 DOI: 10.1091/mbc.e02-09-0614] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Centrosomes provide docking sites for regulatory molecules involved in the control of the cell division cycle. The centrosomal matrix contains several proteins, which anchor kinases and phosphatases. The large A-Kinase Anchoring Protein AKAP450 is acting as a scaffolding protein for other components of the cell signaling machinery. We selectively perturbed the centrosome by modifying the cellular localization of AKAP450. We report that the expression in HeLa cells of the C terminus of AKAP450, which contains the centrosome-targeting domain of AKAP450 but not its coiled-coil domains or binding sites for signaling molecules, leads to the displacement of the endogenous centrosomal AKAP450 without removing centriolar or pericentrosomal components such as centrin, gamma-tubulin, or pericentrin. The centrosomal protein kinase A type II alpha was delocalized. We further show that this expression impairs cytokinesis and increases ploidy in HeLa cells, whereas it arrests diploid RPE1 fibroblasts in G1, thus further establishing a role of the centrosome in the regulation of the cell division cycle. Moreover, centriole duplication is interrupted. Our data show that the association between centrioles and the centrosomal matrix protein AKAP450 is critical for the integrity of the centrosome and for its reproduction.
Collapse
Affiliation(s)
- Guy Keryer
- Unité Mixte Recherche 144-Centre National de la Recherche Scientifique-Institut Curie, F-75248, Paris, France
| | | | | | | | | | | | | |
Collapse
|
307
|
Giet R, Prigent C. [Control by centrosome of asymmetric repartition of cellular components]. Med Sci (Paris) 2003; 19:656-8. [PMID: 12942430 DOI: 10.1051/medsci/20031967656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
308
|
Gromley A, Jurczyk A, Sillibourne J, Halilovic E, Mogensen M, Groisman I, Blomberg M, Doxsey S. A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J Cell Biol 2003; 161:535-45. [PMID: 12732615 PMCID: PMC2172935 DOI: 10.1083/jcb.200301105] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Centrosomes nucleate microtubules and contribute to mitotic spindle organization and function. They also participate in cytokinesis and cell cycle progression in ways that are poorly understood. Here we describe a novel human protein called centriolin that localizes to the maternal centriole and functions in both cytokinesis and cell cycle progression. Centriolin silencing induces cytokinesis failure by a novel mechanism whereby cells remain interconnected by long intercellular bridges. Most cells continue to cycle, reenter mitosis, and form multicellular syncytia. Some ultimately divide or undergo apoptosis specifically during the protracted period of cytokinesis. At later times, viable cells arrest in G1/G0. The cytokinesis activity is localized to a centriolin domain that shares homology with Nud1p and Cdc11p, budding and fission yeast proteins that anchor regulatory pathways involved in progression through the late stages of mitosis. The Nud1p-like domain of centriolin binds Bub2p, another component of the budding yeast pathway. We conclude that centriolin is required for a late stage of vertebrate cytokinesis, perhaps the final cell cleavage event, and plays a role in progression into S phase.
Collapse
Affiliation(s)
- Adam Gromley
- University of Massachusetts Medical School, Department of Molecular Medicine, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
309
|
Hut HMJ, Lemstra W, Blaauw EH, Van Cappellen GWA, Kampinga HH, Sibon OCM. Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol Biol Cell 2003; 14:1993-2004. [PMID: 12802070 PMCID: PMC165092 DOI: 10.1091/mbc.e02-08-0510] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A well-established function of centrosomes is their role in accomplishing a successful mitosis that gives rise to a pair of identical daughter cells. We recently showed that DNA replication defects and DNA damage in Drosophila embryos trigger centrosomal changes, but it remained unclear whether comparable centrosomal responses can be provoked in somatic mammalian cells. To investigate the centrosomal organization in the presence of impaired DNA integrity, live and ultrastructural analysis was performed on gamma-tubulin-GFP and EGFP-alpha-tubulin-expressing Chinese hamster ovary cells. We have shown that during mitosis in the presence of incompletely replicated or damaged DNA, centrosomes split into fractions containing only one centriole. This results in the formation of multipolar spindles with extra centrosome-like structures. Despite the extra centrosomes and the multipolarity of the spindles, cells do exit from mitosis, resulting in severe division errors. Our data provide evidence of a novel mechanism showing how numerous centrosomes and spindle defects can arise and how this can lead to the formation of aneuploid cells.
Collapse
Affiliation(s)
- Henderika M J Hut
- Department of Radiation and Stress Cell Biology, Faculty of Medical Sciences, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
310
|
Augustin A, Spenlehauer C, Dumond H, Ménissier-De Murcia J, Piel M, Schmit AC, Apiou F, Vonesch JL, Kock M, Bornens M, De Murcia G. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J Cell Sci 2003; 116:1551-62. [PMID: 12640039 DOI: 10.1242/jcs.00341] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel member of the poly(ADP-ribose) polymerase (PARP) family, hPARP-3, is identified here as a core component of the centrosome. hPARP-3 is preferentially localized to the daughter centriole throughout the cell cycle. The N-terminal domain (54 amino acids) of hPARP-3 is responsible for its centrosomal localization. Full-length hPAPR-3 (540 amino acids, with an apparent mass of 67 kDa) synthesizes ADP-ribose polymers during its automodification. Overexpression of hPARP-3 or its N-terminal domain does not influence centrosomal duplication or amplification but interferes with the G1/S cell cycle progression. PARP-1 also resides for part of the cell cycle in the centrosome and interacts with hPARP-3. The presence of both PARP-1 and PARP-3 at the centrosome may link the DNA damage surveillance network to the mitotic fidelity checkpoint.
Collapse
Affiliation(s)
- Angélique Augustin
- Unité 9003 du CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Abstract
The most visually spectacular events in the life of a cell occur when it divides. This is especially true in higher eukaryotes, where the size and geometry of cells allow the division process to be followed through a microscope with considerable clarity. In these organisms, the membrane surrounding the nucleus breaks down after the replicated DNA has condensed to form discrete chromosomes. Several new structures are then assembled to separate the chromosomes and partition the cytoplasm into two separate cells.
