301
|
Cho SY, Klemke RL. Purification of pseudopodia from polarized cells reveals redistribution and activation of Rac through assembly of a CAS/Crk scaffold. J Cell Biol 2002; 156:725-36. [PMID: 11839772 PMCID: PMC2174083 DOI: 10.1083/jcb.200111032] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Initiation of cell migration requires morphological polarization with formation of a dominant leading pseudopodium and rear compartment. A molecular understanding of this process has been limited, due to the inability to biochemically separate the leading pseudopodium from the rear of the cell. Here we examine the spatio-temporal localization and activation of cytoskeletal-associated signals in purified pseudopodia directed to undergo growth or retraction. Pseudopodia growth requires assembly of a p130Crk-associated substrate (CAS)/c-CrkII (Crk) scaffold, which facilitates translocation and activation of Rac1. Interestingly, Rac1 activation then serves as a positive-feedback loop to maintain CAS/Crk coupling and pseudopodia extension. Conversely, disassembly of this molecular scaffold is critical for export and down regulation of Rac1 activity and induction of pseudopodia retraction. Surprisingly, the uncoupling of Crk from CAS during pseudopodium retraction is independent of changes in focal adhesion kinase activity and CAS tyrosine phosphorylation. These findings establish CAS/Crk as an essential scaffold for Rac1-mediated pseudopodia growth and retraction, and illustrate spatio-temporal segregation of cytoskeletal signals during cell polarization.
Collapse
Affiliation(s)
- Samuel Y Cho
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
302
|
Stefan CJ, Audhya A, Emr SD. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell 2002; 13:542-57. [PMID: 11854411 PMCID: PMC65648 DOI: 10.1091/mbc.01-10-0476] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphoinositides (PI) are synthesized and turned over by specific kinases, phosphatases, and lipases that ensure the proper localization of discrete PI isoforms at distinct membranes. We analyzed the role of the yeast synaptojanin-like proteins using a strain that expressed only a temperature-conditional allele of SJL2. Our analysis demonstrated that inactivation of the yeast synaptojanins leads to increased cellular levels of phosphatidylinositol (3,5)-bisphosphate and phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P(2)), accompanied by defects in actin organization, endocytosis, and clathrin-mediated sorting between the Golgi and endosomes. The phenotypes observed in synaptojanin-deficient cells correlated with accumulation of PtdIns(4,5)P(2), because these effects were rescued by mutations in MSS4 or a mutant form of Sjl2p that harbors only PI 5-phosphatase activity. We utilized green fluorescent protein-pleckstrin homology domain chimeras (termed FLAREs for fluorescent lipid-associated reporters) with distinct PI-binding specificities to visualize pools of PtdIns(4,5)P(2) and phosphatidylinositol 4-phosphate in yeast. PtdIns(4,5)P(2) localized to the plasma membrane in a manner dependent on Mss4p activity. On inactivation of the yeast synaptojanins, PtdIns(4,5)P(2) accumulated in intracellular compartments, as well as the cell surface. In contrast, phosphatidylinositol 4-phosphate generated by Pik1p localized in intracellular compartments. Taken together, our results demonstrate that the yeast synaptojanins control the localization of PtdIns(4,5)P(2) in vivo and provide further evidence for the compartmentalization of different PI species.
Collapse
Affiliation(s)
- Christopher J Stefan
- Division of Cellular and Molecular Medicine, The Howard Hughes Medical Institute, University of California, San Diego, School of Medicine, La Jolla, California 92093-0068, USA
| | | | | |
Collapse
|
303
|
Curnock AP, Logan MK, Ward SG. Chemokine signalling: pivoting around multiple phosphoinositide 3-kinases. Immunology 2002; 105:125-36. [PMID: 11872087 PMCID: PMC1782650 DOI: 10.1046/j.1365-2567.2002.01345.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The role of chemokines in mediating directional cell migration is well established, but more recently it has become evident that chemokines are able to couple to distinct signalling pathways that are involved in not only chemotaxis, but also cell growth and transcriptional activation. The signalling pathway controlled by the phosphoinositide 3-kinase (PI3K) family of lipid kinases has been the focus of much attention with respect to their role in chemokine-mediated functional responses. Indeed, there now exists convincing biochemical, pharmacological and genetic evidence that both CC and CXC chemokines stimulate PI3K-dependent chemotaxis of inflammatory cells such as eosinophils, macrophages, neutrophils and T lymphocytes. This review considers the role of individual PI3Ks (e.g. the p85/p110 heterodimer, PI3Kgamma and PI3KC2alpha) as well their downstream effector targets in mediating chemokine-stimulated cell migration.
Collapse
Affiliation(s)
- Adam P Curnock
- Department of Pharmacy and Pharmacology, Bath University, Claverton Down, Bath, Avon BA2 7AY, UK
| | | | | |
Collapse
|
304
|
Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2002; 17:615-75. [PMID: 11687500 DOI: 10.1146/annurev.cellbio.17.1.615] [Citation(s) in RCA: 948] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) family of enzymes is recruited upon growth factor receptor activation and produces 3' phosphoinositide lipids. The lipid products of PI3K act as second messengers by binding to and activating diverse cellular target proteins. These events constitute the start of a complex signaling cascade, which ultimately results in the mediation of cellular activities such as proliferation, differentiation, chemotaxis, survival, trafficking, and glucose homeostasis. Therefore, PI3Ks play a central role in many cellular functions. The factors that determine which cellular function is mediated are complex and may be partly attributed to the diversity that exists at each level of the PI3K signaling cascade, such as the type of stimulus, the isoform of PI3K, or the nature of the second messenger lipids. Numerous studies have helped to elucidate some of the key factors that determine cell fate in the context of PI3K signaling. For example, the past two years has seen the publication of many transgenic and knockout mouse studies where either PI3K or its signaling components are deregulated. These models have helped to build a picture of the role of PI3K in physiology and indeed there have been a number of surprises. This review uses such models as a framework to build a profile of PI3K function within both the cell and the organism and focuses, in particular, on the role of PI3K in cell regulation, immunity, and development. The evidence for the role of deregulated PI3K signaling in diseases such as cancer and diabetes is reviewed.
Collapse
Affiliation(s)
- R Katso
- Ludwig Institute for Cancer Research, 91 Riding House Street, London, W1W 7BS, England.
| | | | | | | | | | | |
Collapse
|
305
|
|
306
|
Higuchi M, Masuyama N, Fukui Y, Suzuki A, Gotoh Y. Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells. Curr Biol 2001; 11:1958-62. [PMID: 11747822 DOI: 10.1016/s0960-9822(01)00599-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth factors promote cell survival and cell motility, presumably through the activation of Akt and the Rac and Cdc42 GTPases, respectively. Because Akt is dispensable for Rac/Cdc42 regulation of actin reorganization, it has been assumed that Rac and Cdc42 stimulate cell motility independent of Akt in mammalian cells. However, in this study we demonstrate that Akt is essential for Rac/Cdc42-regulated cell motility in mammalian fibroblasts. A dominant-negative Akt inhibits cell motility stimulated by Rac/Cdc42 or by PDGF treatment, without affecting ruffling membrane-type actin reorganization. We have confirmed a previous report that Akt is activated by expression of Rac and Cdc42 and also observed colocalization of endogenous phosphorylated Akt with Rac and Cdc42 at the leading edge of fibroblasts. Importantly, expression of active Akt but not the closely related kinase SGK is sufficient for increasing cell motility. This effect of Akt is cell autonomous and not mediated by inhibition of GSK3. Finally, we found that dominant-negative Akt but not SGK reverses the increased cell motility phenotype of fibroblasts lacking the PTEN tumor suppressor gene. Taken together, these results suggest that Akt promotes cell motility downstream of Rac/Cdc42 in growth factor-stimulated cells and in invasive PTEN-deficient cells.
