301
|
Kim HK, Rasnik I, Liu J, Ha T, Lu Y. Dissecting metal ion-dependent folding and catalysis of a single DNAzyme. Nat Chem Biol 2007; 3:763-8. [PMID: 17965708 DOI: 10.1038/nchembio.2007.45] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 09/26/2007] [Indexed: 11/09/2022]
Abstract
Protein metalloenzymes use various modes for functions for which metal-dependent global conformational change is required in some cases but not in others. In contrast, most ribozymes require a global folding that almost always precedes enzyme reactions. Herein we studied metal-dependent folding and cleavage activity of the 8-17 DNAzyme using single-molecule fluorescence resonance energy transfer. Addition of Zn2+ and Mg2+ induced folding of the DNAzyme into a more compact structure followed by a cleavage reaction, which suggests that the DNAzyme may require metal-dependent global folding for activation. In the presence of Pb2+, however, the cleavage reaction occurred without a precedent folding step, which suggests that the DNAzyme may be prearranged to accept Pb2+ for the activity. Neither ligation reaction of the cleaved substrates nor dynamic changes between folded and unfolded states was observed. These features may contribute to the unusually fast Pb2+-dependent reaction of the DNAzyme. These results suggest that DNAzymes can use all modes of activation that metalloproteins use.
Collapse
Affiliation(s)
- Hee-Kyung Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
302
|
Donini S, Clerici M, Wengel J, Vester B, Peracchi A. The advantages of being locked. Assessing the cleavage of short and long RNAs by locked nucleic acid-containing 8-17 deoxyribozymes. J Biol Chem 2007; 282:35510-8. [PMID: 17908692 DOI: 10.1074/jbc.m706993200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA-cleaving deoxyribozymes can be used for the sequence-specific knockdown of mRNAs. It was previously shown that activity of these deoxyribozymes is enhanced when their substrate-binding arms include some locked nucleic acid (LNA) residues, but the mechanistic basis of this enhancement was not explored. Here we dissected the kinetics and thermodynamics underlying the reaction of LNA-containing 8-17 deoxyribozymes. Four 8-17 constructs were designed to target sequences within the E6 mRNA from human papillomavirus type 16. When one of these deoxyribozymes (DNAzymes) and the corresponding LNA-armed enzyme (LNAzyme) were tested against a minimal RNA substrate, they showed similar rates of substrate binding and similar rates of intramolecular cleavage, but the LNAzyme released its substrate more slowly. The superior thermodynamic stability of the LNAzyme-substrate complex led to improved performances in reactions carried out at low catalyst concentrations. The four DNAzymes and the corresponding LNAzymes were then tested against extended E6 transcripts (>500 nucleotides long). With these structured substrates, the LNAzymes retained full activity, whereas the DNAzymes cleaved extremely poorly, unless they were allowed to pre-anneal to their targets. These results imply that LNAzymes can easily overcome the kinetic barrier represented by local RNA structure and bind to folded targets with a faster association rate as compared with DNAzymes. Such faster annealing to structured targets can be explained by a model whereby LNA monomers favor the initial hybridization to short stretches of unpaired residues ("nucleation"), which precedes disruption of the local mRNA structure and completion of the binding process.
Collapse
Affiliation(s)
- Stefano Donini
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
303
|
Freisinger E, Sigel RK. From nucleotides to ribozymes—A comparison of their metal ion binding properties. Coord Chem Rev 2007. [DOI: 10.1016/j.ccr.2007.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
304
|
Kim HK, Liu J, Li J, Nagraj N, Li M, Pavot CMB, Lu Y. Metal-Dependent Global Folding and Activity of the 8-17 DNAzyme Studied by Fluorescence Resonance Energy Transfer. J Am Chem Soc 2007; 129:6896-902. [PMID: 17488081 DOI: 10.1021/ja0712625] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 8-17 DNAzyme is a DNA metalloenzyme catalyzing RNA transesterification in the presence of divalent metal ions, with activity following the order Pb2+ >> Zn2+ >>Mg2+. Since the DNAzyme has been used as a metal ion sensor, its metal-induced global folding was studied by fluorescence resonance energy transfer (FRET) by labeling the three stems of the DNAzyme with the Cy3/Cy5 FRET pair two stems at a time in order to gain deeper insight into the role of different metal ions in its structure and function. FRET results indicated that, in the presence of Zn2+ and Mg2+, the DNAzyme folds into a compact structure, stem III approaching a configuration defined by stems I and II without changing the angle between stems I and II. Correlations between metal-induced folding and activity were also studied. For Zn2+ and Mg2+, the metal ion with higher affinity for the DNAzyme in global folding (Kd(Zn) = 52.6 microM and Kd(Mg) = 1.36 mM) also displays higher affinity in activity (Kd(Zn) = 1.15 mM and Kd(Mg) = 53 mM) under the same conditions. Global folding was saturated at much lower concentrations of Zn2+ and Mg2+ than the cleavage activities, indicating the global folding of the DNAzyme occurs before the cleavage activity for those metal ions. Surprisingly, no Pb2+-dependent global folding was observed. These results suggest that for Pb2+ global folding of the DNAzyme may not be a necessary step in its function, which may contribute to the DNAzyme having the highest activity in the presence of Pb2+.
Collapse
Affiliation(s)
- Hee-Kyung Kim
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
305
|
Lu Y, Liu J. Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc Chem Res 2007; 40:315-23. [PMID: 17474707 DOI: 10.1021/ar600053g] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-dimensional functional nanoscale assembly requires not only self-assembly of individual nanomaterials responsive to external stimuli, such as temperature, light, and concentrations, but also directed assembly of many different nanomaterials in one-pot responsive to multiple internal stimuli signaling the needs for such materials at a specific location and a particular time. The use of functional DNA (DNAzymes, aptamers, and aptazymes) to meet these challenges is reviewed. In addition, a biology-inspired proof-reading and error correction method is introduced to cope with errors in nanomaterials assembly.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana--Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
306
|
Ali MM, Kandadai SA, Li Y. Characterization of pH3DZ1 — An RNA-cleaving deoxyribozyme with optimal activity at pH 3. CAN J CHEM 2007. [DOI: 10.1139/v07-017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously described a cis-acting RNA-cleaving deoxyribozyme known as pH3DZ1 that exhibits optimal catalytic activity at pH 3.0 (Zhongjie Liu, Shirley H. Mei, John D. Brennan, and Yingfu Li. J. Am. Chem. Soc. 125, 7539 (2003)). This DNA catalyst was made of a 99-nucleotide (nt) catalytic domain covalently linked to a 23-nt DNA–RNA chimeric substrate containing a single ribonucleotide as the cleavage site. In the present work, we conducted an extensive sequence examination of this deoxyribozyme via nucleotide truncation and reselection experiments, with a goal to minimize its size and identify the nucleotides that are crucial to its catalytic function. A trans-acting deoxyribozyme that can process an external substrate was also successfully designed. Stretches of 30 and 17 nucleotides from the 5′ and 3′ ends of the trans catalyst, respectively, were found to be completely dispensable; in contrast, few nucleotides could be deleted internally without producing a detrimental effect. The reselection experiment led to the discovery of 7 and 5 absolutely conserved nucleotides located at the 5′ and 3′ ends of the minimized catalyst, respectively, separated by a 31-nt element in which 14 highly conserved nucleotides were scattered among 17 variable nucleotides. The shortened deoxyribozyme and the original catalyst showed a similar pH profile with the optimal activity at pH 3; however, the minimized deoxyribozyme still exhibited strong catalytic activity at pH 2.5, while the full-length catalyst was barely active at this pH. Finally, it was found that this deoxyribozyme generated two cleavage fragments, one with 2′,3′-cyclic phosphate and the other with 5′-OH.Key words: DNA, deoxyribozyme, RNA cleavage, in vitro selection, catalysis.