Collapse
Affiliation(s)
- Conly L Rieder
- Lab of Cell Regulation, Division of Molecular Medicine, Wadsworth Center, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
312
|
Leidel S, Gönczy P. SAS-4 is essential for centrosome duplication in C elegans and is recruited to daughter centrioles once per cell cycle. Dev Cell 2003; 4:431-9. [PMID: 12636923 DOI: 10.1016/s1534-5807(03)00062-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanisms governing centrosome duplication remain poorly understood. We identified a gene called sas-4 that is essential for this process in C. elegans. SAS-4 encodes a predicted coiled-coil protein that localizes to a tiny dot in the center of centrosomes throughout the cell cycle. FRAP experiments with GFP-SAS-4 transgenic embryos reveal that SAS-4 is recruited to the centrosome once per cell cycle, at the time of organelle duplication. Additional evidence indicates that SAS-4 is recruited to the daughter centriole or a closely associated structure. These findings identify SAS-4 recruitment as a key step in the centrosome duplication cycle.
Collapse
Affiliation(s)
- Sebastian Leidel
- Swiss Institute for Experimental, Cancer Research (ISREC), CH-1066 Epalinges/, Lausanne, Switzerland
| | | |
Collapse
|
313
|
Kirkham M, Müller-Reichert T, Oegema K, Grill S, Hyman AA. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 2003; 112:575-87. [PMID: 12600319 DOI: 10.1016/s0092-8674(03)00117-x] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Centrosomes consist of a centriole pair surrounded by pericentriolar material (PCM). Previous work suggested that centrioles are required to organize PCM to form a structurally stable organelle. Here, we characterize SAS-4, a centriole component in Caenorhabditis elegans. Like tubulin, SAS-4 is incorporated into centrioles during their duplication and remains stably associated thereafter. In the absence of SAS-4, centriole duplication fails. Partial depletion of SAS-4 results in structurally defective centrioles that contain reduced levels of SAS-4 and organize proportionally less PCM. Thus, SAS-4 is a centriole-associated component whose amount dictates centrosome size. These results provide novel insight into the poorly understood role of centrioles as centrosomal organizers.
Collapse
Affiliation(s)
- Matthew Kirkham
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
314
|
Abstract
In non-polarised mammalian cells, the Golgi apparatus is localised around the centrosome and actively maintained there. Microtubules and molecular motor activity are required for determining both the localisation and organisation of the Golgi apparatus. Other factors, however, also appear necessary for regulating both the static steady-state distribution of this organelle and its relationship with microtubule minus-end-anchoring activities of the centrosome. Several non-motor microtubule-binding proteins have now been found to be associated with the Golgi apparatus. Recent advances suggest that, in addition to important roles in cell motility, polarisation and differentiation, the interplay between Golgi apparatus and centrosome could participate in other physiological processes such as intracellular signalling, mitosis and apoptosis.
Collapse
Affiliation(s)
- Rosa M Rios
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Reina Mercedes 6, 41012-Sevilla, Spain.
| | | |
Collapse
|
315
|
Abstract
The long-standing interest in centrioles and basal bodies stems from the evolutionary conservation of their structural design and from their dual mode of assembly (templated versus de novo), revealed by electron microscopic studies nearly four decades ago and unique for a subcellular organelle. Molecular dissection of the assembly pathway during the past few years has recently progressed, essentially through direct and reverse genetic approaches. These studies revealed essential roles for centrins and the gamma-, delta-, epsilon - and eta-tubulins in assembly or as specific signals for centriole duplication. Identification of further components of basal bodies and centrioles might help to unravel the two assembly pathways and their regulation.
Collapse
Affiliation(s)
- Janine Beisson
- Centre de Génétique Moléculaire, Centre National de La Recherche Scientifique, 91190 Gif-sur-Yvette, France.
| | | |
Collapse
|
316
|
Abstract
Protists provide the opportunity to integrate analyses from a low (molecular) to a high (organism) level of complexity within a broad evolutionary framework. The perpectives they offer in the cytoskeletal field are discussed with respect to emerging concepts of cellular biology.
Collapse
Affiliation(s)
- Anne Fleury-Aubusson
- Laboratoire de Biologie Cellulaire 4, Bat 444, Faculté d'Orsay, Université Paris XI, 91 405 Orsay Cedex, France.
| |
Collapse
|
317
|
Lambert JD, Nagy LM. Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature 2002; 420:682-6. [PMID: 12478296 DOI: 10.1038/nature01241] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2002] [Accepted: 10/10/2002] [Indexed: 12/28/2022]
Abstract
During development, different cell fates are generated by cell-cell interactions or by the asymmetric distribution of patterning molecules. Asymmetric inheritance is known to occur either through directed transport along actin microfilaments into one daughter cell or through capture of determinants by a region of the cortex inherited by one daughter. Here we report a third mechanism of asymmetric inheritance in a mollusc embryo. Different messenger RNAs associate with centrosomes in different cells and are subsequently distributed asymmetrically during division. The segregated mRNAs are diffusely distributed in the cytoplasm and then localize, in a microtubule-dependent manner, to the pericentriolar matrix. During division, they dissociate from the core mitotic centrosome and move by means of actin filaments to the presumptive animal daughter cell cortex. In experimental cells with two interphase centrosomes, mRNAs accumulate on the correct centrosome, indicating that differences between centrosomes control mRNA targeting. Blocking the accumulation of mRNAs on the centrosome shows that this event is required for subsequent cortical localization. These events produce a complex pattern of mRNA localization, in which different messages distinguish groups of cells with the same birth order rank and similar developmental potentials.
Collapse
Affiliation(s)
- J David Lambert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
318
|
Abal M, Piel M, Bouckson-Castaing V, Mogensen M, Sibarita JB, Bornens M. Microtubule release from the centrosome in migrating cells. J Cell Biol 2002; 159:731-7. [PMID: 12473683 PMCID: PMC2173398 DOI: 10.1083/jcb.200207076] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In migrating cells, force production relies essentially on a polarized actomyosin system, whereas the spatial regulation of actomyosin contraction and substrate contact turnover involves a complex cooperation between the microtubule (MT) and the actin filament networks (Goode, B.L., D.G. Drubin, and G. Barnes. 2000. Curr. Opin. Cell Biol., 12:63-71). Targeting and capture of MT plus ends at the cell periphery has been described, but whether or not the minus ends of these MTs are anchored at the centrosome is not known. Here, we show that release of short MTs from the centrosome is frequent in migrating cells and that their transport toward the cell periphery is blocked when dynein activity is impaired. We further show that MT release, but not MT nucleation or polymerization dynamics, is abolished by overexpression of the centrosomal MT-anchoring protein ninein. In addition, a dramatic inhibition of cell migration was observed; but, contrary to cells treated by drugs inhibiting MT dynamics, polarized membrane ruffling activity was not affected in ninein overexpressing cells. We thus propose that the balance between MT minus-end capture and release from the centrosome is critical for efficient cell migration.