Collapse
Affiliation(s)
- M Higuchi
- Institute of Molecular and Cellular Biosciences, Faculty of Agricultural and Life Science, University of Tokyo, Yayoi, Bunkyo-ku, 113-0032, Tokyo, Japan
| | | | | | | | | |
Collapse
|
307
|
Abstract
The inositol lipids PI(4,5)P(2) and PI(3,4,5)P(3) are important regulators of actin polymerization, but their different temporal and spatial dynamics suggest that they perform separate roles. PI(3,4,5)P(3) seems to act as an instructive second messenger, inducing local actin polymerization. PI(4,5)P(2) appears to be present at too high a concentration and homogeneous a distribution to fulfil a similar role. Instead, we suggest that PI(4,5)P(2) acts permissively, restricting new actin polymerization to the region of the plasma membrane.
Collapse
Affiliation(s)
- R H Insall
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | |
Collapse
|
308
|
Abstract
Migrating cells display a characteristic polarization of the actin cytoskeleton. Actin filaments polymerise in the protruding front of the cell whereas actin filament bundles contract in the cell body, which results in retraction of the cell’s rear. The dynamic organization of the actin cytoskeleton provides the force for cell motility and is regulated by small GTPases of the Rho family, in particular Rac1, RhoA and Cdc42. Although the microtubule cytoskeleton is also polarized in a migrating cell, and microtubules are essential for the directed migration of many cell types, their role in cell motility is not well understood at a molecular level. Here, we discuss the potential molecular mechanisms for interplay of microtubules, actin and Rho GTPase signalling in cell polarization and motility. Recent evidence suggests that microtubules locally modulate the activity of Rho GTPases and, conversely, Rho GTPases might be responsible for the initial polarization of the microtubule cytoskeleton. Thus, microtubules might be part of a positive feedback mechanism that maintains the stable polarization of a directionally migrating cell.
Collapse
Affiliation(s)
- T Wittmann
- The Scripps Research Institute, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
309
|
Cullen PJ, Cozier GE, Banting G, Mellor H. Modular phosphoinositide-binding domains--their role in signalling and membrane trafficking. Curr Biol 2001; 11:R882-93. [PMID: 11696348 DOI: 10.1016/s0960-9822(01)00523-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The membrane phospholipid phosphatidylinositol is the precursor of a family of lipid second-messengers, known as phosphoinositides, which differ in the phosphorylation status of their inositol group. A major advance in understanding phosphoinositide signalling has been the identification of a number of highly conserved modular protein domains whose function appears to be to bind various phosphoinositides. Such 'cut and paste' modules are found in a diverse array of multidomain proteins and recruit their host protein to specific regions in cells via interactions with phosphoinositides. Here, with particular reference to proteins involved in membrane traffic pathways, we discuss recent advances in our understanding of phosphoinositide-binding domains.
Collapse
Affiliation(s)
- P J Cullen
- Inositide Group, Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | |
Collapse
|
310
|
Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T. Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 2001; 294:864-7. [PMID: 11679673 DOI: 10.1126/science.1063951] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Single-molecule imaging techniques were used to reveal the binding of individual cyclic adenosine 3',5'-monophosphate molecules to heterotrimeric guanine nucleotide-binding protein coupled receptors on the surface of living Dictyostelium discoideum cells. The binding sites were uniformly distributed and diffused rapidly in the plane of the membrane. The probabilities of individual association and dissociation events were greater for receptors at the anterior end of the cell. Agonist-induced receptor phosphorylation had little effect on any of the monitored properties, whereas G protein coupling influenced the binding kinetics. These observations illustrate the dynamic properties of receptors involved in gradient sensing and suggest that these may be polarized in chemotactic cells.
Collapse
Affiliation(s)
- M Ueda
- Recognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Corporation (JST)., Osaka 562-0035, Japan.
| | | | | | | | | |
Collapse
|
311
|
Friedl P, Borgmann S, Bröcker E. Amoeboid leukocyte crawling through extracellular matrix: lessons from the
Dictyostelium
paradigm of cell movement. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.4.491] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Peter Friedl
- Cell Migration Laboratory, Department of Dermatology, University of Würzburg, Würzburg, Germany
| | - Stefan Borgmann
- Cell Migration Laboratory, Department of Dermatology, University of Würzburg, Würzburg, Germany
| | - Eva‐B. Bröcker
- Cell Migration Laboratory, Department of Dermatology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
312
|
Zhang N, Long Y, Devreotes PN. Ggamma in dictyostelium: its role in localization of gbetagamma to the membrane is required for chemotaxis in shallow gradients. Mol Biol Cell 2001; 12:3204-13. [PMID: 11598203 PMCID: PMC60167 DOI: 10.1091/mbc.12.10.3204] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
G-protein-mediated signal transduction pathways play an essential role in the developmental program of the simple eukaryotic organism Dictyostelium discoideum. Database searches have yielded 11 Galpha-subunits, a single Gbeta-subunit, but no Ggamma-subunits. We report here the purification, cDNA isolation, and functional analysis of a Ggamma-subunit. Like Gbeta, the Ggamma appears to be unique and hybridization studies show that Ggamma and Gbeta are expressed in parallel during development. Species-wide sequence comparisons of Ggamma-subunits and gamma-like domains of RGS proteins reveal short stretches of highly conserved residues as well as the common CXXL motif at the COOH-terminal of Ggammas that target Gbetagammas to plasma membrane. Overexpression of a CSVL-deleted Ggamma (GgammaDelta) in wild-type cells shifts Gbetagamma to the cytosol and selectively impairs certain G-protein-mediated signal transduction pathways. These cells are able to respond to increments in the stimulus, but are unable to sense chemoattractant gradients. They neither move directionally nor recruit PH-domains to their leading edge. Thus, a full complement of membrane-tethered Gbetagamma is required for sensing shallow gradients, but is not essential for responses to increments in extracellular stimuli.
Collapse
Affiliation(s)
- N Zhang
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
313
|
Abstract
Since its discovery 10 years ago, the potential functions of protein kinase B (PKB)/AKT have been catalogued with increasing efficiency. The physiological relevance of some of the proposed mechanisms by which PKB/AKT mediates many of its effects has been questioned, and recent work using new reagents and approaches has revealed some cracks in our understanding of this important molecule, and also hinted that these effects may involve other players.