Collapse
|
307
|
Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci U S A 2007; 104:2056-61. [PMID: 17284609 PMCID: PMC1892917 DOI: 10.1073/pnas.0607875104] [Citation(s) in RCA: 400] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Indexed: 11/18/2022] Open
Abstract
Here, we report a catalytic beacon sensor for uranyl (UO2(2+)) based on an in vitro-selected UO2(2+)-specific DNAzyme. The sensor consists of a DNA enzyme strand with a 3' quencher and a DNA substrate with a ribonucleotide adenosine (rA) in the middle and a fluorophore and a quencher at the 5' and 3' ends, respectively. The presence of UO2(2+) causes catalytic cleavage of the DNA substrate strand at the rA position and release of the fluorophore and thus dramatic increase of fluorescence intensity. The sensor has a detection limit of 11 parts per trillion (45 pM), a dynamic range up to 400 nM, and selectivity of >1-million-fold over other metal ions. The most interfering metal ion, Th(IV), interacts with the fluorescein fluorophore, causing slightly enhanced fluorescence intensity, with an apparent dissociation constant of approximately 230 microM. This sensor rivals the most sensitive analytical instruments for uranium detection, and its application in detecting uranium in contaminated soil samples is also demonstrated. This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments. Such a sensor will play an important role in environmental remediation of radionuclides such as uranium.
Collapse
Affiliation(s)
- Juewen Liu
- *Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Andrea K. Brown
- *Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Xiangli Meng
- *Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Donald M. Cropek
- Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center, Champaign, IL 61822
| | - Jonathan D. Istok
- Civil, Construction, and Environmental Engineering Department, Oregon State University, Corvallis, OR 97331; and
| | - David B. Watson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Yi Lu
- *Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
308
|
Lu Y. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges. Inorg Chem 2007; 45:9930-40. [PMID: 17140190 PMCID: PMC2533576 DOI: 10.1021/ic052007t] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Specific metal-binding sites have been found in not only proteins but also DNA and RNA molecules. Together these metalloenzymes consist of a major portion of the enzyme family and can catalyze some of the most difficult biological reactions. Designing these metalloenzymes can be both challenging and rewarding because it can provide deeper insights into the structure and function of proteins and cheaper and more stable alternatives for biochemical and biotechnological applications. Toward this goal, both rational and combinatorial approaches have been used. The rational approach is good for designing metalloenzymes that are well characterized, such as heme proteins, while the combinatorial approach is better at designing those whose structures are poorly understood, such as metallo-DNA/RNAzymes. Among the rational approaches, de novo design is at its best when metal-binding sites reside in a scaffold whose structure has been designed de novo (e.g., alpha-helical bundles). Otherwise, design using native scaffolds can be equally effective, allowing more choices of scaffolds whose structural stability is often more resistant to multiple mutations. In addition, computational and empirical designs have both enjoyed successes. Because of the limitation in defining structural parameters for metal-binding sites, a computational approach is restricted to mostly metal-binding sites that are well defined, such as mono- or homonuclear centers. An empirical approach, even though it is less restrictive in the metal-binding sites to be designed, depends heavily on one's knowledge and choice of templates and targets. An emerging approach is a combination of both computational and empirical approaches. The success of these approaches can be measured not only by three-dimensional structural comparison between the designed and target enzymes but also by the total amount of insight obtained from the design process and studies of the designed enzymes. One of the biggest advantages of designed metalloenzymes is the potential of placing two different metal-binding sites in the same protein framework for comparison. A final measure of success is how one can utilize the insight gained from the intellectual exercise to design new metalloenzymes, including those with unprecedented structures and functions. Future challenges include designing more complex metalloenzymes such as heteronuclear metal centers with strong nanomolar or better affinities. A key to meeting this challenge is to focus on the design of not only primary but also secondary coordination spheres using a combination of improved computer programs, experimental design, and high-resolution crystallography.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
309
|
Buchhaupt M, Peifer C, Entian KD. Analysis of 2′-O-methylated nucleosides and pseudouridines in ribosomal RNAs using DNAzymes. Anal Biochem 2007; 361:102-8. [PMID: 17181990 DOI: 10.1016/j.ab.2006.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/21/2006] [Accepted: 11/01/2006] [Indexed: 11/21/2022]
Abstract
Ribosomal RNAs (rRNAs) contain a large number of posttranscriptionally modified nucleosides, the physiological function of which is still unclear. The great majority of modifications in eukaryotes and archaea are 2'-O-ribose methylated nucleosides and pseudouridines. The current methods to identify rRNA modifications are difficult to perform and need expensive reagents. Here we report an easy method to detect 2'-O-ribose methylations using RNA-cleaving deoxyribozymes (DNAzymes) and demonstrate its application using rRNA of the yeast Saccharomyces cerevisiae. Using DNAzymes of the 10-23 type, we could show that cleavage at A(973) in the 18S rRNA or at G(1450) in the 25S rRNA from S. cerevisiae occurs only if the 2'-O-ribose methylations at these positions were missing. We also designed 8-17-DNAzymes for the detection of 2'-O-ribose methylations. This makes all 2'-O-ribose methylations accessible to the DNAzyme technique as variants of the 8-17-DNAzyme that together have the ability to cleave nearly any dinucleotide junction are known. Furthermore, we found that pseudouridine also decreases the DNAzyme cleavage efficiency at the adjacent phosphodiester bond and thus can also be identified with DNAzymes. The analysis using DNAzymes provides a new tool to easily identify ribose methylations in rRNAs and will help to unravel the physiological function of nucleotide modifications.
Collapse
Affiliation(s)
- Markus Buchhaupt
- Center of Excellence, Macromolecular Complexes, Johann Wolfgang Goethe-University, Institute of Molecular Biosciences, 60438 Frankfurt/Main, Germany
| | | | | |
Collapse
|
310
|
Leung EKY, Sen D. Electron Hole Flow Patterns through the RNA-Cleaving 8-17 Deoxyribozyme Yield Unusual Information about Its Structure and Folding. ACTA ACUST UNITED AC 2007; 14:41-51. [PMID: 17254951 DOI: 10.1016/j.chembiol.2006.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/31/2006] [Accepted: 11/06/2006] [Indexed: 11/21/2022]
Abstract
DNA double helices have been shown to conduct electron holes over significant distances. Here, we report on the hole flow patterns within a more intricately folded DNA complex, the 8-17 deoxyribozyme bound to a DNA pseudosubstrate, incorporating three helical elements and two catalytically relevant loops. The observed hole flow patterns within the complex permitted a quantitative assessment of the stacking preferences of the three constituent helices and provided evidence for significant transitions within the complex's global geometry. The patterns further suggested varying levels of solvent exposure of the complex's constituent parts, and revealed that a catalytically relevant cytosine within the folded complex exists in an unusual structural/electronic environment. Our data suggest that the study of charge flow may provide novel perspectives on the structure and folding of intricately folded DNAs and RNAs.
Collapse
Affiliation(s)
- Edward K Y Leung
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | | |
Collapse
|
311
|
Chiuman W, Li Y. Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates. Nucleic Acids Res 2006; 35:401-5. [PMID: 17169997 PMCID: PMC1802601 DOI: 10.1093/nar/gkl1056] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RNA-cleaving deoxyribozyme 8-17 has been increasingly used in nanotechnology and biosensing applications. Conventional methods to equip 8-17 with fluorescent signaling property usually involve covalent attachment of two dyes at nucleotide positions that are far away from the catalytic core, such that the bulky dye structures would not affect the deoxyribozyme activity. However, the maximum fluorescent enhancement associated with these 8-17 constructs is typically ≤10-fold, due to a high fluorescent background. To find an optimal balance between signal enhancement and signaling speed, we have conducted a comprehensive study on the effects of the nature of dyes (Alexa Fluor 488, 546 and 647; QSY 9 and 21) as well as their attaching positions along the substrate strand on the catalytic and signaling performance of 8-17. Our results have indicated that 8-17 is able to cleave almost every modified substrate, including those that have chromophores only 1 nt away from the cleavage site. Most importantly, almost all of these substrates are able to generate 15- to 85-fold signal enhancement within 10 min. We have also provided guidelines for selecting substrates that could offer the best signal enhancement, the fastest signaling speed, or the best balance between signal enhancement and signaling speed.