Collapse
Affiliation(s)
- Miguel Abal
- Institut Curie/UMR 144 du Centre National de la Recherche Scientifique, 75248 Paris, France
| | | | | | | | | | | |
Collapse
|
319
|
Abstract
Centrosomes are microtubule organising centres that act as spindle poles during mitosis. Recent work implicates centrosomes in many other processes, and shows that centrosome defects can cause genetic instability. Many regulators of mammalian centrosome function were predicted from studies of model systems. Surprisingly, some well-known tumour suppressors have recently been found at centrosomes, where they influence centrosome duplication and function, suggesting that control of centrosome function is central to genetic stability.
Collapse
Affiliation(s)
- Harold A Fisk
- Molecular, Cellular and Developmental Biology, UCB347, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | |
Collapse
|
320
|
Megraw TL, Kilaru S, Turner FR, Kaufman TC. The centrosome is a dynamic structure that ejects PCM flares. J Cell Sci 2002; 115:4707-18. [PMID: 12415014 DOI: 10.1242/jcs.00134] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila Centrosomin (Cnn) protein is an essential core component of centrosomes in the early embryo. We have expressed a Cnn-GFP fusion construct in cleavage stage embryos, which rescues the maternal effect lethality of cnn mutant animals. The localization patterns seen with GFP-Cnn are identical to the patterns we see by immunofluorescent staining with anti-Cnn antibodies. Live imaging of centrosomes with Cnn-GFP reveals surprisingly dynamic features of the centrosome. Extracentrosomal particles of Cnn move radially from the centrosome and frequently change their direction. D-TACC colocalized with Cnn at these particles. We have named these extrusions 'flares'. Flares are dependent on microtubules, since disruption of the microtubule array severs the movement of these particles. Movement of flare particles is cleavage-cycle-dependent and appears to be attributed mostly to their association with dynamic astral microtubules. Flare activity decreases at metaphase, then increases at telophase and remains at this higher level of activity until the next metaphase. Flares appear to be similar to vertebrate PCM-1-containing 'centriolar satellites' in their behavior. By injecting rhodamine-actin, we observed that flares extend no farther than the actin cage. Additionally, disruption of the microfilament array increased the extent of flare movement. These observations indicate that centrosomes eject particles of Cnn-containing pericentriolar material that move on dynamic astral microtubules at a rate that varies with the cell cycle. We propose that flare particles play a role in organizing the actin cytoskeleton during syncytial cleavage.
Collapse
Affiliation(s)
- Timothy L Megraw
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
321
|
Dammermann A, Merdes A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 2002; 159:255-66. [PMID: 12403812 PMCID: PMC2173044 DOI: 10.1083/jcb.200204023] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2002] [Revised: 09/12/2002] [Accepted: 09/18/2002] [Indexed: 11/22/2022] Open
Abstract
The protein PCM-1 localizes to cytoplasmic granules known as "centriolar satellites" that are partly enriched around the centrosome. We inhibited PCM-1 function using a variety of approaches: microinjection of antibodies into cultured cells, overexpression of a PCM-1 deletion mutant, and specific depletion of PCM-1 by siRNA. All approaches led to reduced targeting of centrin, pericentrin, and ninein to the centrosome. Similar effects were seen upon inhibition of dynactin by dynamitin, and after prolonged treatment of cells with the microtubule inhibitor nocodazole. Inhibition or depletion of PCM-1 function further disrupted the radial organization of microtubules without affecting microtubule nucleation. Loss of microtubule organization was also observed after centrin or ninein depletion. Our data suggest that PCM-1-containing centriolar satellites are involved in the microtubule- and dynactin-dependent recruitment of proteins to the centrosome, of which centrin and ninein are required for interphase microtubule organization.
Collapse
Affiliation(s)
- Alexander Dammermann
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
322
|
Abstract
Centrosomal dynactin is required for normal microtubule anchoring and/or focusing independently of dynein. Dynactin is present at centrosomes throughout interphase, but dynein accumulates only during S and G2 phases. Blocking dynein-based motility prevents recruitment of dynactin and dynein to centrosomes and destabilizes both centrosomes and the microtubule array, interfering with cell cycle progression during mitosis. Destabilization of the centrosomal pool of dynactin does not inhibit dynein-based motility or dynein recruitment to centrosomes, but instead causes abnormal G1 centriole separation and delayed entry into S phase. The correct balance of centrosome-associated dynactin subunits is apparently important for satisfaction of the cell cycle mechanism that monitors centrosome integrity before centrosome duplication and ultimately governs the G1 to S transition. Our results suggest that, in addition to functioning as a microtubule anchor, dynactin contributes to the recruitment of important cell cycle regulators to centrosomes.
Collapse
Affiliation(s)
- Nicholas J Quintyne
- Department of Biology, Johns Hopkins University, Charles & 34th Streets, Baltimore, MD 21218, USA
| | | |
Collapse
|
323
|
Khodjakov A, Rieder CL, Sluder G, Cassels G, Sibon O, Wang CL. De novo formation of centrosomes in vertebrate cells arrested during S phase. J Cell Biol 2002; 158:1171-81. [PMID: 12356862 PMCID: PMC2173237 DOI: 10.1083/jcb.200205102] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The centrosome usually replicates in a semiconservative fashion, i.e., new centrioles form in association with preexisting "maternal" centrioles. De novo formation of centrioles has been reported for a few highly specialized cell types but it has not been seen in vertebrate somatic cells. We find that when centrosomes are completely destroyed by laser microsurgery in CHO cells arrested in S phase by hydroxyurea, new centrosomes form by de novo assembly. Formation of new centrosomes occurs in two steps: approximately 5-8 h after ablation, clouds of pericentriolar material (PCM) containing gamma-tubulin and pericentrin appear in the cell. By 24 h, centrioles have formed inside of already well-developed PCM clouds. This de novo pathway leads to the formation of a random number of centrioles (2-14 per cell). Although clouds of PCM consistently form even when microtubules are completely disassembled by nocodazole, the centrioles are not assembled under these conditions.