Collapse
Affiliation(s)
- M P Scheid
- Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | |
Collapse
|
314
|
Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, Chung J. Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J 2001; 15:1953-62. [PMID: 11532975 DOI: 10.1096/fj.01-0198com] [Citation(s) in RCA: 388] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Akt/protein kinase B (PKB) serine/threonine kinase is well known as an important mediator of many cell survival signaling pathways. Here, we demonstrate for the first time a major role of Akt/PKB in the cell invasion properties of the highly metastatic cell line HT1080. Using confocal microscopic analyses of live samples, we found Akt/PKB to be localized in the leading edge membrane area of migrating HT1080 cells. This localization was dependent on phosphoinositide 3-kinase and required the lipid binding ability of the phosphoinositide binding pleckstrin homology domain of Akt/PKB. We examined the possible function of Akt/PKB in HT1080 invasion. Surprisingly, Akt/PKB potently promoted HT1080 invasion, by increasing cell motility and matrix metalloproteinase-9 (MMP-9) production, in a manner highly dependent on its kinase activity and membrane-translocating ability. The increase in MMP-9 production was mediated by activation of nuclear factor-kappaB transcriptional activity by Akt/PKB. However, Akt/PKB did not affect the cell-cell or cell-matrix adhesion properties of HT1080. Our findings thus establish Akt/PKB as a major factor in the invasive abilities of cancer cells.
Collapse
Affiliation(s)
- D Kim
- National Creative Research Initiative Center for Cell Growth Regulation, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong, Taejon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
315
|
Abstract
Many important biological processes, including chemotaxis (directional cell movement up a chemoattractant gradient), require a clearly established cell polarity and the ability of the cell to respond to a directional signal. Recent advances using Dictyostelium cells and mammalian leukocytes have provided insights into the biochemical and molecular pathways that control chemotaxis. Phosphoinositide 3-kinase plays a central and possibly pivotal role in establishing and maintaining cell polarity by regulating the subcellular localization and activation of downstream effectors that are essential for regulating cell polarity and proper chemotaxis. This review outlines our present understanding of these pathways.
Collapse
Affiliation(s)
- C Y Chung
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | | | | |
Collapse
|
316
|
Rupper A, Lee K, Knecht D, Cardelli J. Sequential activities of phosphoinositide 3-kinase, PKB/Aakt, and Rab7 during macropinosome formation in Dictyostelium. Mol Biol Cell 2001; 12:2813-24. [PMID: 11553719 PMCID: PMC59715 DOI: 10.1091/mbc.12.9.2813] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Macropinocytosis plays an important role in the internalization of antigens by dendritic cells and is the route of entry for many bacterial pathogens; however, little is known about the molecular mechanisms that regulate the formation or maturation of macropinosomes. Like dendritic cells, Dictyostelium amoebae are active in macropinocytosis, and various proteins have been identified that contribute to this process. As described here, microscopic analysis of null mutants have revealed that the class I phosphoinositide 3-kinases, PIK1 and PIK2, and the downstream effector protein kinase B (PKB/Akt) are important in regulating completion of macropinocytosis. Although actin-rich membrane protrusions form in these cell lines, they recede without forming macropinosomes. Imaging of cells expressing green fluorescent protein (GFP) fused to the pleckstrin homology domain (PH) of PKB (GFP-PHPKB) indicates that D3 phosphoinositides are enriched in the forming macropinocytic cup and remain associated with newly formed macropinosomes for <1 minute. A fusion protein, consisting of GFP fused to an F-actin binding domain, overlaps with GFP-PHPKB in the timing of association with forming macropinosomes. Although macropinocytosis is reduced in cells expressing dominant negative Rab7, microscopic imaging studies reveal that GFP-Rab7 associates only with formed macropinosomes at approximately the time that F-actin and D3 phosphoinositide levels decrease. These results support a model in which F-actin modulating proteins and vesicle trafficking proteins coordinately regulate the formation and maturation of macropinosomes.
Collapse
Affiliation(s)
- A Rupper
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
317
|
Lim CJ, Spiegelman GB, Weeks G. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation. EMBO J 2001; 20:4490-9. [PMID: 11500376 PMCID: PMC125575 DOI: 10.1093/emboj/20.16.4490] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2001] [Revised: 06/29/2001] [Accepted: 06/29/2001] [Indexed: 12/31/2022] Open
Abstract
Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.
Collapse
Affiliation(s)
- Chinten James Lim
- Department of Microbiology and Immunology and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada Corresponding author e-mail:
| | - George B. Spiegelman
- Department of Microbiology and Immunology and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada Corresponding author e-mail:
| | - Gerald Weeks
- Department of Microbiology and Immunology and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada Corresponding author e-mail:
| |
Collapse
|
318
|
Arron JR, Vologodskaia M, Wong BR, Naramura M, Kim N, Gu H, Choi Y. A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation. J Biol Chem 2001; 276:30011-7. [PMID: 11406619 DOI: 10.1074/jbc.m100414200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE) is a TNF family member essential for osteoclast differentiation, and it induces the activation and survival of osteoclasts and mature dendritic cells. We recently demonstrated that TRANCE activates Akt via a mechanism involving TRANCE receptor (TRANCE-R)/RANK, TRAF6, and c-Src. Here, we show that TRANCE-R and CD40 recruit TRAF6, Cbl family-scaffolding proteins, and the phospholipid kinase phosphatidylinositol 3-kinase in a ligand-dependent manner. The recruitment of Cbl-b and c-Cbl to TRANCE-R is dependent upon the activity of Src-family kinases. TRANCE and CD40L-mediated Akt activation is defective in Cbl-b -/- dendritic cells, and CD40L-mediated Akt activation is defective in c-Cbl -/- B cells. These findings implicate Cbl family proteins as not only negative regulators of signaling but as positive modulators of TNF receptor superfamily signaling as well.
Collapse
Affiliation(s)
- J R Arron
- Laboratory of Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
319
|
Abstract
Cell migration involves dynamic and spatially regulated changes to the cytoskeleton and cell adhesion. The Rho GTPases play key roles in coordinating the cellular responses required for cell migration. Recent research has revealed new molecular links between Rho family proteins and the actin cytoskeleton, showing that they act to regulate actin polymerization, depolymerization and the activity of actin-associated myosins. In addition, studies on integrin signalling suggest that the substratum continuously feeds signals to Rho proteins in migrating cells to influence migration rate. There is also increasing evidence that Rho proteins affect the organization of the microtubule and intermediate filament networks and that this is important for cell migration.