Collapse
Affiliation(s)
- William Chiuman
- Department of Biochemistry and Biomedical Sciences, McMaster University1280 Main Street W. Hamilton, ON, Canada L8N 3Z5
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University1280 Main Street W. Hamilton, ON, Canada L8N 3Z5
- Department of Chemistry, McMaster University1280 Main Street W. Hamilton, ON, Canada L8N 3Z5
- To whom correspondence should be addressed. Tel: +1 905 525 9140 ext. 22462; Fax: +1 905 522 9033;
| |
Collapse
|
312
|
Shen Y, Chiuman W, Brennan JD, Li Y. Catalysis and rational engineering of trans-acting pH6DZ1, an RNA-cleaving and fluorescence-signaling deoxyribozyme with a four-way junction structure. Chembiochem 2006; 7:1343-8. [PMID: 16888734 DOI: 10.1002/cbic.200600195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yutu Shen
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | |
Collapse
|
313
|
Garibotti AV, Knudsen SM, Ellington AD, Seeman NC. Functional DNAzymes organized into two-dimensional arrays. NANO LETTERS 2006; 6:1505-7. [PMID: 16834439 PMCID: PMC2536694 DOI: 10.1021/nl0609955] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DNAzymes are catalytically active DNA molecules, which have previously been described in solution. Here, we organize these molecules into a series of two-dimensional (2D) arrays using a periodic arrangement of DNA structures based on the DNA double crossover motif. We demonstrate by means of atomic force microscopy that the DNAzymes are organized according to the design and that they retain their activity when attached in linear strings within the context of the 2D array.
Collapse
Affiliation(s)
| | - Scott M. Knudsen
- Department of Chemistry & Biochemistry, University of Texas, Austin TX 78712, USA
| | - Andrew D. Ellington
- Department of Chemistry & Biochemistry, University of Texas, Austin TX 78712, USA
| | | |
Collapse
|
314
|
Schlosser K, Lam JC, Li Y. Characterization of long RNA-cleaving deoxyribozymes with short catalytic cores: the effect of excess sequence elements on the outcome of in vitro selection. Nucleic Acids Res 2006; 34:2445-54. [PMID: 16682452 PMCID: PMC1458524 DOI: 10.1093/nar/gkl276] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously conducted an in vitro selection experiment for RNA-cleaving deoxyribozymes, using a combinatorial DNA library containing 80 random nucleotides. Ultimately, 110 different sequence classes were isolated, but the vast majority contained a short14-15 nt catalytic DNA motif commonly known as 8-17. Herein, we report extensive truncation experiments conducted on multiple sequence classes to confirm the suspected catalytic role played by 8-17 and to determine the effect of excess sequence elements on the activity of this motif and the outcome of selection. Although we observed beneficial, detrimental and neutral consequences for activity, the magnitude of the effect rarely exceeded 2-fold. These deoxyribozymes appear to have survived increasing selection pressure despite the presence of additional sequence elements, rather than because of them. A new deoxyribozyme with comparable activity, called G15-30, was approximately 2.5-fold larger and experienced a approximately 4-fold greater inhibitory effect from excess sequence elements than the average 8-17 motif. Our results suggest that 8-17 may be less susceptible to the potential inhibitory effects of excess arbitrary sequence than larger motifs, which represents a previously unappreciated selective advantage that may contribute to its widespread recurrence.
Collapse
Affiliation(s)
| | | | - Yingfu Li
- To whom correspondence should be addressed. Tel: 1 905 5259140; Fax: 1 905 522 9033;
| |
Collapse
|
315
|
Chiuman W, Li Y. Revitalization of Six Abandoned Catalytic DNA Species Reveals a Common Three-way Junction Framework and Diverse Catalytic Cores. J Mol Biol 2006; 357:748-54. [PMID: 16480741 DOI: 10.1016/j.jmb.2006.01.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
A library containing as many as 10(16) nucleic acid candidates is typically used to isolate artificial ribozymes and deoxyribozymes (DNAzymes) in an in vitro selection experiment, with only a handful of sequences surviving many rounds of stringent selection steps. These winning species are generally the focus of interest whereas the less competitive contenders are usually not examined. Nevertheless, molecular species abandoned during the selection process might still represent a rich pool of catalytic motifs that are useful for the examination of DNA's inherent catalytic ability, and for the design of molecular tools for practical applications. Here we report a study of six RNA-cleaving, fluorescence-signaling deoxyribozymes that appeared in the early generations of a previous in vitro selection experiment, using the combined approaches of reselection, rational structural analysis, and reaction condition optimization. All six deoxyribozymes were found to use a three-way junction as a common structural framework for catalysis. However, disparities observed in the conserved nucleotide allocations, methylation interference patterns and metal-ion selectivities, pointed to distinct catalytic cores. The rate constants of the optimized deoxyribozymes fell in the range of approximately 0.2 to 1.6 min(-1), which are comparable to those of similar ribozymes. Our findings indicate that deoxyribozymes eliminated by harsh selection criteria are structurally simple molecules that can be tailored into efficient catalysts.
Collapse
Affiliation(s)
- William Chiuman
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ont., Canada L8N 3Z5
| | | |
Collapse
|
316
|
Kandadai SA, Li Y. Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme. Nucleic Acids Res 2006; 33:7164-75. [PMID: 16391005 PMCID: PMC1325019 DOI: 10.1093/nar/gki1013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously demonstrated—through the isolation of RNA-cleaving deoxyribozymes by in vitro selection that are catalytically active in highly acidic solutions—that DNA, despite its chemical simplicity, could perform catalysis under challenging chemical conditions [Liu,Z., Mei,S.H., Brennan,J.D. and Li,Y. (2003) J. Am. Chem. Soc. 125, 7539–7545]. One remarkable DNA molecule therefrom is pH4DZ1, a self-cleaving deoxyribozyme that exhibits a kobs of ∼1 min−1 at pH 3.8. In this study, we carried out a series of experiments to examine the sequence and catalytic properties of this acidic deoxyribozyme. Extensive nucleotide truncation experiments indicated that pH4DZ1 was a considerably large deoxyribozyme, requiring ∼80 out of the original 123 nt for the optimal catalytic activity. A reselection experiment identified ten absolutely conserved nucleotides that are distributed in three catalytically crucial sequence elements. In addition, a trans deoxyribozyme was successfully designed. Comparison of the observed rate constant of pH4DZ1 with experimentally determined rate constant for the uncatalyzed reaction revealed that pH4DZ1 achieved a rate enhancement of ∼106-fold. This study provides valuable information about this low-pH-functional deoxyribozyme and paves way for further structural and mechanistic characterization of this unique catalytic DNA.
Collapse
Affiliation(s)
| | - Yingfu Li
- To whom correspondence should be addressed. Tel: +1 905 525 9140; Fax: +1 905 522 9033;
| |
Collapse
|
317
|
Liu J, Lu Y. Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Org Biomol Chem 2006; 4:3435-41. [PMID: 17036137 DOI: 10.1039/b605799c] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic control of nanomaterial assembly states in response to chemical stimuli is critical in making multi-component materials with interesting properties. Previous work has shown that a Pb2+-specific DNAzyme allowed dynamic control of gold nanoparticle aggregation states in response to Pb2+, and the resulting color change from blue aggregates to red dispersed particles can be used as a convenient way of sensing Pb2+. However, a small piece of DNA (called invasive DNA) and low ionic strength (approximately 30 mM) were required for the process, limiting the scope of application in assembly and sensing. To overcome this limitation, a series of asymmetric DNAzymes, in which one of the two substrate binding regions is longer than the other, has been developed. With such a system, we demonstrated Pb2+-induced disassembly of gold nanoparticle aggregates and corresponding color change at room temperature without the need for invasive DNA, while also making the system more tolerant to ionic strength (33-100 mM). The optimal lengths of the long and short arms were determined to be 14 and 5 base pairs, respectively. In nanoparticle aggregates, the activity of the DNAzyme increased with decreasing ionic strength of the reaction buffer. This simpler and more versatile system allows even better dynamic control of nanoparticle aggregation states in response to chemical stimuli such as Pb2+, and can be used in a wider range of applications for colorimetric sensing of metal ions.