Collapse
Affiliation(s)
- Alexey Khodjakov
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | | | | | | | | | | |
Collapse
|
324
|
Abstract
Regulation of the centrosome, the major microtubule organizing centre in an animal cell, is in large part controlled by cell cycle-dependent protein phosphorylation. Along with cyclin dependent kinases, polo kinases and Aurora kinases, NIMA-related kinases are emerging as critical regulators of centrosome structure and function. Nek2 is the most closely related vertebrate protein by sequence to the essential mitotic regulator NIMA of Aspergillus nidulans. Nek2 is highly enriched at the centrosome and functional studies in human and Xenopus systems support a role for Nek2 in both maintenance and modulation of centrosome architecture. In particular, current evidence supports a model in which one function of Nek2 kinase activity is to promote the splitting of duplicated centrosomes at the onset of mitosis through phosphorylation of core centriolar proteins. Recent studies in lower organisms have raised the possibility that kinases related to Nek2 may have conserved functions in MTOC organization, as well as in other aspects of mitotic progression.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
325
|
Affiliation(s)
- Edward H Hinchcliffe
- Department of Biological Sciences, and the Walther Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, IN 46556, USA
| | | |
Collapse
|
326
|
Hansen DV, Hsu JY, Kaiser BK, Jackson PK, Eldridge AG. Control of the centriole and centrosome cycles by ubiquitination enzymes. Oncogene 2002; 21:6209-21. [PMID: 12214251 DOI: 10.1038/sj.onc.1205824] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David V Hansen
- Programs in Chemical Biology and Cancer Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California, CA 94305-5324, USA
| | | | | | | | | |
Collapse
|
327
|
Salisbury JL, Suino KM, Busby R, Springett M. Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 2002; 12:1287-92. [PMID: 12176356 DOI: 10.1016/s0960-9822(02)01019-9] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Centrosomes are the favored microtubule-organizing framework of eukaryotic cells. Centrosomes contain a pair of centrioles that normally duplicate once during the cell cycle to give rise to two mitotic spindle poles, each containing one old and one new centriole. However, aside from their role as an anchor point for pericentriolar material and as basal bodies of flagella and cilia, the functional attributes of centrioles remain enigmatic. RESULTS Here, using RNA interference, we demonstrate that "knockdown" of centrin-2, a protein of centrioles, results in failure of centriole duplication during the cell cycle in HeLa cells. Following inhibition of centrin-2 synthesis, the preexisting pair of centrioles separate, and functional bipolar spindles form with only one centriole at each spindle pole. Centriole dilution results from the ensuing cell division, and daughter cells are "born" with only a single centriole. Remarkably, these unicentriolar daughter cells may complete a second and even third bipolar mitosis in which spindle microtubules converge onto unusually broad spindle poles and in which cell division results in daughter cells containing either one or no centrioles at all. Cells thus denuded of the mature or both centrioles fail to undergo cytokinesis in subsequent cell cycles, give rise to multinucleate products, and finally die. CONCLUSIONS These results demonstrate a requirement for centrin in centriole duplication and demonstrate that centrioles play a role in organizing spindle pole morphology and in the completion of cytokinesis.
Collapse
|
328
|
Abstract
The centrosome is the major microtubule-organizing center of animal cells. It influences cell shape and polarity and directs the formation of the bipolar mitotic spindle. Numerical and structural centrosome aberrations have been implicated in disease, notably cancer. In dividing cells, centrosomes need to be duplicated and segregated in synchrony with chromosomes. This centrosome cycle requires a series of structural and functional transitions that are regulated by both phosphorylation and proteolysis. Here we summarize recent information on the regulation of the centrosome cycle and its coordination with the chromosomal cell cycle.
Collapse
Affiliation(s)
- P Meraldi
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | |
Collapse
|
329
|
Mogensen MM, Tucker JB, Mackie JB, Prescott AR, Näthke IS. The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells. J Cell Biol 2002; 157:1041-8. [PMID: 12058019 PMCID: PMC2174057 DOI: 10.1083/jcb.200203001] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Loss of full-length adenomatous polyposis coli (APC) protein correlates with the development of colon cancers in familial and sporadic cases. In addition to its role in regulating beta-catenin levels in the Wnt signaling pathway, the APC protein is implicated in regulating cytoskeletal organization. APC stabilizes microtubules in vivo and in vitro, and this may play a role in cell migration (Näthke, I.S., C.L. Adams, P. Polakis, J.H. Sellin, and W.J. Nelson. 1996. J. Cell Biol. 134:165-179; Mimori-Kiyosue, Y., N. Shiina, and S. Tsukita. 2000. J. Cell Biol. 148:505-517; Zumbrunn, J., K. Inoshita, A.A. Hyman, and I.S. Näthke. 2001. Curr. Biol. 11:44-49) and in the attachment of microtubules to kinetochores during mitosis (Fodde, R., J. Kuipers, C. Rosenberg, R. Smits, M. Kielman, C. Gaspar, J.H. van Es, C. Breukel, J. Wiegant, R.H. Giles, and H. Clevers. 2001. Nat. Cell Biol. 3:433-438; Kaplan, K.B., A. Burds, J.R. Swedlow, S.S. Bekir, P.K. Sorger, and I.S. Näthke. 2001. Nat. Cell Biol. 3:429-432). The localization of endogenous APC protein is complex: actin- and microtubule-dependent pools of APC have been identified in cultured cells (Näthke et al., 1996; Mimori-Kiyosue et al., 2000; Reinacher-Schick, A., and B.M. Gumbiner. 2001. J. Cell Biol. 152:491-502; Rosin-Arbesfeld, R., G. Ihrke, and M. Bienz. 2001. EMBO J. 20:5929-5939). However, the localization of APC in tissues has not been identified at high resolution. Here, we show that in fully polarized epithelial cells from the inner ear, endogenous APC protein associates with the plus ends of microtubules located at the basal plasma membrane. Consistent with a role for APC in supporting the cytoskeletal organization of epithelial cells in vivo, the number of microtubules is significantly reduced in apico-basal arrays of microtubule bundles isolated from mice heterozygous for APC.
Collapse
Affiliation(s)
- Mette M Mogensen
- School of Life Sciences, University of Dundee, Dundee DD1 5 EH, United Kingdom
| | | | | | | | | |
Collapse
|
330
|
Yvon AMC, Walker JW, Danowski B, Fagerstrom C, Khodjakov A, Wadsworth P. Centrosome reorientation in wound-edge cells is cell type specific. Mol Biol Cell 2002; 13:1871-80. [PMID: 12058055 PMCID: PMC117610 DOI: 10.1091/mbc.01-11-0539] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The reorientation of the microtubule organizing center during cell migration into a wound in the monolayer was directly observed in living wound-edge cells expressing gamma-tubulin tagged with green fluorescent protein. Our results demonstrate that in CHO cells, the centrosome reorients to a position in front of the nucleus, toward the wound edge, whereas in PtK cells, the centrosome lags behind the nucleus during migration into the wound. In CHO cells, the average rate of centrosome motion was faster than that of the nucleus; the converse was true in PtK cells. In both cell lines, centrosome motion was stochastic, with periods of rapid motion interspersed with periods of slower motion. Centrosome reorientation in CHO cells required dynamic microtubules and cytoplasmic dynein/dynactin activity and could be prevented by altering cell-to-cell or cell-to-substrate adhesion. Microtubule marking experiments using photoactivation of caged tubulin demonstrate that microtubules are transported in the direction of cell motility in both cell lines but that in PtK cells, microtubules move individually, whereas their movement is more coherent in CHO cells. Our data demonstrate that centrosome reorientation is not required for directed migration and that diverse cells use distinct mechanisms for remodeling the microtubule array during directed migration.