Collapse
Affiliation(s)
- A J Ridley
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, UK.
| |
Collapse
|
320
|
Gerszten RE, Friedrich EB, Matsui T, Hung RR, Li L, Force T, Rosenzweig A. Role of phosphoinositide 3-kinase in monocyte recruitment under flow conditions. J Biol Chem 2001; 276:26846-51. [PMID: 11278864 DOI: 10.1074/jbc.m011235200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemokines such as the monocyte chemol attractant protein-1 (MCP-1) convert monocyte rolling to firm arrest under physiological flow conditions via integrin activation and simultaneously activate phosphoinositide 3-kinase (PI3K). Here we used adenoviral gene transfer and biochemical inhibitors to manipulate PI3K-dependent pathways in human monocytes. In in vitro lipid kinase assays from purified human monocytes, we showed that MCP-1 activates the "classical" PI3Kalpha pathway and not PI3Kgamma, a PI3K isoform thought to be activated only by the betagamma complex of heterotrimeric G proteins. The activity of PI3Kalpha in purified human monocytes was evident within 30 s. MCP-1-induced monocyte arrest was significantly inhibited both by wortmannin (n = 4; p < 0.01) and LY294002 (n = 4; p < 0.01) with restoration of the rolling phenotype (p < 0.05 for both inhibitors, compared with rolling of control monocytes after MCP-1 treatment). To test the hypothesis that activation of PI3K is sufficient to induce monocyte adhesion, we transduced the monocytic THP-1 cell line with a recombinant adenovirus (Ad) carrying a constitutively active mutant of PI3K (Ad.BD110). We examined the ability of these cells to adhere to human vascular endothelium (HUVEC) transduced with adenoviruses carrying E-selectin, intercellular adhesion molecule-1 (ICAM-1), and VCAM-1. Under flow conditions, ICAM-1- and VCAM-1-dependent firm adhesion of Ad.BD110-transduced THP-1 cells was enhanced compared with THP-1 cells infected with control Ad (n = 4; p < 0.01 for both). Adhesion augmented by constitutive PI3K activation was entirely abrogated by pretreatment with wortmannin (n = 3; p < 0.01). In contrast, a constitutively active Akt construct had no effect on THP-1 adhesion (n = 3; p = NS). We conclude that PI3K activation is necessary and sufficient to enhance monocytic adhesion under physiological flow conditions. BD110-expressing THP-1 cells should provide a useful tool for identifying the signaling pathways downstream of PI3K that are necessary for monocyte recruitment relevant to a variety of human vascular pathologies.
Collapse
Affiliation(s)
- R E Gerszten
- Program in Cardiovascular Gene Therapy, Cardiovascular Research Center and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
321
|
Mercurio AM, Bachelder RE, Chung J, O'Connor KL, Rabinovitz I, Shaw LM, Tani T. Integrin laminin receptors and breast carcinoma progression. J Mammary Gland Biol Neoplasia 2001; 6:299-309. [PMID: 11547899 DOI: 10.1023/a:1011323608064] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This review explores the mechanistic basis of breast carcinoma progression by focusing on the contribution of integrins. Integrins are essential for progression not only for their ability to mediate physical interactions with extracellular matrices but also for their ability to regulate signaling pathways that control actin dynamics and cell movement, as well as for growth and survival. Our comments center on the alpha6 integrins (alpha6beta1 and alpha6beta4), which are receptors for the laminin family of basement membrane components. Numerous studies have implicated these integrins in breast cancer progression and have provided a rationale for studying the mechanistic basis of their contribution to aggressive disease. Recent work by our group and others on mechanisms of breast carcinoma invasion and survival that are influenced by the alpha6 integrins are discussed.
Collapse
Affiliation(s)
- A M Mercurio
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
322
|
Funamoto S, Milan K, Meili R, Firtel RA. Role of phosphatidylinositol 3' kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in dictyostelium. J Cell Biol 2001; 153:795-810. [PMID: 11352940 PMCID: PMC2192389 DOI: 10.1083/jcb.153.4.795] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We show that cells lacking two Dictyostelium class I phosphatidylinositol (PI) 3′ kinases (PI3K and pi3k1/2-null cells) or wild-type cells treated with the PI3K inhibitor LY294002 are unable to properly polarize, are very defective in the temporal, spatial, and quantitative regulation of chemoattractant-mediated filamentous (F)-actin polymerization, and chemotax very slowly. PI3K is thought to produce membrane lipid-binding sites for localization of PH domain–containing proteins. We demonstrate that in response to chemoattractants three PH domain–containing proteins do not localize to the leading edge in pi3k1/2-null cells, and the translocation is blocked in wild-type cells by LY294002. Cells lacking one of these proteins, phdA-null cells, exhibit defects in the level and kinetics of actin polymerization at the leading edge and have chemotaxis phenotypes that are distinct from those described previously for protein kinase B (PKB) (pkbA)-null cells. Phenotypes of PhdA-dominant interfering mutations suggest that PhdA is an adaptor protein that regulates F-actin localization in response to chemoattractants and links PI3K to the control of F-actin polymerization at the leading edge during pseudopod formation. We suggest that PKB and PhdA lie downstream from PI3K and control different downstream effector pathways that are essential for proper chemotaxis.
Collapse
Affiliation(s)
- Satoru Funamoto
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093
| | - Kristina Milan
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093
| | - Ruedi Meili
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093
| | - Richard A. Firtel
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
323
|
Mohanty S, Lee S, Yadava N, Dealy MJ, Johnson RS, Firtel RA. Regulated protein degradation controls PKA function and cell-type differentiation in Dictyostelium. Genes Dev 2001; 15:1435-48. [PMID: 11390363 PMCID: PMC312710 DOI: 10.1101/gad.871101] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cullins function as scaffolds that, along with F-box/WD40-repeat-containing proteins, mediate the ubiquitination of proteins to target them for degradation by the proteasome. We have identified a cullin CulA that is required at several stages during Dictyostelium development. culA null cells are defective in inducing cell-type-specific gene expression and exhibit defects during aggregation, including reduced chemotaxis. PKA is an important regulator of Dictyostelium development. The levels of intracellular cAMP and PKA activity are controlled by the rate of synthesis of cAMP and its degradation by the cAMP-specific phosphodiesterase RegA. We show that overexpression of the PKA catalytic subunit (PKAcat) rescues many of the culA null defects and those of cells lacking FbxA/ChtA, a previously described F-box/WD40-repeat-containing protein, suggesting CulA and FbxA proteins are involved in regulating PKA function. Whereas RegA protein levels drop as the multicellular organism forms in the wild-type strain, they remain high in culA null and fbxA null cells. Although PKA can suppress the culA and fbxA null developmental phenotypes, it does not suppress the altered RegA degradation, suggesting that PKA lies downstream of RegA, CulA, and FbxA. Finally, we show that CulA, FbxA, and RegA are found in a complex in vivo, and formation of this complex is dependent on the MAP kinase ERK2, which is also required for PKA function. We propose that CulA and FbxA regulate multicellular development by targeting RegA for degradation via a pathway that requires ERK2 function, leading to an increase in cAMP and PKA activity.
Collapse
Affiliation(s)
- S Mohanty
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
324
|
Tang L, Ammann R, Gao T, Gomer RH. A cell number-counting factor regulates group size in Dictyostelium by differentially modulating cAMP-induced cAMP and cGMP pulse sizes. J Biol Chem 2001; 276:27663-9. [PMID: 11371560 DOI: 10.1074/jbc.m102205200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A secreted counting factor (CF), regulates the size of Dictyostelium discoideum fruiting bodies in part by regulating cell-cell adhesion. Aggregation and the expression of adhesion molecules are mediated by relayed pulses of cAMP. Cells also respond to cAMP with a short cGMP pulse. We find that CF slowly down-regulates the cAMP-induced cGMP pulse by inhibiting guanylyl cyclase activity. A 1-min exposure of cells to purified CF increases the cAMP-induced cAMP pulse. CF does not affect the cAMP receptor or its interaction with its associated G proteins or the translocation of the cytosolic regulator of adenylyl cyclase to the membrane in response to cAMP. Pulsing streaming wild-type cells with a high concentration of cAMP results in the formation of small groups, whereas reducing cAMP pulse size with exogenous cAMP phosphodiesterase during stream formation causes cells to form large groups. Altering the extracellular cAMP pulse size does not phenocopy the effects of CF on the cAMP-induced cGMP pulse size or cell-cell adhesion, indicating that CF does not regulate cGMP pulses and adhesion via CF's effects on cAMP pulses. The results suggest that regulating cell-cell adhesion, the cGMP pulse size, or the cAMP pulse size can control group size and that CF regulates all three of these independently.