Collapse
Affiliation(s)
- Juewen Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
318
|
Wernette DP, Swearingen CB, Cropek DM, Lu Y, Sweedler JV, Bohn PW. Incorporation of a DNAzyme into Au-coated nanocapillary array membranes with an internal standard for Pb(ii) sensing. Analyst 2006; 131:41-7. [PMID: 16365661 DOI: 10.1039/b510071b] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pb(ii)-specific DNAzyme has been successfully incorporated into Au-coated polycarbonate track-etched (PCTE) nanocapillary array membranes (NCAMs) by thiol-gold immobilization. Incorporation of the DNAzyme into the membrane provides a substrate-bound sensor using a novel internal control methodology for fluorescence-based detection of Pb(ii). A non-cleavable substrate strand, identical to the cleavable DNAzyme substrate strand except the RNA-base is replaced by the corresponding DNA-base, is used for ratiometric comparison of intensities. The cleavable substrate strand is labeled with fluorescein, and the non-cleavable strand is labeled with a red fluorophore (Cy5 or Alexa 546) for detection after release from the membrane surface. This internal standard based ratiometric method allows for real-time monitoring of Pb(ii)-induced cleavage, as well as standardizing variations in substrate size, solution detection volume, and monolayer density. The result is a Pb(ii)-sensing structure that can be stored in a prepared state for 30 days, regenerated after reaction, and detect Pb(ii) concentrations as low as 17 nM (3.5 ppb).
Collapse
Affiliation(s)
- Daryl P Wernette
- Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
319
|
Feldman AR, Leung EKY, Bennet AJ, Sen D. The RNA-Cleaving Bipartite DNAzyme Is a Distinctive Metalloenzyme. Chembiochem 2005; 7:98-105. [PMID: 16345112 DOI: 10.1002/cbic.200500264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much interest has focused on the mechanisms of the five naturally occurring self-cleaving ribozymes, which, in spite of catalyzing the same reaction, adopt divergent strategies. These ribozymes, with the exception of the recently described glmS ribozyme, do not absolutely require divalent metal ions for their catalytic chemistries in vitro. A mechanistic investigation of an in vitro-selected, RNA-cleaving DNA enzyme, the bipartite, which catalyzes the same chemistry as the five natural self-cleaving ribozymes, found a mechanism of significant complexity. The DNAzyme showed a bell-shaped pH profile. A dissection of metal usage indicated the involvement of two catalytically relevant magnesium ions for optimal activity. The DNAzyme was able to utilize manganese(II) as well as magnesium; however, with manganese it appeared to function complexed to either one or two of those cations. Titration with hexaamminecobalt(III) chloride inhibited the activity of the bipartite; this suggests that it is a metalloenzyme that utilizes metal hydroxide as a general base for activation of its nucleophile. Overall, the bipartite DNAzyme appeared to be kinetically distinct not only from the self-cleaving ribozymes but also from other in vitro-selected, RNA-cleaving deoxyribozymes, such as the 8-17, 10-23, and 614.
Collapse
Affiliation(s)
- Anat R Feldman
- Department of Molecular Biology and Biochemistry 1 and Department of Chemistry 2 Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | |
Collapse
|
320
|
Liu J, Wernette DP, Lu Y. Proofreading and Error Removal in a Nanomaterial Assembly. Angew Chem Int Ed Engl 2005; 44:7290-3. [PMID: 16229045 DOI: 10.1002/anie.200501815] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juewen Liu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
321
|
Silverman SK. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 2005; 33:6151-63. [PMID: 16286368 PMCID: PMC1283523 DOI: 10.1093/nar/gki930] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the last decade, many catalytically active DNA molecules (deoxyribozymes; DNA enzymes) have been identified by in vitro selection from random-sequence DNA pools. This article focuses on deoxyribozymes that cleave RNA substrates. The first DNA enzyme was reported in 1994 and cleaves an RNA linkage. Since that time, many other RNA-cleaving deoxyribozymes have been identified. Most but not all of these deoxyribozymes require a divalent metal ion cofactor such as Mg2+ to catalyze attack by a specific RNA 2′-hydroxyl group on the adjacent phosphodiester linkage, forming a 2′,3′-cyclic phosphate and a 5′-hydroxyl group. Several deoxyribozymes that cleave RNA have utility for in vitro RNA biochemistry. Some DNA enzymes have been applied in vivo to degrade mRNAs, and others have been engineered into sensors. The practical impact of RNA-cleaving deoxyribozymes should continue to increase as additional applications are developed.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
322
|
Liu J, Wernette DP, Lu Y. Proofreading and Error Removal in a Nanomaterial Assembly. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
323
|
Peracchi A, Bonaccio M, Clerici M. A mutational analysis of the 8-17 deoxyribozyme core. J Mol Biol 2005; 352:783-94. [PMID: 16125199 DOI: 10.1016/j.jmb.2005.07.059] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/24/2022]
Abstract
The 8-17 deoxyribozyme is a small RNA-cleaving DNA enzyme of significant applicative interest. We measured the kinetics of over 60 variants of 8-17, mutated within the "core" region. The data were analyzed according to a conceptual framework in which deleterious substitutions can either decrease the stability of the reaction's transition state, or favor unreactive ground-state conformations. In agreement with earlier in vitro evolution studies, the most severe functional effects were observed upon mutating four conserved residues, whose role was further explored by replacing them with non-standard nucleotides. Removal or modification of individual functional groups on the A6 and G7 bases suggested that these residues are involved in a close-contact interaction and form a network of functionally important hydrogen bonds. Mutagenesis of residues C13 and G14 was less revealing, but argued strongly against a role of C13 as a general acid/base catalyst. The use of non-standard nucleotides also led to the identification of one deoxyribozyme variant that, under some ionic conditions, is substantially more active than the wild-type construct. Finally, the effects of mutations in the intramolecular "core stem" correlated only in part with changes in helical stability, suggesting that a stable stem is required but not sufficient for optimal activity.
Collapse
Affiliation(s)
- Alessio Peracchi
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy.
| | | | | |
Collapse
|
324
|
Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl 2005; 43:6042-108. [PMID: 15538757 DOI: 10.1002/anie.200400651] [Citation(s) in RCA: 1631] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanomaterials, such as metal or semiconductor nanoparticles and nanorods, exhibit similar dimensions to those of biomolecules, such as proteins (enzymes, antigens, antibodies) or DNA. The integration of nanoparticles, which exhibit unique electronic, photonic, and catalytic properties, with biomaterials, which display unique recognition, catalytic, and inhibition properties, yields novel hybrid nanobiomaterials of synergetic properties and functions. This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces. Particular emphasis is directed to the use of biomolecule-nanoparticle (metallic or semiconductive) assemblies for bioanalytical applications and for the fabrication of bioelectronic devices.