Collapse
Affiliation(s)
- Anne-Marie C Yvon
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01002, USA
| | | | | | | | | | | |
Collapse
|
331
|
Chevrier V, Piel M, Collomb N, Saoudi Y, Frank R, Paintrand M, Narumiya S, Bornens M, Job D. The Rho-associated protein kinase p160ROCK is required for centrosome positioning. J Cell Biol 2002; 157:807-17. [PMID: 12034773 PMCID: PMC2173415 DOI: 10.1083/jcb.200203034] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The p160-Rho-associated coiled-coil-containing protein kinase (ROCK) is identified as a new centrosomal component. Using immunofluorescence with a variety of p160ROCK antibodies, immuno EM, and depletion with RNA interference, p160ROCK is principally bound to the mother centriole (MC) and an intercentriolar linker. Inhibition of p160ROCK provoked centrosome splitting in G1 with the MC, which is normally positioned at the cell center and shows little motion during G1, displaying wide excursions around the cell periphery, similar to its migration toward the midbody during cytokinesis. p160ROCK inhibition late after anaphase in mitosis triggered MC migration to the midbody followed by completion of cell division. Thus, p160ROCK is required for centrosome positioning and centrosome-dependent exit from mitosis.
Collapse
Affiliation(s)
- Véronique Chevrier
- Institut National de la Santé et de la Recherche Medicale U366, Département de Biologie Moléculaire et Structurale/Cytosqulette, Commissariat à l'Energie Atomique, de Grenoble, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Ou YY, Mack GJ, Zhang M, Rattner JB. CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J Cell Sci 2002; 115:1825-35. [PMID: 11956314 DOI: 10.1242/jcs.115.9.1825] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian centrosome consists of a pair of centrioles surrounded by pericentriolar material (PCM). The architecture and composition of the centrosome, especially the PCM, changes during the cell cycle. Recently, a subset of PCM proteins have been shown to be arranged in a tubular conformation with an open and a closed end within the centrosome. The presence of such a specific configuration can be used as a landmark for mapping proteins in both a spatial and a temporal fashion. Such mapping studies can provide information about centrosome organization, protein dynamics,protein-protein interactions as well as protein function. In this study, the centrosomal proteins CEP110 and ninein were mapped in relationship to the tubular configuration. Both proteins were found to exhibit a similar distribution pattern. In the mother centrosome, they were found at both ends of the centrosome tube, including the site of centrosome duplication. However,in the daughter centrosome they were present only at the closed end. At the closed end of the mother and daughter centrosome tube, both CEP110 and ninein co-localized with the centriolar protein CEP250/c-Nap1, which confirms ninein's centriole association and places CEP110 in association with this structure. Importantly, the appearance of CEP110 and ninein at the open end of the daughter centrosome occurred during the telophase-G1 transition of the next cell cycle, concomitant with the maturation of the daughter centrosome into a mother centrosome. Microinjection of antibodies against either CEP110 or ninein into metaphase HeLa cells disrupted the reformation of the tubular conformation of proteins within the centrosome following cell division and consequently led to dispersal of centrosomal material throughout the cytosol. Further, microinjection of antibodies to either CEP110 or ninein into metaphase PtK2 cells not only disrupted the tubular configuration within the centrosome but also affected the centrosome's ability to function as a microtubule organizing center (MTOC). This MTOC function was also disrupted when the antibodies were injected into postmitotic cells. Taken together, our results indicate that: (1) a population of CEP110 and ninein is located in a specific domain within the centrosome, which corresponds to the open end of the centrosome tube and is the site of protein addition associated with maturation of a daughter centrosome into a mother centrosome; and (2) the addition of CEP110 and ninein are essential for the reformation of specific aspects of the interphase centrosome architecture following mitosis as well as being required for the centrosome to function as a MTOC.
Collapse
Affiliation(s)
- Young Y Ou
- Department of Anatomy and Cell Biology, The University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
333
|
Krämer A, Neben K, Ho AD. Centrosome replication, genomic instability and cancer. Leukemia 2002; 16:767-75. [PMID: 11986936 DOI: 10.1038/sj.leu.2402454] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Accepted: 01/07/2002] [Indexed: 01/14/2023]
Abstract
Karyotypic alterations, including whole chromosome loss or gain, ploidy changes, and a variety of chromosome aberrations are common in cancer cells. If proliferating cells fail to coordinate centrosome duplication with DNA replication, this will inevitably lead to a change in ploidy, and the formation of monopolar or multipolar spindles will generally provoke abnormal segregation of chromosomes. Indeed, it has long been recognized that errors in the centrosome duplication cycle may be an important cause of aneuploidy and thus contribute to cancer formation. This view has recently received fresh impetus with the description of supernumerary centrosomes in almost all solid human tumors. As the primary microtubule organizing center of most eukaryotic cells, the centrosome assures symmetry and bipolarity of the cell division process, a function that is essential for accurate chromosome segregation. In addition, a growing body of evidence indicates that centrosomes might be important for initiating S phase and completing cytokinesis. Centrosomes undergo duplication precisely once before cell division. Recent reports have revealed that this process is linked to the cell division cycle via cyclin-dependent kinase (cdk) 2 activity that couples centriole duplication to the onset of DNA replication at the G(1)/S phase transition. Alterations in G(1)/S phase regulating proteins like the retinoblastoma protein, cyclins D and E, cdk4 and 6, cdk inhibitors p16(INK4A) and p15(INK4B), and p53 are among the most frequent aberrations observed in human malignancies. These alterations might not only lead to unrestrained proliferation, but also cause karyotypic instability by uncontrolled centrosome replication. Since several excellent reports on cell cycle regulation and cancer have been published, this review will focus on the role of centrosomes in cell cycle progression, as well as causes and consequences of aberrant centrosome replication in human neoplasias.