Collapse
Affiliation(s)
- L Tang
- Howard Hughes Medical Institute and the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | |
Collapse
|
325
|
Brzostowski JA, Kimmel AR. Signaling at zero G: G-protein-independent functions for 7-TM receptors. Trends Biochem Sci 2001; 26:291-7. [PMID: 11343921 DOI: 10.1016/s0968-0004(01)01804-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eukaryotic cells, whether free-living, single-celled microbes or components of complex metazoa, can sense environmental cues through specialized seven-transmembrane (7-TM) receptors (also called heptahelical or G-protein-coupled receptors). 7-TM receptors detect "inputs" such as light, peptide hormones, neurotransmitters, pheromones, odorants, morphogens and chemoattractants, linking extracellular stimuli to intracellular signaling networks via heterotrimeric G proteins. Recently, this obligatory paradigm has been challenged. A growing body of evidence indicates that 7-TM receptors can also transmit extracellular signals through mechanisms that function independently of G-protein coupling. This review discusses pathways and protein interactions for 7-TM receptors signaling "at zero G" in Dictyostelium and mammalian cells.
Collapse
Affiliation(s)
- J A Brzostowski
- Molecular Mechanisms of Development, Laboratory of Cellular and Developmental Biology, NIDDK/NIH, Bethesda, MD 20892-2715, USA
| | | |
Collapse
|
326
|
Chung CY, Potikyan G, Firtel RA. Control of cell polarity and chemotaxis by Akt/PKB and PI3 kinase through the regulation of PAKa. Mol Cell 2001; 7:937-47. [PMID: 11389841 DOI: 10.1016/s1097-2765(01)00247-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We demonstrate that PI3 kinase and protein kinase B (PKB or Akt) control cell polarity and chemotaxis, in part, through the regulation of PAKa, which is required for myosin II assembly. We demonstrate that PI3K and PKB mediate PAKa's subcellular localization, PAKa's activation in response to chemoattractant stimulation, and chemoattractant-mediated myosin II assembly. Mutation of the PKB phosphorylation site in PAKa to Ala blocks PAKa's activation and inhibits PAKa redistribution in response to chemoattractant stimulation, whereas an Asp substitution leads to an activated protein. Addition of the PI3K inhibitor LY294002 results in a rapid loss of cell polarity and the axial distribution of actin, myosin, and PAKa. These results provide a mechanism by which PI3K regulates chemotaxis.
Collapse
Affiliation(s)
- C Y Chung
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | | | | |
Collapse
|
327
|
Loitto V, Rasmusson B, Magnusson K. Assessment of neutrophil
N
‐formyl peptide receptors by using antibodies and fluorescent peptides. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.5.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Vesa‐Matti Loitto
- Department of Medical Microbiology, Faculty of Health Sciences, Linköping University, SE‐581 85 Linköping, Sweden
| | - Birgitta Rasmusson
- Department of Medical Microbiology, Faculty of Health Sciences, Linköping University, SE‐581 85 Linköping, Sweden
| | - Karl‐Eric Magnusson
- Department of Medical Microbiology, Faculty of Health Sciences, Linköping University, SE‐581 85 Linköping, Sweden
| |
Collapse
|
328
|
|
329
|
Abstract
The reversible localization of signaling proteins to both the plasma and the internal membranes of cells is critical for the selective activation of downstream functions and depends on interactions with both proteins and membrane lipids. New structural and biochemical analyses of C1, C2, PH, FYVE, FERM and other domains have led to an unprecedented amount of information on the molecular interactions of these signaling proteins with regulatory lipids. A wave of studies using GFP-tagged membrane binding domains as reporters has led to new quantitative insights into the kinetics of these signaling mechanisms.
Collapse
Affiliation(s)
- J H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0580, USA.
| | | |
Collapse
|
330
|
Mercurio AM, Bachelder RE, Rabinovitz I, O’Connor KL, Tani T, Shaw LM. The Metastatic Odyssey. Surg Oncol Clin N Am 2001. [DOI: 10.1016/s1055-3207(18)30067-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
331
|
Rupper AC, Rodriguez-Paris JM, Grove BD, Cardelli JA. p110-related PI 3-kinases regulate phagosome-phagosome fusion and phagosomal pH through a PKB/Akt dependent pathway in Dictyostelium. J Cell Sci 2001; 114:1283-95. [PMID: 11256995 DOI: 10.1242/jcs.114.7.1283] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Dictyostelium p110-related PI 3-kinases, PIK1 and PIK2, regulate the endosomal pathway and the actin cytoskeleton, but do not significantly regulate internalization of particles in D. discoideum. Bacteria internalized into (Δ)ddpik1/ddpik2 cells or cells treated with PI 3-kinase inhibitors remained intact as single particles in phagosomes with closely associated membranes after 2 hours of internalization, while in control cells, bacteria appeared degraded in multi-particle spacious phagosomes. Addition of LY294002 to control cells, after 60 minutes of chase, blocked formation of spacious phagosomes, suggesting PI 3-kinases acted late to regulate spacious phagosome formation. Phagosomes purified from control and drug treated cells contained equivalent levels of lysosomal proteins, including the proton pump complex, and were acidic, but in drug treated cells and (Δ)ddpik1/ddpik2 cells phagosomal pH was significantly more acidic during maturation than the pH of control phagosomes. Inhibition of phagosomal maturation by LY294002 was overcome by increasing phagosomal pH with NH(4)Cl, suggesting that an increase in pH might trigger homotypic phagosome fusion. A pkbA null cell line (PKB/Akt) reproduced the phenotype described for cells treated with PI 3-kinase inhibitors and (Δ)ddpik1/ddpik2 cells. We propose that PI 3-kinases, through a PKB/Akt dependent pathway, directly regulate homotypic fusion of single particle containing phagosomes to form multi-particle, spacious phagosomes, possibly through the regulation of phagosomal pH.
Collapse
Affiliation(s)
- A C Rupper
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
332
|
Mañes S, Lacalle RA, Gómez-Moutón C, del Real G, Mira E, Martínez-A C. Membrane raft microdomains in chemokine receptor function. Semin Immunol 2001; 13:147-57. [PMID: 11308298 DOI: 10.1006/smim.2000.0306] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cell chemotaxis requires the acquisition and maintenance of both spatial and functional asymmetry between initially equivalent cell parts. In leukocytes one becomes the leading edge and the other, the rear edge or uropod. The acquisition of this cell polarity is controlled by an array of chemoattractants, including those of the chemokine family. We propose that chemokine receptor activation in highly organized lipid raft domains is a major determinant for the correct localization of the signaling pathways leading to the cell asymmetries required for migration. The lateral organization imposed by membrane raft microdomains is discussed in the context of other chemokine receptor activities, such as its role as a human immunodeficiency virus (HIV) coreceptor.