Collapse
Affiliation(s)
- Eugenii Katz
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
325
|
Affiliation(s)
- Alessio Peracchi
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy.
| |
Collapse
|
326
|
Hoadley KA, Purtha WE, Wolf AC, Flynn-Charlebois A, Silverman SK. Zn2+-dependent deoxyribozymes that form natural and unnatural RNA linkages. Biochemistry 2005; 44:9217-31. [PMID: 15966746 PMCID: PMC1586068 DOI: 10.1021/bi050146g] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report Zn(2+)-dependent deoxyribozymes that ligate RNA. The DNA enzymes were identified by in vitro selection and ligate RNA with k(obs) up to 0.5 min(-)(1) at 1 mM Zn(2+) and 23 degrees C, pH 7.9, which is substantially faster than our previously reported Mg(2+)-dependent deoxyribozymes. Each new Zn(2+)-dependent deoxyribozyme mediates the reaction of a specific nucleophile on one RNA substrate with a 2',3'-cyclic phosphate on a second RNA substrate. Some of the Zn(2+)-dependent deoxyribozymes create native 3'-5' RNA linkages (with k(obs) up to 0.02 min(-)(1)), whereas all of our previous Mg(2+)-dependent deoxyribozymes that use a 2',3'-cyclic phosphate create non-native 2'-5' RNA linkages. On this basis, Zn(2+)-dependent deoxyribozymes have promise for synthesis of native 3'-5'-linked RNA using 2',3'-cyclic phosphate RNA substrates, although these particular Zn(2+)-dependent deoxyribozymes are likely not useful for this practical application. Some of the new Zn(2+)-dependent deoxyribozymes instead create non-native 2'-5' linkages, just like their Mg(2+) counterparts. Unexpectedly, other Zn(2+)-dependent deoxyribozymes synthesize one of three unnatural linkages that are formed upon the reaction of an RNA nucleophile other than a 5'-hydroxyl group. Two of these unnatural linkages are the 3'-2' and 2'-2' linear junctions created when the 2'-hydroxyl of the 5'-terminal guanosine of one RNA substrate attacks the 2',3'-cyclic phosphate of the second RNA substrate. The third unnatural linkage is a branched RNA that results from attack of a specific internal 2'-hydroxyl of one RNA substrate at the 2',3'-cyclic phosphate. When compared with the consistent creation of 2'-5' linkages by Mg(2+)-dependent ligation, formation of this variety of RNA ligation products by Zn(2+)-dependent deoxyribozymes highlights the versatility of transition metals such as Zn(2+) for mediating nucleic acid catalysis.
Collapse
Affiliation(s)
| | | | | | | | - Scott K. Silverman
- * Corresponding author. Phone: (217) 244-4489. Fax: (217) 244-8024. E-mail:
| |
Collapse
|
327
|
Nelson KE, Bruesehoff PJ, Lu Y. In Vitro Selection of High Temperature Zn2+-Dependent DNAzymes. J Mol Evol 2005; 61:216-25. [PMID: 16096680 DOI: 10.1007/s00239-004-0374-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 03/28/2005] [Indexed: 10/25/2022]
Abstract
In vitro selection of Zn(2+)-dependent RNA-cleaving DNAzymes with activity at 90 degrees C has yielded a diverse spool of selected sequences. The RNA cleavage efficiency was found in all cases to be specific for Zn(2+) over Pb(2+), Ca(2+), Cd(2+), Co(2+), Hg(2+), and Mg(2+). The Zn(2+)-dependent activity assay of the most active sequence showed that the DNAzyme possesses an apparent Zn(2+)-binding dissociation constant of 234 muM and that its activity increases with increasing temperatures from 50-90 degrees C. A fit of the Arrhenius plot data gave E(a) = 15.3 kcal mol(-1). Surprisingly, the selected Zn(2+)-dependent DNAzymes showed only a modest (approximately 3-fold) activity enhancement over the background rate of cleavage of random sequences containing a single embedded ribonucleotide within an otherwise DNA oligonucleotide. The result is attributable to the ability of DNA to sustain cleavage activity at high temperature with minimal secondary structure when Zn(2+) is present. Since this effect is highly specific for Zn(2+), this metal ion may play a special role in molecular evolution of nucleic acids at high temperature.
Collapse
Affiliation(s)
- Kevin E Nelson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
328
|
Affiliation(s)
- Yi Chen
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | |
Collapse
|
329
|
|
330
|
Abstract
The molecular recognition properties of DNA molecules combined with the distinct mechanical properties of single and double strands of DNA can be utilized for the construction of nanodevices, which can perform ever more tasks with possible applications ranging from nanoconstruction to intelligent drug delivery. With the help of DNA it is possible to construct machinelike devices that are capable of rotational motion, pulling and stretching, or even unidirectional motion. It is possible to devise autonomous nanodevices, to grab and release molecules, and also to perform simple information-processing tasks.
Collapse
Affiliation(s)
- Friedrich C Simmel
- Department of Physics and Center for Nanoscience, LMU Munich, Geschwister Scholl Platz 1, 80539 Munich, Germany.
| | | |
Collapse
|
331
|
Ting R, Thomas JM, Lermer L, Perrin DM. Substrate specificity and kinetic framework of a DNAzyme with an expanded chemical repertoire: a putative RNaseA mimic that catalyzes RNA hydrolysis independent of a divalent metal cation. Nucleic Acids Res 2004; 32:6660-72. [PMID: 15625232 PMCID: PMC545449 DOI: 10.1093/nar/gkh1007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 11/24/2004] [Accepted: 11/24/2004] [Indexed: 11/13/2022] Open
Abstract
This work addresses the binding, cleavage and dissociation rates for the substrate and products of a synthetic RNaseA mimic that was combinatorially selected using chemically modified nucleoside triphosphates. This trans-cleaving DNAzyme, 9(25)-11t, catalyzes sequence-specific ribophosphodiester hydrolysis in the total absence of a divalent metal cation, and in low ionic strength at pH 7.5 and in the presence of EDTA. It is the first such sequence capable of multiple turnover. 9(25)-11t consists of 31 bases, 18 of which form a catalytic domain containing 4 imidazole and 6 allylamino modified nucleotides. This sequence cleaves the 15 nt long substrate, S1, at one embedded ribocytosine at the eighth position to give a 5'-product terminating in a 2',3'-phosphodiester and a 3'-product terminating in a 5'-OH. Under single turnover conditions at 24 degrees C, 9(25)-11t displays a maximum first-order rate constant, k(cat), of 0.037 min(-1) and a catalytic efficiency, k(cat)/K(m), of 5.3 x 10(5) M(-1) min(-1). The measured value of k(cat) under catalyst excess conditions agrees with the value of k(cat) observed for steady-state multiple turnover, implying that slow product release is not rate limiting with respect to multiple turnover. The substrate specificity of 9(25)-11t was gauged in terms of k(cat) values for substrate sequence variants. Base substitutions on the scissile ribose and at the two bases immediately downstream decrease k(cat) values by a factor of 4 to 250, indicating that 9(25)-11t displays significant sequence specificity despite the lack of an apparent Watson-Crick base-pairing scheme for recognition.
Collapse
Affiliation(s)
- Richard Ting
- Chemistry Department, 2036 Main Mall, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | | | | | | |
Collapse
|
332
|
Katz E, Willner I. Integrierte Hybridsysteme aus Nanopartikeln und Biomolekülen: Synthese, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200400651] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
333
|
Abstract
Just as Darwinian evolution in nature has led to the development of many sophisticated enzymes, Darwinian evolution in vitro has proven to be a powerful approach for obtaining similar results in the laboratory. This review focuses on the development of nucleic acid enzymes starting from a population of random-sequence RNA or DNA molecules. In order to illustrate the principles and practice of in vitro evolution, two especially well-studied categories of catalytic nucleic acid are considered: RNA enzymes that catalyze the template-directed ligation of RNA and DNA enzymes that catalyze the cleavage of RNA. The former reaction, which involves attack of a 2'- or 3'-hydroxyl on the alpha-phosphate of a 5'-triphosphate, is more difficult. It requires a comparatively larger catalytic motif, containing more nucleotides than can be sampled exhaustively within a starting population of random-sequence RNAs. The latter reaction involves deprotonation of the 2'-hydroxyl adjacent to the cleavage site, resulting in cleaved products that bear a 2',3'-cyclic phosphate and 5'-hydroxyl. The difficulty of this reaction, and therefore the complexity of the corresponding DNA enzyme, depends on whether a catalytic cofactor, such as a divalent metal cation or small molecule, is present in the reaction mixture.