Collapse
Affiliation(s)
- A Krämer
- Medizinische Klinik und Poliklinik V, Ruprecht-Karls-Universität Heidelberg, Hospitalstrasse 3, 69115 Heidelberg, Germany
| | | | | |
Collapse
|
334
|
Abstract
Cells in early stages of chromosome condensation are very vulnerable, and many stresses that do not damage DNA induce a transient return to late G2 phase. Such stresses include the drug-induced disassembly of microtubules, which triggers an ATM-independent G2 checkpoint pathway involving a novel ubiquitin ligase.
Collapse
Affiliation(s)
- Alexei Mikhailov
- Division of Molecular Medicine, Wadsworth Center, New York State Dept. of Health, Albany, NY 12201-0509, USA
| | | |
Collapse
|
335
|
Doi K, Noma S, Yamao F, Goko H, Yagura T. Expression of Golgi membrane protein p138 is cell cycle-independent and dissociated from centrosome duplication. Cell Struct Funct 2002; 27:117-25. [PMID: 12207053 DOI: 10.1247/csf.27.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In order to elucidate the mechanism controlling the biogenesis of the Golgi complex, we have studied whether the expression of a resident membrane protein p138 of the Golgi complex is dependent upon the cell cycle. The protein level of p138 in human KB cells was increased during thymidine block to synchronize the cells in the early-S phase, but changed little from S to G2 after release from the block. On the other hand, the mRNA level of the p138 gene was constant during the block. The change in mRNA level in the cells was small with a low peak at S to G2. Both p138 protein and mRNA levels decreased after cell division and then rose rapidly to the same level as those of log-phase cells in the next G1 to S. Thus, translation of p138 protein was upregulated in the cells at the early-S phase. However, we found also that the p138 protein level increased during an arrest at G2/M caused by etoposide. The kinetics of centrosome duplication apparently differ from those of p138 protein production. The duplication occurred mainly at S to G2 after the release from thymidine block, while the ratio of cells containing duplicated centrosomes increased gradually during the block. Taken together, these results show that both the translation and transcription of p138 protein are regulated independent of the cell cycle and dissociated from the duplication of the centrosome. Rather, the expression of p138 protein seems to be coupled with a change in cell size since both thymidine block and etoposide inhibition resulted in an apparent increase in cell size.
Collapse
Affiliation(s)
- Kohei Doi
- Department of Life Science, Faculty of Science and Technology, Kwansei Gakuin University, Hyogo-ken, Japan
| | | | | | | | | |
Collapse
|
336
|
Hoepfner D, Schaerer F, Brachat A, Wach A, Philippsen P. Reorientation of mispositioned spindles in short astral microtubule mutant spc72Delta is dependent on spindle pole body outer plaque and Kar3 motor protein. Mol Biol Cell 2002; 13:1366-80. [PMID: 11950945 PMCID: PMC102275 DOI: 10.1091/mbc.01-07-0338] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Revised: 12/10/2001] [Accepted: 01/14/2002] [Indexed: 11/11/2022] Open
Abstract
Nuclear migration and positioning in Saccharomyces cerevisiae depend on long astral microtubules emanating from the spindle pole bodies (SPBs). Herein, we show by in vivo fluorescence microscopy that cells lacking Spc72, the SPB receptor of the cytoplasmic gamma-tubulin complex, can only generate very short (<1 microm) and unstable astral microtubules. Consequently, nuclear migration to the bud neck and orientation of the anaphase spindle along the mother-bud axis are absent in these cells. However, SPC72 deletion is not lethal because elongated but misaligned spindles can frequently reorient in mother cells, permitting delayed but otherwise correct nuclear segregation. High-resolution time-lapse sequences revealed that this spindle reorientation was most likely accomplished by cortex interactions of the very short astral microtubules. In addition, a set of double mutants suggested that reorientation was dependent on the SPB outer plaque and the astral microtubule motor function of Kar3 but not Kip2/Kip3/Dhc1, or the cortex components Kar9/Num1. Our observations suggest that Spc72 is required for astral microtubule formation at the SPB half-bridge and for stabilization of astral microtubules at the SPB outer plaque. In addition, our data exclude involvement of Spc72 in spindle formation and elongation functions.
Collapse
Affiliation(s)
- Dominic Hoepfner
- Lehrstuhl für Angewandte Mikrobiologie, Biozentrum, Universität Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
337
|
Ou YY, Rattner JB. Post-karyokinesis centrosome movement leaves a trail of unanswered questions. CELL MOTILITY AND THE CYTOSKELETON 2002; 51:123-32. [PMID: 11921169 DOI: 10.1002/cm.10019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The centrosome is a complex structure composed of a large number of proteins (pericentriolar material, PCM) usually organized around a pair of centrioles (or a centriole duplex). This structure is capable of nucleating and organizing microtubules, duplication, and motility. In general, episodes of dramatic centrosome movement correlate with periods of cellular reorganization and nowhere is cellular reorganization more apparent, or more important, than in the periods before and after cell division. It is now clear that centrosome movement occurs not only prior to cell division but also at its completion, in concert with cytokinesis. The focus of this review is the newly emerging picture of centrosome activity during the post-karyokinesis period and the role that this activity might play in the transition of cells from mitosis to interphase.
Collapse
Affiliation(s)
- Young Y Ou
- Department of Anatomy and Cell Biology, The University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
338
|
Rodionov V, Nadezhdina E, Peloquin J, Borisy G. Digital fluorescence microscopy of cell cytoplasts with and without the centrosome. Methods Cell Biol 2002; 67:43-51. [PMID: 11550480 DOI: 10.1016/s0091-679x(01)67004-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- V Rodionov
- Department of Physiology and Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | |
Collapse
|
339
|
Piel M, Bornens M. Centrosome reproduction in vitro: mammalian centrosomes in Xenopus lysates. Methods Cell Biol 2002; 67:289-304. [PMID: 11550476 DOI: 10.1016/s0091-679x(01)67020-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M Piel
- Institut Curie, Section de Recherche 75248 Paris, France
| | | |
Collapse
|
340
|
Affiliation(s)
- F Tournier
- Laboratoire de Cytophysiologie et Toxicologie Cellulaire Universite Paris 7 75251 Paris, France
| | | |
Collapse
|
341
|
Lange BMH. Integration of the centrosome in cell cycle control, stress response and signal transduction pathways. Curr Opin Cell Biol 2002; 14:35-43. [PMID: 11792542 DOI: 10.1016/s0955-0674(01)00291-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The identification of cell cycle control and signal transduction components on the centrosome has fostered the idea that the centrosome is more than a microtubule-organizing center. Indeed, recent molecular evidence suggests that the centrosome plays an active role not only in the regulation of microtubule nucleation activity, but also in the coordination of centrosome duplication with cell cycle progression, in stress response and in cell cycle checkpoint control. To achieve these roles, it interacts with a multitude of signal transduction molecules. The specificity of the interactions is mediated through anchoring proteins that bring centrosomal components and regulatory proteins into close proximity. The molecular composition and organization of the centrosome thus reflects its multiple functions.