Collapse
Affiliation(s)
- S Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, E-28049, Spain.
| | | | | | | | | | | |
Collapse
|
333
|
Moniakis J, Funamoto S, Fukuzawa M, Meisenhelder J, Araki T, Abe T, Meili R, Hunter T, Williams J, Firtel RA. An SH2-domain-containing kinase negatively regulates the phosphatidylinositol-3 kinase pathway. Genes Dev 2001; 15:687-98. [PMID: 11274054 PMCID: PMC312652 DOI: 10.1101/gad.871001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHK1 is a novel dual-specificity kinase that contains an SH2 domain in its C-terminal region. We demonstrate that SHK1 is required for proper chemotaxis and phagocytosis. Mutant shk1 null cells lack polarity, move very slowly, and exhibit an elevated and temporally extended chemoattractant-mediated activation of the kinase Akt/PKB. GFP fusions of the PH domain of Akt/PKB or the PH-domain-containing protein CRAC, which become transiently associated with the plasma membrane after a global stimulation with a chemoattractant, remain associated with the plasma membrane for an extended period of time in shk1 null cells. These results suggest that SHK1 is a negative regulator of the PI3K (phosphatidylinositol-3 kinase) pathway. Furthermore, when a chemoattractant gradient is applied to a wild-type cell, these PH-domain-containing proteins and the F-actin-binding protein coronin localize to its leading edge, but in an shk1 null cell they become randomly associated with the plasma membrane and cortex, irrespective of the direction of the chemoattractant gradient, suggesting that SHK1 is required for the proper spatiotemporal control of F-actin levels in chemotaxing cells. Consistent with such functions, SHK1 is localized at the plasma membrane/cortex, and we show that its SH2 domain is required for this localization and the proper function of SHK1.
Collapse
Affiliation(s)
- J Moniakis
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Chubb JR, Insall RH. Dictyostelium: an ideal organism for genetic dissection of Ras signalling networks. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:262-71. [PMID: 11257439 DOI: 10.1016/s0304-4165(01)00111-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Signalling pathways based on the small GTPase Ras regulate a multitude of cellular events in eukaryotic cells. Dictyostelium expresses a large and varied family of Ras proteins. It also uses a range of known Ras regulators, in particular RasGEFs, and effectors. The genetic tractability of Dictyostelium, together with the wide range of Ras proteins and regulators, make it an ideal model for the genetic dissection of Ras pathways. This review highlights the recent advances in our understanding of Ras function in Dictyostelium, and considers the implications of these findings for our understanding of eukaryotic signal transduction.
Collapse
Affiliation(s)
- J R Chubb
- School of Biosciences, Birmingham University, B15 2TT, Birmingham, UK
| | | |
Collapse
|
335
|
van Es S, Wessels D, Soll DR, Borleis J, Devreotes PN. Tortoise, a novel mitochondrial protein, is required for directional responses of Dictyostelium in chemotactic gradients. J Cell Biol 2001; 152:621-32. [PMID: 11157987 PMCID: PMC2196008 DOI: 10.1083/jcb.152.3.621] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2000] [Accepted: 12/08/2000] [Indexed: 01/14/2023] Open
Abstract
We have identified a novel gene, Tortoise (TorA), that is required for the efficient chemotaxis of Dictyostelium discoideum cells. Cells lacking TorA sense chemoattractant gradients as indicated by the presence of periodic waves of cell shape changes and the localized translocation of cytosolic PH domains to the membrane. However, they are unable to migrate directionally up spatial gradients of cAMP. Cells lacking Mek1 display a similar phenotype. Overexpression of Mek1 in torA- partially restores chemotaxis, whereas overexpression of TorA in mek1- does not rescue the chemotactic phenotype. Regardless of the genetic background, TorA overexpressing cells stop growing when separated from a substrate. Surprisingly, TorA-green fluorescent protein (GFP) is clustered near one end of mitochondria. Deletion analysis of the TorA protein reveals distinct regions for chemotactic function, mitochondrial localization, and the formation of clusters. TorA is associated with a round structure within the mitochondrion that shows enhanced staining with the mitochondrial dye Mitotracker. Cells overexpressing TorA contain many more of these structures than do wild-type cells. These TorA-containing structures resist extraction with Triton X-100, which dissolves the mitochondria. The characterization of TorA demonstrates an unexpected link between mitochondrial function, the chemotactic response, and the capacity to grow in suspension.
Collapse
Affiliation(s)
- Saskia van Es
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Deborah Wessels
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242
| | - David R. Soll
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Jane Borleis
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Peter N. Devreotes
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
336
|
Abstract
Since their discovery 13 years ago, chemokines have emerged as the most important regulators of leukocyte trafficking. On target cells, chemokines bind to seven-transmembrane-domain receptors that are coupled to heterotrimeric Gi proteins. The common response of all cells to chemokine stimulation is chemotaxis. In addition, leukocyte activation triggers diverse signal transduction cascades; which cascade is triggered depends on the chemokine and receptor engaged. The selective activation of distinct pathways suggests that the receptors couple not only to G proteins but also to additional downstream effectors. This review discusses recent advances in the elucidation of the signal transduction that occurs in proximity to receptors and that leads to the early biochemical events in leukocyte activation.
Collapse
Affiliation(s)
- M Thelen
- Institute for Research in Biomedicine, CH 6500 Bellinzona, Switzerland.
| |
Collapse
|
337
|
Abstract
Although the process of sequencing the Dictyostelium genome is not complete, it is already producing surprises, including an unexpectedly large number of Ras- and Rho-subfamily GTPases. Members of these families control a wide variety of cellular processes in eukaryotes, including proliferation, differentiation, cell motility and cell polarity. Comparison of small GTPases from Dictyostelium with those from higher eukaryotes provides an intriguing view of their cellular and evolutionary roles. In particular, although mammalian Ras proteins interact with several signalling pathways, the Dictyostelium pathways appear more linear, with each Ras apparently performing a specific cellular function.
Collapse
Affiliation(s)
- A Wilkins
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK CB2 2QH
| | | |
Collapse
|
338
|
Weber T, Schaffhausen B, Liu Y, Günther UL. NMR structure of the N-SH2 of the p85 subunit of phosphoinositide 3-kinase complexed to a doubly phosphorylated peptide reveals a second phosphotyrosine binding site. Biochemistry 2000; 39:15860-9. [PMID: 11123912 DOI: 10.1021/bi001474d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N-terminal src homology 2 (SH2) domain of the p85 subunit of phosphoinositide 3-kinase (PI3K) has a higher affinity for a peptide with two phosphotyrosines than for the same peptide with only one. This unexpected result was not observed for the C-terminal SH2 from the same protein. NMR structural analysis has been used to understand the behavior of the N-SH2. The structure of the free SH2 domain has been compared to that of the SH2 complexed with a doubly phosphorylated peptide derived from polyomavirus middle T antigen (MT). The structure of the free SH2 domain shows some differences from previous NMR and X-ray structures. In the N-SH2 complexed with a doubly phosphorylated peptide, a second site for phosphotyrosine interaction has been identified. Further, line shapes of NMR signals showed that the SH2 protein-ligand complex is subject to temperature-dependent conformational mobility. Conformational mobility is also supported by the spectra of the ligand peptide. A binding model which accounts for these results is developed.