Collapse
Affiliation(s)
- Gerald F Joyce
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
334
|
Abstract
In this issue of Chemistry & Biology, Cruz et al. use in vitro selection to select deoxyribozymes that collectively cleave almost any RNA dinucleotide junction. More remarkable is the finding that the new enzymes are related to the 8-17 deoxyribozyme that cleaves AG dinucleotide junctions.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| |
Collapse
|
335
|
Cruz RPG, Withers JB, Li Y. Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme. ACTA ACUST UNITED AC 2004; 11:57-67. [PMID: 15112995 DOI: 10.1016/j.chembiol.2003.12.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 10/09/2003] [Accepted: 10/22/2003] [Indexed: 11/21/2022]
Abstract
We conducted 16 parallel in vitro selection experiments to isolate catalytic DNAs from a common DNA library for the cleavage of all 16 possible dinucleotide junctions of RNA incorporated into a common DNA/RNA chimeric substrate sequence. We discovered hundreds of sequence variations of the 8-17 deoxyribozyme--an RNA-cleaving catalytic DNA motif previously reported--from nearly all 16 final pools. Sequence analyses identified four absolutely conserved nucleotides in 8-17. Five representative 8-17 variants were tested for substrate cleavage in trans, and together they were able to cleave 14 dinucleotide junctions. New 8-17 variants required Mn2+ to support their broad dinucleotide cleavage capabilities. We hypothesize that 8-17 has a tertiary structure composed of an enzymatic core executing catalysis and a structural facilitator providing structural fine tuning when different dinucleotide junctions are given as cleavage sites.
Collapse
Affiliation(s)
- Rani P G Cruz
- Department of Biochemistry, McMaster University, Hamilton, Canada
| | | | | |
Collapse
|
336
|
Liu Y, Sen D. Light-regulated catalysis by an RNA-cleaving deoxyribozyme. J Mol Biol 2004; 341:887-92. [PMID: 15328600 DOI: 10.1016/j.jmb.2004.06.060] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 06/08/2004] [Accepted: 06/21/2004] [Indexed: 11/17/2022]
Abstract
We describe light-induced switches for the catalytic activity of the small, RNA-cleaving 8-17 deoxyribozyme (DNAzyme), based on photochemically induced cis-trans isomerization of azobenzene (Az) moieties covalently tethered at various locations within the DNAzyme. Prior studies have shown that trans-azobenzene is able to stack comfortably within a DNA double helix, stabilizing it, while cis-azobenzene has a helix-destabilizing effect. We designed two classes of Az-modified 8-17DNAzyme constructs, in each of which two azobenzene molecules substituted for nucleotides, either in the substrate-binding arm (SBA); or, within the catalytic core. Measurement of single-turnover kinetics for RNA cleavage revealed that in the SBA constructs Ell and E13, five- to sixfold higher catalytic rates were obtained when the reaction mixture was irradiated with visible light (favouring trans-Az) as compared to ultraviolet light (which promotes cis-Az), consistent with trans-Az in these constructs stabilizing the enzyme-substrate complex. Surprisingly, the reverse result was obtained with the catalytic core construct E17, where ultraviolet irradiation resulted in a five- to sixfold faster catalytic activity relative to visible light irradiation. The development of such light-responsive nucleic acid enzymes may open new possibilities of using light as the activating or repressing agent in the control of gene expression within living cells and organisms.
Collapse
Affiliation(s)
- Yong Liu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
337
|
Sidorov AV, Grasby JA, Williams DM. Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucleic Acids Res 2004; 32:1591-601. [PMID: 15004246 PMCID: PMC390309 DOI: 10.1093/nar/gkh326] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 02/13/2004] [Indexed: 12/23/2022] Open
Abstract
Two modified 2'-deoxynucleoside 5'-triphosphates have been used for the in vitro selection of a modified deoxyribozyme (DNAzyme) capable of the sequence-specific cleavage of a 12 nt RNA target in the absence of divalent metal ions. The modified nucleotides, a C5-imidazolyl-modified dUTP and 3-(aminopropynyl)-7-deaza-dATP were used in place of TTP and dATP during the selection and incorporate two extra protein-like functionalities, namely, imidazolyl (histidine analogue) and primary amino (lysine analogue) into the DNAzyme. The functional groups are analogous to the catalytic Lys and His residues employed during the metal-independent cleavage of RNA by the protein enzyme RNaseA. The DNAzyme requires no divalent metal ions or other cofactors for catalysis, remains active at physiological pH and ionic strength and can recognize and cleave a 12 nt RNA substrate with sequence specificity. This is the first example of a functionalized, metal-independent DNAzyme that recognizes and cleaves an all-RNA target in a sequence-specific manner. The selected DNAzyme is two orders of magnitude more efficient in its cleavage of RNA than an unmodified DNAzyme in the absence of metal ions and represents a rate enhancement of 10(5) compared with the uncatalysed hydrolysis of RNA.
Collapse
Affiliation(s)
- Alexander V Sidorov
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | | | | |
Collapse
|
338
|
Bonaccio M, Credali A, Peracchi A. Kinetic and thermodynamic characterization of the RNA-cleaving 8-17 deoxyribozyme. Nucleic Acids Res 2004; 32:916-25. [PMID: 14963261 PMCID: PMC373389 DOI: 10.1093/nar/gkh250] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 8-17 deoxyribozyme is a small DNA catalyst of significant applicative interest. We have analyzed the kinetic features of a well behaved 8-17 construct and determined the influence of several reaction conditions on such features, providing a basis for further exploration of the deoxyribozyme mechanism. The 8-17 bound its substrate with a rate constant approximately 10-fold lower than those typical for the annealing of short complementary oligonucleotides. The observed free energy of substrate binding indicates that an energetic penalty near to +7 kcal/mol is attributable to the deoxyribozyme core. Substrate cleavage required divalent metal ion cofactors, and the dependence of activity on the concentration of Mg2+, Ca2+ or Mn2+ suggests the occurrence of a single, low-specificity binding site for activating ions. The efficiency of activation correlated with the Lewis acidity of the ion cofactor, compatible with a metal-assisted deprotonation of the reactive 2'-hydroxyl group. However, alternative roles of the metal ions cannot be excluded, because those ions that are stronger Lewis acids are also capable of forming stronger interactions with ligands such as the phosphate oxygens. The apparent enthalpy of activation for the 8-17 reaction was close to the values observed for hydroxide-catalyzed and hammerhead ribozyme-catalyzed RNA cleavage.
Collapse
Affiliation(s)
- Maria Bonaccio
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | | | | |
Collapse
|
339
|
Abstract
With the advent of functional genomics and the shift of interest towards sequence-based therapeutics, the past decades have witnessed intense research efforts on nucleic acid-mediated gene regulation technologies. Today, RNA interference is emerging as a groundbreaking discovery, holding promise for development of genetic modulators of unprecedented potency. Twenty-five years after the discovery of antisense RNA and ribozymes, gene control therapeutics are still facing developmental difficulties, with only one US FDA-approved antisense drug currently available in the clinic. Limited predictability of target site selection models is recognized as one major stumbling block that is shared by all of the so-called complementary technologies, slowing the progress towards a commercial product. Currently employed in vitro systems for target site selection include RNAse H-based mapping, antisense oligonucleotide microarrays, and functional screening approaches using libraries of catalysts with randomized target-binding arms to identify optimal ribozyme/DNAzyme cleavage sites. Individually, each strategy has its drawbacks from a drug development perspective. Utilization of message-modulating sequences as therapeutic agents requires that their action on a given target transcript meets criteria of potency and selectivity in the natural physiological environment. In addition to sequence-dependent characteristics, other factors will influence annealing reactions and duplex stability, as well as nucleic acid-mediated catalysis. Parallel consideration of physiological selection systems thus appears essential for screening for nucleic acid compounds proposed for therapeutic applications. Cellular message-targeting studies face issues relating to efficient nucleic acid delivery and appropriate analysis of response. For reliability and simplicity, prokaryotic systems can provide a rapid and cost-effective means of studying message targeting under pseudo-cellular conditions, but such approaches also have limitations. To streamline nucleic acid drug discovery, we propose a multi-model strategy integrating high-throughput-adapted bacterial screening, followed by reporter-based and/or natural cellular models and potentially also in vitro assays for characterization of the most promising candidate sequences, before final in vivo testing.