Collapse
Affiliation(s)
- Bodo M H Lange
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, Meyerhofstrasse 1, D-69117, Heidelberg, Germany.
| |
Collapse
|
342
|
Abstract
Centrosomes of animal cells and spindle pole bodies of fungi are the major microtubule nucleating centers. Recent studies indicate that their capacity to organize microtubule arrays rests on elaborate control of the anchoring and release of the nucleated microtubules. Although common molecular mechanisms are likely to be involved in both cases, the centrosome from animal cells shows considerable complexity and flexibility, which contrasts with the simple laminar organization of spindle pole bodies in fungi. The role of the centriole pair in controlling both the structural stability and the activity of the centrosome in animal cells is now becoming clearer. The potential use of the generational asymmetry of centrosomes or spindle pole bodies for controlling cell polarity is also a growing theme.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, Section Recherche, UMR144 du Centre National de la Recherche Scientifique, 26 rue d'Ulm, 75248, Cedex 05, Paris, France.
| |
Collapse
|
343
|
Abstract
Budding yeast cells exhibit a defined mode of centrosome inheritance--the 'old' spindle pole body always segregates into the bud. But it is the astral microtubule-cortex interaction which matters for controlling the asymmetric localization of Bfa1p/Bub2 at spindle pole bodies.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, UMR 144 du CNRS, 26 rue d'ULM, 75248 Cedex 05, Paris, France
| | | |
Collapse
|
344
|
Hames RS, Fry AM. Alternative splice variants of the human centrosome kinase Nek2 exhibit distinct patterns of expression in mitosis. Biochem J 2002; 361:77-85. [PMID: 11742531 PMCID: PMC1222281 DOI: 10.1042/0264-6021:3610077] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nek2 is a cell-cycle-regulated protein kinase that localizes to the centrosome and is likely to be involved in regulating centrosome structure at the G(2)/M transition. Here, we localize the functional human Nek2 gene to chromosome 1 and show that alternative polyadenylation signals provide a mechanism for generating two distinct isoforms. Sequencing of products generated by reverse transcriptase PCR, immunoblotting of cell extracts and transfection of antisense oligonucleotides together demonstrate that human Nek2 is expressed as two splice variants. These isoforms, designated Nek2A and Nek2B, are detected in primary blood lymphocytes as well as adult transformed cells. Nek2A and Nek2B, which can form homo- and hetero-dimers, both localize to the centrosome, although only Nek2A can induce centrosome splitting upon overexpression. Importantly, Nek2A and Nek2B exhibit distinct patterns of cell-cycle-dependent expression. Both are present in low amounts in the G(1) phase and exhibit increased abundance in the S and G(2) phases. However, Nek2A disappears in prometaphase-arrested cells, whereas Nek2B remains elevated. These results demonstrate that two alternative splice variants of the human centrosomal kinase Nek2 exist that differ in their expression patterns during mitosis. This has important implications for our understanding of both Nek2 protein kinase regulation and the control of centrosome structure during mitosis.
Collapse
Affiliation(s)
- Rebecca S Hames
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | | |
Collapse
|
345
|
Hames RS, Wattam SL, Yamano H, Bacchieri R, Fry AM. APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J 2001; 20:7117-27. [PMID: 11742988 PMCID: PMC125337 DOI: 10.1093/emboj/20.24.7117] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nek2 is a NIMA-related kinase implicated in regulating centrosome structure at the G(2)/M transition. Two splice variants have been identified that exhibit distinct patterns of expression during cell cycle progression and development. Here we show that Nek2A, but not Nek2B, is destroyed upon entry into mitosis coincident with cyclin A destruction and in the presence of an active spindle assembly checkpoint. Destruction of Nek2A is mediated by the proteasome and is dependent upon the APC/C-Cdc20 ubiquitin ligase. Nek2 activity is not required for APC/C activation. Nek2A destruction in early mitosis is regulated by a motif in its extreme C-terminus which bears a striking resemblance to the extended destruction box (D-box) of cyclin A. Complete stabilization of Nek2A requires deletion of this motif and mutation of a KEN-box. Destruction of Nek2A is not inhibited by the cyclin B-type D-box, but the C-terminal domain of Nek2A inhibits destruction of both cyclins A and B. We propose that recognition of substrates by the APC/C-Cdc20 in early mitosis depends upon possession of an extended D-box motif.
Collapse
Affiliation(s)
- Rebecca S. Hames
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, ICRF Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK and Unit Process and Combined Circuit, PRESTO, Japan Science and Technology, Japan Present address: Laboratoire Arago, CNRS, 66650 Banyuls-sur-Mer, France Corresponding author e-mail: R.S.Hames and S.L.Wattam contributed equally to this work
| | - Samantha L. Wattam
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, ICRF Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK and Unit Process and Combined Circuit, PRESTO, Japan Science and Technology, Japan Present address: Laboratoire Arago, CNRS, 66650 Banyuls-sur-Mer, France Corresponding author e-mail: R.S.Hames and S.L.Wattam contributed equally to this work
| | - Hiroyuki Yamano
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, ICRF Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK and Unit Process and Combined Circuit, PRESTO, Japan Science and Technology, Japan Present address: Laboratoire Arago, CNRS, 66650 Banyuls-sur-Mer, France Corresponding author e-mail: R.S.Hames and S.L.Wattam contributed equally to this work
| | - Rachid Bacchieri
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, ICRF Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK and Unit Process and Combined Circuit, PRESTO, Japan Science and Technology, Japan Present address: Laboratoire Arago, CNRS, 66650 Banyuls-sur-Mer, France Corresponding author e-mail: R.S.Hames and S.L.Wattam contributed equally to this work
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, ICRF Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK and Unit Process and Combined Circuit, PRESTO, Japan Science and Technology, Japan Present address: Laboratoire Arago, CNRS, 66650 Banyuls-sur-Mer, France Corresponding author e-mail: R.S.Hames and S.L.Wattam contributed equally to this work
| |
Collapse
|
346
|
Pereira G, Tanaka TU, Nasmyth K, Schiebel E. Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. EMBO J 2001; 20:6359-70. [PMID: 11707407 PMCID: PMC125717 DOI: 10.1093/emboj/20.22.6359] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2001] [Revised: 09/14/2001] [Accepted: 09/19/2001] [Indexed: 11/13/2022] Open
Abstract
Yeast spindle pole bodies (SPBs) duplicate once per cell cycle by a conservative mechanism resulting in a pre-existing 'old' and a newly formed SPB. The two SPBs of yeast cells are functionally distinct. It is only the SPB that migrates into the daughter cell, the bud, which carries the Bfa1p-Bub2p GTPase-activating protein (GAP) complex, a component of the spindle positioning checkpoint. We investigated whether the functional difference of the two SPBs correlates with the time of their assembly. We describe that in unperturbed cells the 'old' SPB always migrates into the bud. However, Bfa1p localization is not determined by SPB inheritance. It is the differential interaction of cytoplasmic microtubules with the mother and bud cortex that directs the Bfa1p-Bub2p GAP to the bud-ward-localized SPB. In response to defects of cytoplasmic microtubules to interact with the cell cortex, the Bfa1p-Bub2p complex binds to both SPBs. This may provide a mechanism to delay cell cycle progression when cytoplasmic microtubules fail to orient the spindle. Thus, SPBs are able to sense cytoplasmic microtubule properties and regulate the Bfa1p-Bub2p GAP accordingly.