Collapse
Affiliation(s)
- T Weber
- Institut für Biophysikalische Chemie, J. W. Goethe Universität, Frankfurt, Biozentrum N230, Marie-Curie-Strasse 9, 60439 Frankfurt, Germany
| | | | | | | |
Collapse
|
339
|
Abstract
The directed movement of fibroblasts towards locally released platelet-derived growth factor (PDGF) is a critical event in wound healing. Although recent studies have implicated polarized activation of phosphoinositide (PI) 3-kinase in G protein-mediated chemotaxis, the role of 3' PI lipids in tyrosine kinase-triggered chemotaxis is not well understood. Using evanescent wave microscopy and green fluorescent protein-tagged Akt pleckstrin homology domain (GFP-AktPH) as a molecular sensor, we show that application of a shallow PDGF gradient triggers a markedly steeper gradient in 3' PI lipids in the adhesion zone of fibroblasts. Polar GFP-AktPH gradients, as well as a new type of radial gradient, were measured from front to rear and from the periphery to the center of the adhesion zone, respectively. A strong spatial correlation between polarized 3' PI production and rapid membrane spreading implicates 3' PI lipids as a direct mediator of polarized migration. Analysis of the temporal changes of 3' PI gradients in the adhesion zone revealed a fast diffusion coefficient (0.5 microm(2)/s) and short lifetime of 3' PIs of <1 min. Together, this study suggests that the tyrosine kinase-coupled directional movement of fibroblasts and their radial membrane activity are controlled by local generation and rapid degradation of 3' PI second messengers.
Collapse
Affiliation(s)
- Jason M. Haugh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Franca Codazzi
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
- Neuroscience Department, Dibit, San Raffaele Scientific Institute, Milan, Italy 20132
| | - Mary Teruel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Tobias Meyer
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
340
|
Rickert P, Weiner OD, Wang F, Bourne HR, Servant G. Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol 2000; 10:466-73. [PMID: 11050418 PMCID: PMC2819116 DOI: 10.1016/s0962-8924(00)01841-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Morphologic polarity is necessary for the motility of mammalian cells. In leukocytes responding to a chemoattractant, this polarity is regulated by activities of small Rho guanosine triphosphatases (Rho GTPases) and the phosphoinositide 3-kinases (PI3Ks). Moreover, in neutrophils, lipid products of PI3Ks appear to regulate activation of Rho GTPases, are required for cell motility and accumulate asymmetrically to the plasma membrane at the leading edge of polarized cells. By spatially regulating Rho GTPases and organizing the leading edge of the cell, PI3Ks and their lipid products could play pivotal roles not only in establishing leukocyte polarity but also as compass molecules that tell the cell where to crawl.
Collapse
Affiliation(s)
- P Rickert
- Depts of Cellular and Molecular Pharmacology and Medicine and the Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0450, USA
| | | | | | | | | |
Collapse
|
341
|
Teruel MN, Meyer T. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 2000; 103:181-4. [PMID: 11057890 DOI: 10.1016/s0092-8674(00)00109-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- M N Teruel
- Department of Molecular Pharmacology, Stanford University Medical School, California 94305, USA
| | | |
Collapse
|
342
|
Traynor D, Milne JL, Insall RH, Kay RR. Ca(2+) signalling is not required for chemotaxis in Dictyostelium. EMBO J 2000; 19:4846-54. [PMID: 10970875 PMCID: PMC302083 DOI: 10.1093/emboj/19.17.4846] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2000] [Revised: 07/19/2000] [Accepted: 07/19/2000] [Indexed: 11/14/2022] Open
Abstract
Dictyostelium cells can move rapidly towards a source of cyclic-AMP (cAMP). This chemoattractant is detected by G-protein-linked receptors, which trigger a signalling cascade including a rapid influx of Ca(2+). We have disrupted an inositol 1,4,5-trisphosphate (InsP(3)) receptor-like gene, iplA, to produce null cells in which Ca(2+) entry in response to chemoattractants is abolished, as is the normal increase in free cytosolic Ca(2+) ([Ca(2+)](c)) that follows chemotactic stimulation. However, the resting [Ca(2+)](c) is similar to wild type. This mutant provides a test for the role of Ca(2+) influx in both chemotaxis and the signalling cascade that controls it. The production of cyclic-GMP and cAMP, and the activation of the MAP kinase, DdERK2, triggered from the cAMP receptor, are little perturbed in the mutant; mobilization of actin into the cytoskeleton also follows similar kinetics to wild type. Mutant cells chemotax efficiently towards cAMP or folic acid and their sensitivity to cAMP is similar to wild type. Finally, they move at similar speeds to wild-type cells, with or without chemoattractant. We conclude that Ca(2+) signalling is not necessary for chemotaxis to cAMP.
Collapse
Affiliation(s)
- D Traynor
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
343
|
Abstract
Dictyostelium has played an important role in unraveling the pathways that control cell movement and chemotaxis. Recent studies have started to elucidate the pathways that control cell sorting, morphogenesis, and the establishment of spatial patterning in this system. In doing so, they provide new insights into how cell movements within a multicellular organism are regulated and the importance of pathways that are similar to those that regulate chemotaxis of cells on two-dimensional surfaces during aggregation.
Collapse
Affiliation(s)
- R A Firtel
- Center for Molecular Genetics, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla 92093-0634, USA.
| | | |
Collapse
|
344
|
Dormann D, Vasiev B, Weijer CJ. The control of chemotactic cell movement during Dictyostelium morphogenesis. Philos Trans R Soc Lond B Biol Sci 2000; 355:983-91. [PMID: 11128992 PMCID: PMC1692793 DOI: 10.1098/rstb.2000.0634] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differential cell movement is an important mechanism in the development and morphogenesis of many organisms. In many cases there are indications that chemotaxis is a key mechanism controlling differential cell movement. This can be particularly well studied in the starvation-induced multicellular development of the social amoeba Dictyostelium discoideum. Upon starvation, up to 10(5) individual amoebae aggregate to form a fruiting body The cells aggregate by chemotaxis in response to propagating waves of cAMP, initiated by an aggregation centre. During their chemotactic aggregation the cells start to differentiate into prestalk and prespore cells, precursors to the stalk and spores that form the fruiting body. These cells enter the aggregate in a random order but then sort out to form a simple axial pattern in the slug. Our experiments strongly suggest that the multicellular aggregates (mounds) and slugs are also organized by propagating cAMP waves and, furthermore, that cell-type-specific differences in signalling and chemotaxis result in cell sorting, slug formation and movement.