Collapse
Affiliation(s)
- Isabelle Gautherot
- Virology Platform, Industrialization and Process Development, AVENTIS PASTEUR, Marcy l'Etoile, France.
| | | |
Collapse
|
340
|
Jiang P, Guo Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 2004. [DOI: 10.1016/j.cct.2003.10.013] [Citation(s) in RCA: 739] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
341
|
Steele D, Kertsburg A, Soukup GA. Engineered catalytic RNA and DNA : new biochemical tools for drug discovery and design. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 3:131-44. [PMID: 12749730 DOI: 10.2165/00129785-200303020-00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the fundamental discovery that RNA catalyzes critical biological reactions, the conceptual and practical utility of nucleic acid catalysts as molecular therapeutic and diagnostic agents continually develops. RNA and DNA catalysts are particularly attractive tools for drug discovery and design due to their relative ease of synthesis and tractable rational design features. Such catalysts can intervene in cellular or viral gene expression by effectively destroying virtually any target RNA, repairing messenger RNAs derived from mutant genes, or directly disrupting target genes. Consequently, catalytic nucleic acids are apt tools for dissecting gene function and for effecting gene pharmacogenomic strategies. It is in this capacity that RNA and DNA catalysts have been most widely utilized to affect gene expression of medically relevant targets associated with various disease states, where a number of such catalysts are presently being evaluated in clinical trials. Additionally, biotechnological prospects for catalytic nucleic acids are seemingly unlimited. Controllable nucleic acid catalysts, termed allosteric ribozymes or deoxyribozymes, form the basis of effector or ligand-dependent molecular switches and sensors. Allosteric nucleic acid catalysts promise to be useful tools for detecting and scrutinizing the function of specified components of the metabolome, proteome, transcriptome, and genome. The remarkable versatility of nucleic acid catalysis is thus the fountainhead for wide-ranging applications of ribozymes and deoxyribozymes in biomedical and biotechnological research.
Collapse
Affiliation(s)
- David Steele
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | | | |
Collapse
|
342
|
Vaish NK, Larralde R, Fraley AW, Szostak JW, McLaughlin LW. A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality. Biochemistry 2003; 42:8842-51. [PMID: 12873145 DOI: 10.1021/bi027354i] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An analogue of uridine triphosphate containing a cationic functional group was incorporated into a degenerate RNA library by enzymatic polymerization. In vitro selection experiments using this library yielded a novel receptor that binds ATP under physiological pH and salt conditions in a manner completely dependent on the presence of the cationic functionality. The consensus sequence and a secondary structure model for the ATP binding site were obtained by the analysis of functional sequences selected from a partially randomized pool based on the minimal parental sequence. Mutational studies of this receptor indicated that several of the modified uridines are critical for ATP binding. Analysis of the binding of ATP analogues revealed that the modified RNA receptor makes numerous contacts with ATP, including interactions with the triphosphate group. In contrast, the aptamer repeatedly isolated from natural RNA libraries does not interact with the triphosphate group of ATP. The incorporation of a cationic amine into nucleic acids clearly allows novel interactions to occur during the molecular recognition of ligands, which carries interesting implications for the RNA world hypothesis. In addition, new materials generated from such functionalized nucleic acids could be useful tools in research and diagnostics.
Collapse
Affiliation(s)
- Narendra K Vaish
- Department of Chemistry, Boston College, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, USA.
| | | | | | | | | |
Collapse
|
343
|
Liu Z, Mei SHJ, Brennan JD, Li Y. Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. J Am Chem Soc 2003; 125:7539-45. [PMID: 12812493 DOI: 10.1021/ja035208+] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a group of new DNA enzymes that possess a synchronized RNA-cleavage/fluorescence-signaling ability and exhibit wide-ranging metal-ion and pH dependences. These DNA catalysts were derived from a random-sequence DNA pool in a two-stage process: (1) establishment of a catalytic DNA population through repetitive rounds of in vitro selection at pH 4.0, and (2) sequence-diversification and catalytic-activity optimization through five parallel paths of in vitro evolution conducted at pH 3.0, 4.0, 5.0, 6.0, and 7.0, respectively. The deoxyribozymes were evolved to cleave the phosphodiester bond of a single ribonucleotide embedded in DNA and flanked immediately by two deoxyribonucleotides modified with a fluorophore and a quencher, respectively--a setting that synchronizes catalysis with fluorescence signaling. The most dominant catalyst from each pool was examined for metal-ion specificity, catalytic efficiency, pH dependence, and fluorescence-signaling capability. Individual catalysts have different metal-ion requirements and can generate as much as a 12-fold fluorescence enhancement upon RNA cleavage. Most of the DNA enzymes have a pH optimum coinciding with the selection pH and exhibit a rate constant approximating 1 min(-)(1) under optimal reaction conditions. The demonstration of DNA enzymes that are functional under extremely high acidity (such as pH 3 and 4) indicates that DNA has the ability to perform efficient catalysis even under harsh reaction conditions. The isolation of many new signaling DNA enzymes with broad pH optima and metal-ion specificities should facilitate the development of diverse deoxyribozyme-based biosensors.
Collapse
Affiliation(s)
- Zhongjie Liu
- Department of Biochemistry, McMaster University, Health Sciences Center, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | | | |
Collapse
|
344
|
Lu Y, Liu J, Li J, Bruesehoff PJ, Pavot CMB, Brown AK. New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens Bioelectron 2003; 18:529-40. [PMID: 12706559 DOI: 10.1016/s0956-5663(03)00013-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While remarkable progress has been made in developing sensors for metal ions such as Ca(II) and Zn(II), designing and synthesizing sensitive and selective metal ion sensors remains a significant challenge. Perhaps the biggest challenge is the design and synthesis of a sensor capable of specific and strong metal binding. Since our knowledge about the construction of metal-binding sites in general is limited, searching for sensors in a combinatorial way is of significant value. Therefore, we have been able to use a combinatorial method called in vitro selection to obtain catalytic DNA that can bind a metal ion of choice strongly and specifically. The metal ion selectivity of the catalytic DNA was further improved using a 'negative selection' strategy where catalytic DNA that are selective for competing metal ions are discarded in the in vitro selection processes. By labeling the resulting catalytic DNA with a fluorophore/quencher pair, we have made a new class of metal ion fluorescent sensors that are the first examples of catalytic DNA biosensors for metal ions. The sensors combine the high selectivity of catalytic DNA with the high sensitivity of fluorescent detection, and can be applied to the quantitative detection of metal ions over a wide concentration range and with high selectivity. The use of DNA sensors in detection and quantification of lead ions in environmental samples such as water from Lake Michigan has been demonstrated. DNA is stable, cost-effective, environmentally benign, and easily adaptable to optical fiber and microarray technology for device manufacture. Thus, the DNA sensors explained here hold great promise for on-site and real-time monitoring of metal ions in the fields of environmental monitoring, developmental biology, clinical toxicology, wastewater treatment, and industrial process monitoring.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
345
|
Puerta-Fernández E, Romero-López C, Barroso-delJesus A, Berzal-Herranz A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 2003; 27:75-97. [PMID: 12697343 DOI: 10.1016/s0168-6445(03)00020-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery 20 years ago that some RNA molecules, called ribozymes, are able to catalyze chemical reactions was a breakthrough in biology. Over the last two decades numerous natural RNA motifs endowed with catalytic activity have been described. They all fit within a few well-defined types that respond to a specific RNA structure. The prototype catalytic domain of each one has been engineered to generate trans-acting ribozymes that catalyze the site-specific cleavage of other RNA molecules. On the 20th anniversary of ribozyme discovery we briefly summarize the main features of the different natural catalytic RNAs. We also describe progress towards developing strategies to ensure an efficient ribozyme-based technology, dedicating special attention to the ones aimed to achieve a new generation of therapeutic agents.