Collapse
Affiliation(s)
| | - Tomoyuki U. Tanaka
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD,
School of Life Sciences, University of Dundee, MSI/WTB complex, Dundee DD1 5EH, UK and Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria Corresponding author e-mail:
| | - Kim Nasmyth
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD,
School of Life Sciences, University of Dundee, MSI/WTB complex, Dundee DD1 5EH, UK and Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria Corresponding author e-mail:
| | - Elmar Schiebel
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD,
School of Life Sciences, University of Dundee, MSI/WTB complex, Dundee DD1 5EH, UK and Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria Corresponding author e-mail:
| |
Collapse
|
347
|
Rieder CL, Faruki S, Khodjakov A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol 2001; 11:413-9. [PMID: 11567874 DOI: 10.1016/s0962-8924(01)02085-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The somatic cells of all higher animals contain a single minute organelle called the centrosome. For years, the functions of the centrosome were thought to revolve around its ability to nucleate and organize the various microtubule arrays seen in interphase and mitosis. But the centrosome is more than just a microtubule-organizing center. Recent work reveals that this organelle is essential for cell-cycle progression and that this requirement is independent of its ability to organize microtubules. Here, we review the various functions attributed to the centrosome and ask which are essential for the survival and reproduction of the cell, the organism, or both.
Collapse
Affiliation(s)
- C L Rieder
- Laboratory of Cell Regulation, Division of Molecular Medicine, Wadsworth Center, New York State Dept of Health, Albany, NY 12201-0509, USA.
| | | | | |
Collapse
|
348
|
Danowski BA, Khodjakov A, Wadsworth P. Centrosome behavior in motile HGF-treated PtK2 cells expressing GFP-gamma tubulin. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:59-68. [PMID: 11746672 DOI: 10.1002/cm.1041] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In response to locomotory cues, many motile cells have been shown to reposition their centrosome to a location in front of the nucleus, towards the direction of cell migration. We examined centrosome position in PtK(2) epithelial cells treated with hepatocyte growth factor (HGF), which stimulates motility but, unlike chemotactic agents or wounding of a monolayer, provides no directional cues. To observe centrosome movement directly, a plasmid encoding human gamma tubulin fused to the green fluorescent protein was expressed in HGF-treated cells. In cells whose movements were unconstrained by neighboring cells, we found that the position of the centrosome was not correlated with the direction of cell locomotion. Further, in cells where the direction of locomotion changed during the observation period, the centrosome did not reorient toward the new direction of locomotion. Analysis of centrosome and nuclear movement showed that motion of the centrosome often lagged behind that of the nucleus. Analysis of 249 fixed cells stained with an antibody to gamma tubulin confirmed our observations in live cells: 69% of the cells had centrosomes behind the nucleus, away from the direction of locomotion. Of these, 41% had their centrosome in the retraction tail. Confocal microscopy showed that the microtubule array in HGF treated PtK(2) cells was predominantly non-centrosomal. Because microtubules are required for efficient cellular locomotion, we propose that non-centrosomal microtubules stabilize the direction of locomotion without a requirement for reorientation of the centrosome.
Collapse
Affiliation(s)
- B A Danowski
- Department of Biology, Union College, Schnectady, New York 12308, USA.
| | | | | |
Collapse
|
349
|
Abstract
Over the past 100 years, the centrosome has risen in status from an enigmatic organelle, located at the focus of microtubules, to a key player in cell-cycle progression and cellular control. A growing body of evidence indicates that centrosomes might not be essential for spindle assembly, whereas recent data indicate that they might be important for initiating S phase and completing cytokinesis. Molecules that regulate centrosome duplication have been identified, and the expanding list of intriguing centrosome-anchored activities, the functions of which have yet to be determined, promises continued discovery.
Collapse
Affiliation(s)
- S Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
350
|
Lutz W, Lingle WL, McCormick D, Greenwood TM, Salisbury JL. Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 2001; 276:20774-80. [PMID: 11279195 DOI: 10.1074/jbc.m101324200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Once during each cell cycle, mitotic spindle poles arise by separation of newly duplicated centrosomes. We report here the involvement of phosphorylation of the centrosomal protein centrin in this process. We show that centrin is phosphorylated at serine residue 170 during the G(2)/M phase of the cell cycle. Indirect immunofluorescence staining of HeLa cells using a phosphocentrin-specific antibody reveals intense labeling of mitotic spindle poles during prophase and metaphase of the cell division cycle, with diminished staining of anaphase and no staining of telophase and interphase centrosomes. Cultured cells undergo a dramatic increase in centrin phosphorylation following the experimental elevation of PKA activity, suggesting that this kinase can phosphorylate centrin in vivo. Surprisingly, elevated PKA activity also resulted intense phosphocentrin antibody labeling of interphase centrosomes and in the concurrent movement of individual centrioles apart from one another. Taken together, these results suggest that centrin phosphorylation signals the separation of centrosomes at prophase and implicates centrin phosphorylation in centriole separation that normally precedes centrosome duplication.
Collapse
Affiliation(s)
- W Lutz
- Department of Biochemistry and Molecular Biology, Tumor Biology Program, Mayo Clinic Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|