Collapse
Affiliation(s)
- D Dormann
- Department of Anatomy, University of Dundee, Medical Science Institute/Wellcome Trust Biocentre Complex, UK
| | | | | |
Collapse
|
345
|
Abstract
Chemotaxis plays a central role in various biological processes, such as the movement of neutrophils and macrophage during wound healing and in the aggregation of Dictyostelium cells. During the past few years, new understanding of the mechanisms controlling chemotaxis has been obtained through molecular genetic and biochemical studies of Dictyostelium and other experimental systems. This review outlines our present understanding of the signaling pathways that allow a cell to sense and respond to a chemoattractant gradient. In response to chemoattractants, cells either become polarized in the direction of the chemoattractant source, which results in the formation of a leading edge, or they reorient their polarity in the direction of the chemoattractant gradient and move with a stronger persistence up the gradient. Models are presented here to explain such directional responses. They include a localized activation of pathways at the leading edge and an "inhibition" of these pathways along the lateral edges of the cell. One of the primary pathways that may be responsible for such localized responses is the activation of phosphatidyl inositol-3 kinase (PI3K). Evidence suggests that a localized formation of binding sites for PH (pleckstrin homology) domain-containing proteins produced by PI3K leads to the formation of "activation domains" at the leading edge, producing a localized response.
Collapse
Affiliation(s)
- R A Firtel
- Section of Cell and Developmental Biology, Division of Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634, USA.
| | | |
Collapse
|
346
|
Meili R, Ellsworth C, Firtel RA. A novel Akt/PKB-related kinase is essential for morphogenesis in Dictyostelium. Curr Biol 2000; 10:708-17. [PMID: 10873800 DOI: 10.1016/s0960-9822(00)00536-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Dictyostelium Akt/PKB is homologous to mammalian Akt/PKB and is required for cell polarity and proper chemotaxis during early development. The kinase activity of Akt/PKB kinase is activated in response to chemoattractants in neutrophils and in Dictyostelium by the chemoattractant cAMP functioning via a pathway involving a heterotrimeric G protein and PI3-kinase. Dictyostelium contains several kinases structurally related to Akt/PKB, one of which, PKBR-1, is investigated here for its role in cell polarity, movement and cellular morphogenesis during development. RESULTS PKBR-1 has a kinase and a carboxy-terminal domain related to those of Akt/PKB, but no PH domain. Instead, it has an amino-terminal myristoylation site, which is required for its constitutive membrane localization. Like Akt/PKB, PKBR-1 is activated by cAMP through a G-protein-dependent pathway, but does not require PI3-kinase, probably because of the constitutive membrane localization of PKBR-1. This is supported by experiments demonstrating the requirement for membrane association for activation and in vivo function of PKBR-1. PKBR-1 protein is found in all cells throughout early development but is then restricted to the apical cells in developing aggregates, which are thought to control morphogenesis. PKBR-1 null cells arrest development at the mound stage and are defective in morphogenesis and multicellular development. These phenotypes are complemented by Akt/PKB, suggesting functional overlap between PKBR-1 and Akt/PKB. Akt/PKB PKBR-1 double knockout cells exhibit growth defects and show stronger chemotaxis and cell-polarity defects than Akt/PKB null cells. CONCLUSIONS Our results expand the previously known functions of Akt/PKB family members in cell movement and morphogenesis during Dictyostelium multicellular development. The results suggest that Akt/PKB and PKBR-1 have overlapping effectors and biological function: Akt/PKB functions predominantly during aggregation to control cell polarity and chemotaxis, whereas PKBR-1 is required for morphogenesis during multicellular development.
Collapse
Affiliation(s)
- R Meili
- Section of Cell and Development Biology, Center for Molecular Genetics, University of California, La Jolla 92093-0634, USA
| | | | | |
Collapse
|
347
|
Wymann MP, Sozzani S, Altruda F, Mantovani A, Hirsch E. Lipids on the move: phosphoinositide 3-kinases in leukocyte function. IMMUNOLOGY TODAY 2000; 21:260-4. [PMID: 10939787 DOI: 10.1016/s0167-5699(00)01649-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- M P Wymann
- Institute of Biochemistry, University of Fribourg, Switzerland
| | | | | | | | | |
Collapse
|
348
|
Chung CY, Lee S, Briscoe C, Ellsworth C, Firtel RA. Role of Rac in controlling the actin cytoskeleton and chemotaxis in motile cells. Proc Natl Acad Sci U S A 2000; 97:5225-30. [PMID: 10805781 PMCID: PMC25810 DOI: 10.1073/pnas.97.10.5225] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used the chemotactic ability of Dictyostelium cells to examine the roles of Rho family members, known regulators of the assembly of F-actin, in cell movement. Wild-type cells polarize with a leading edge enriched in F-actin toward a chemoattractant. Overexpression of constitutively active Dictyostelium Rac1B(61L) or disruption of DdRacGAP1, which encodes a Dictyostelium Rac1 GAP, induces membrane ruffles enriched with actin filaments around the perimeter of the cell and increased levels of F-actin in resting cells. Whereas wild-type cells move linearly toward the cAMP source, Rac1B(61L) and Ddracgap1 null cells make many wrong turns and chemotaxis is inefficient, which presumably results from the unregulated activation of F-actin assembly and pseudopod extension. Cells expressing dominant-negative DdRac1B(17N) do not have a well-defined F-actin-rich leading edge and do not protrude pseudopodia, resulting in very poor cell motility. From these studies and assays examining chemoattractant-mediated F-actin assembly, we suggest DdRac1 regulates the basal levels of F-actin assembly, its dynamic reorganization in response to chemoattractants, and cellular polarity during chemotaxis.
Collapse
Affiliation(s)
- C Y Chung
- Section of Cell and Developmental Biology, Division of Biology, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | | | | | | | | |
Collapse
|
349
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) generate specific inositol lipids that have been implicated in the regulation of cell growth, proliferation, survival, differentiation and cytoskeletal changes. One of the best characterized targets of PI3K lipid products is the protein kinase Akt or protein kinase B (PKB). In quiescent cells, PKB resides in the cytosol in a low-activity conformation. Upon cellular stimulation, PKB is activated through recruitment to cellular membranes by PI3K lipid products and phosphorylation by 3'-phosphoinositide-dependent kinase-1 (PDK1). Here we review the mechanism by which PKB is activated and the downstream actions of this multifunctional kinase. We also discuss the evidence that PDK1 may be involved in the activation of protein kinases other than PKB, the mechanisms by which this activity of PDK1 could be regulated and the possibility that some of the currently postulated PKB substrates targets might in fact be phosphorylated by PDK1-regulated kinases other than PKB.
Collapse
|
350
|
Newsome TP, Schmidt S, Dietzl G, Keleman K, Asling B, Debant A, Dickson BJ. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 2000; 101:283-94. [PMID: 10847683 DOI: 10.1016/s0092-8674(00)80838-7] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Correct pathfinding by Drosophila photoreceptor axons requires recruitment of p21-activated kinase (Pak) to the membrane by the SH2-SH3 adaptor Dock. Here, we identify the guanine nucleotide exchange factor (GEF) Trio as another essential component in photoreceptor axon guidance. Regulated exchange activity of one of the two Trio GEF domains is critical for accurate pathfinding. This GEF domain activates Rac, which in turn activates Pak. Mutations in trio result in projection defects similar to those observed in both Pak and dock mutants, and trio interacts genetically with Rac, Pak, and dock. These data define a signaling pathway from Trio to Rac to Pak that links guidance receptors to the growth cone cytoskeleton. We propose that distinct signals transduced via Trio and Dock act combinatorially to activate Pak in spatially restricted domains within the growth cone, thereby controlling the direction of axon extension.
Collapse
Affiliation(s)
- T P Newsome
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|