Collapse
Affiliation(s)
- Elena Puerta-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Ventanilla 11, 18001 Granada, Spain
| | | | | | | |
Collapse
|
346
|
Ferrari D, Peracchi A. A continuous kinetic assay for RNA-cleaving deoxyribozymes, exploiting ethidium bromide as an extrinsic fluorescent probe. Nucleic Acids Res 2002; 30:e112. [PMID: 12384614 PMCID: PMC137156 DOI: 10.1093/nar/gnf111] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe a rapid and inexpensive method to monitor the kinetics of small RNA-cleaving deoxyribozymes, based on the exogenous fluorophore ethidium bromide. Ethidium binds preferentially to double-stranded nucleic acids, and its fluorescence emission increases dramatically upon intercalation. Thus, ethidium can be used in single-turnover experiments to measure both annealing of the deoxyribozyme to its substrate and release of the products. Under conditions in which dissociation of the product is fast compared with cleavage, the apparent rate of product release reflects the cleavage step. The method was developed for characterizing the so-called 8-17 catalytic DNA, but its general applicability in the deoxyribozyme field was verified using the 10-23 RNA-cleaving construct. Catalysis by both deoxyribozymes was not inhibited in the presence of substoichiometric amounts of ethidium, and the rates obtained through the ethidium assay were virtually identical to the rates determined using radiolabeled substrates. In contrast, the assay cannot be applied to the large, structured ribozymes, and its use to study the kinetics of the small hammerhead ribozyme was hampered by the presence on the catalyst of at least one high-affinity ethidium binding site.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | | |
Collapse
|
347
|
Abstract
5('),5(')-Adenylyl pyrophosphoryl DNA (AppDNA) contains a high-energy pyrophosphate linkage and can be exploited as an activated DNA substrate to derive new DNA enzymes for carrying out various DNA modification reactions. For this reason, enzymatic synthesis of AppDNA is highly desirable. AppDNA is a known intermediate in DNA ligase mediated DNA ligation reactions, but rarely accumulates under normal reaction conditions. Here we report that T4 DNA ligase can quantitatively convert 5(')-phosphoryl DNA donor into AppDNA in the absence of acceptor DNA but in the presence of a template DNA that contains at least one unpaired nucleotide opposite the 5(')-phosphoryl DNA donor site. This adenylylation behavior of T4 DNA ligase is not observed with Thermus aquaticus (Taq) and Escherichia coli DNA ligases. We further found that a donor-template duplex of 11-bp in length is required by T4 DNA ligase for the formation of AppDNA.
Collapse
Affiliation(s)
- William Chiuman
- Department of Biochemistry/Department of Chemistry, Health Sciences Centre, McMaster University, 1200 Main Street West, Hamilton, Ont., Canada L8N 3Z5
| | | |
Collapse
|
348
|
Wang DY, Lai BHY, Feldman AR, Sen D. A general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes. Nucleic Acids Res 2002; 30:1735-42. [PMID: 11937626 PMCID: PMC113219 DOI: 10.1093/nar/30.8.1735] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A general approach is described for controlling the RNA-cleaving activity of nucleic acid enzymes (ribozymes and DNAzymes) via the use of oligonucleotide effectors (regulators). In contrast to the previously developed approaches of allosteric and facilitator-mediated regulation of such enzymes, this approach, called 'expansive' regulation, requires that the regulator bind simultaneously to both enzyme and substrate to form a branched three-way complex. Such three-way enzyme-substrate-regulator complexes are catalytically competent relative to the structurally unstable enzyme-substrate complexes. Using the 8-17 and bipartite DNAzymes and the hammerhead ribozyme as model systems, 20- to 30-fold rate enhancements were achieved in the presence of regulators of engineered variants of the above three enzymes, even under unoptimized conditions. Broadly, using this approach ribozyme and DNAzyme variants that are amenable to regulation by oligonucleotide effectors can be designed even in the absence of any knowledge of the folded structure of the relevant ribozyme or DNAzyme. Expansive regulation therefore represents a new and potentially useful technology for both the regulation of nucleic acid enzymes and the detection of specific RNA transcripts.
Collapse
Affiliation(s)
- Dennis Y Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Way, Burnaby, BC V5A 1S6, Canada
| | | | | | | |
Collapse
|
349
|
Wang W, Billen LP, Li Y. Sequence diversity, metal specificity, and catalytic proficiency of metal-dependent phosphorylating DNA enzymes. CHEMISTRY & BIOLOGY 2002; 9:507-17. [PMID: 11983339 DOI: 10.1016/s1074-5521(02)00127-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although DNA has not been found responsible for biological catalysis, many artificial DNA enzymes have been created by "in vitro selection." Here we describe a new selection approach to assess the influence of four common divalent metal ions (Ca(2+), Cu(2+), Mg(2+), and Mn(2+)) on sequence diversity, metal specificity, and catalytic proficiency of self-phosphorylating deoxyribozymes. Numerous autocatalytic DNA sequences were isolated, a majority of which were selected using Cu(2+) or Mn(2+) as the divalent metal cofactor. We found that Cu(2+)- and Mn(2+)-derived deoxyribozymes were strictly metal specific, while those selected by Ca(2+) and Mg(2+) were less specific. Further optimization by in vitro evolution resulted in a Mn(2+)-dependent deoxyribozyme with a k(cat) of 2.8 min(-1). Our findings suggest that DNA has sufficient structural diversity to facilitate efficient catalysis using a broad scope of metal cofactor utilizing mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
350
|
Abstract
A new DNA enzyme, the "Bipartite DNAzyme", suitable for the sequence-specific cleavage of RNA, was obtained from a random DNA library by in vitro selection. Only a single family of catalytic molecules emerged from the selection, and a 22 nucleotide consensus sequence common to all clones defined a putative catalytic core. The most abundant clone self-cleaved at a single internal ribonucleotide phosphodiester with a relatively fast k(obs) value of 1.7 min(-1), in 10 mM MgCl(2) at 23 degrees C. This DNAzyme ("Bipartite I") required divalent cations, with magnesium and manganese most optimally supporting cleavage. A reselection from a mutagenized DNAzyme pool for the ability to cleave at extended RNA substrates yielded an unchanged catalytic core sequence. From this re-selection a DNAzyme ("Bipartite II") capable of sequence-specifically cleaving extended stretches of RNA was derived. A rate versus pH analysis of the Bipartite II DNAzyme revealed a two-phase profile, similar to that reported for the hepatitis delta virus (HDV) ribozyme, suggesting that the Bipartite II DNAzyme and the HDV ribozyme may share similar catalytic strategies. Multiple-turnover kinetics, measured in 30 mM MgCl(2), at 37 degrees C, with an HIV-1-derived RNA substrate, yielded a k(cat) value of approximately 1.4 min(-1) and a K(M) value of approximately 230 nM, which were of the same order as k(cat) and K(M )values measured for other ribozymes and DNAzymes in general use for RNA cleavage. The Bipartite DNAzyme therefore represents a new and potentially useful reagent, both for the processing of RNA transcripts in vitro and for mRNA ablation procedures in vivo.
Collapse
Affiliation(s)
- A R Feldman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | | |
Collapse
|