301
|
Kairn T, Kenny J, Crowe SB, Fielding AL, Franich RD, Johnston PN, Knight RT, Langton CM, Schlect D, Trapp JV. Technical Note: Modeling a complex micro-multileaf collimator using the standard BEAMnrc distribution. Med Phys 2010; 37:1761-7. [DOI: 10.1118/1.3355873] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
302
|
Clift C, Thomas A, Adamovics J, Chang Z, Das I, Oldham M. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE/optical-CT 3D dosimetry system. Phys Med Biol 2010; 55:1279-93. [PMID: 20134082 PMCID: PMC3030986 DOI: 10.1088/0031-9155/55/5/002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT film was used for independent verification. Measurements of Sc, p made with PRESAGE and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE. The advantages of the PRESAGE system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.
Collapse
Affiliation(s)
- Corey Clift
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
303
|
Wulff J, Heverhagen JT, Karle H, Zink K. Investigation of correction factors for non-reference conditions in ion chamber photon dosimetry with Monte-Carlo simulations. Z Med Phys 2010; 20:25-33. [DOI: 10.1016/j.zemedi.2009.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/18/2009] [Accepted: 09/18/2009] [Indexed: 11/28/2022]
|
304
|
Faddegon BA, Sawkey D, O'Shea T, McEwen M, Ross C. Treatment head disassembly to improve the accuracy of large electron field simulation. Med Phys 2010; 36:4577-91. [PMID: 19928089 DOI: 10.1118/1.3218764] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purposes of this study are to improve the accuracy of source and geometry parameters used in the simulation of large electron fields from a clinical linear accelerator and to evaluate improvement in the accuracy of the calculated dose distributions. METHODS The monitor chamber and scattering foils of a clinical machine not in clinical service were removed for direct measurement of component geometry. Dose distributions were measured at various stages of reassembly, reducing the number of geometry variables in the simulation. The measured spot position and beam angle were found to vary with the beam energy. A magnetic field from the bending magnet was found between the exit window and the secondary collimators of sufficient strength to deflect electrons 1 cm off the beam axis at 100 cm from the exit window. The exit window was 0.05 cm thicker than manufacturer's specification, with over half of the increased thickness due to water pressure in the channel used to cool the window. Dose distributions were calculated with Monte Carlo simulation of the treatment head and water phantom using EGSnrc, a code benchmarked at radiotherapy energies for electron scatter and bremsstrahlung production, both critical to the simulation. The secondary scattering foil and monitor chamber offset from the collimator rotation axis were allowed to vary with the beam energy in the simulation to accommodate the deflection of the beam by the magnetic field, which was not simulated. RESULTS The energy varied linearly with bending magnet current to within 1.4% from 6.7 to 19.6 MeV, the bending magnet beginning to saturate at the highest beam energy. The range in secondary foil offset used to account for the magnetic field was 0.09 cm crossplane and 0.15 cm inplane, the range in monitor chamber offset was 0.14 cm crossplane and 0.07 cm inplane. A 1.5%/0.09 cm match or better was obtained to measured depth dose curves. Profiles measured at the depth of maximum dose matched the simulated profiles to 2.6% or better at doses of 80% or more of the dose on the central axis. The profiles along the direction of MLC motion agreed to within 0.16 cm at the edge of the field. There remained a mismatch for the lower beam energies at the edge of the profile that ran parallel to the direction of jaw motion of up to 1.4 cm for the 6 MeV beam, attributed to the MLC support block at the periphery of the field left out of the simulation and to beam deflection by the magnetic field. The possibility of using these results to perform accurate simulation without disassembly is discussed. Phase-space files were made available for benchmarking beam models and other purposes. CONCLUSIONS The match to measured large field dose distributions from clinical electron beams with Monte Carlo simulation was improved with more accurate source details and geometry details closer to manufacturer's specification than previously achieved.
Collapse
Affiliation(s)
- Bruce A Faddegon
- Department of Radiation Oncology, UC San Francisco Comprehensive Cancer Center, San Francisco, California 94143-1708, USA.
| | | | | | | | | |
Collapse
|
305
|
Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T. Task Group 142 report: quality assurance of medical accelerators. Med Phys 2009; 36:4197-212. [PMID: 19810494 DOI: 10.1118/1.3190392] [Citation(s) in RCA: 1015] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The task group (TG) for quality assurance of medical accelerators was constituted by the American Association of Physicists in Medicine's Science Council under the direction of the Radiation Therapy Committee and the Quality Assurance and Outcome Improvement Subcommittee. The task group (TG-142) had two main charges. First to update, as needed, recommendations of Table II of the AAPM TG-40 report on quality assurance and second, to add recommendations for asymmetric jaws, multileaf collimation (MLC), and dynamic/virtual wedges. The TG accomplished the update to TG-40, specifying new test and tolerances, and has added recommendations for not only the new ancillary delivery technologies but also for imaging devices that are part of the linear accelerator. The imaging devices include x-ray imaging, photon portal imaging, and cone-beam CT. The TG report was designed to account for the types of treatments delivered with the particular machine. For example, machines that are used for radiosurgery treatments or intensity-modulated radiotherapy (IMRT) require different tests and/or tolerances. There are specific recommendations for MLC quality assurance for machines performing IMRT. The report also gives recommendations as to action levels for the physicists to implement particular actions, whether they are inspection, scheduled action, or immediate and corrective action. The report is geared to be flexible for the physicist to customize the QA program depending on clinical utility. There are specific tables according to daily, monthly, and annual reviews, along with unique tables for wedge systems, MLC, and imaging checks. The report also gives specific recommendations regarding setup of a QA program by the physicist in regards to building a QA team, establishing procedures, training of personnel, documentation, and end-to-end system checks. The tabulated items of this report have been considerably expanded as compared with the original TG-40 report and the recommended tolerances accommodate differences in the intended use of the machine functionality (non-IMRT, IMRT, and stereotactic delivery).
Collapse
Affiliation(s)
- Eric E Klein
- Washington University, St. Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Zhang S, Liengsawangwong P, Lindsay P, Prado K, Sun TL, Steadham R, Wang X, Salehpour MR, Gillin M. Clinical implementation of electron energy changes of varian linear accelerators. J Appl Clin Med Phys 2009; 10:177-187. [PMID: 19918226 PMCID: PMC5720572 DOI: 10.1120/jacmp.v10i4.2978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/06/2009] [Accepted: 05/26/2009] [Indexed: 11/23/2022] Open
Abstract
Modern dual photon energy linear accelerators often come with a few megavoltage electron beams. The megavoltage electron beam has limited range and relative sharp distal falloff in its depth dose curve compared to that of megavoltage photon beam. Its radiation dose is often delivered appositionally to cover the target volume to its distal 90% depth dose (d90), while avoiding the normal--sometimes critical--structure immediately distal to the target. Varian linear accelerators currently offer selected electron beams of 4, 6, 9, 12, 16 and 20 MeV electron beam energies. However, intermediate electron energy is often needed for optimal dose distribution. In this study we investigated electron beam characteristics and implemented two intermediate 7 and 11 MeV electron beams on Varian linear accelerators. Comprehensive tests and measurements indicated the new electron beams met all dosimetry parameter criteria and operational safety standards. Between the two new electron beams and the existing electron beams we were able to provide a choice of electron beams of 4, 6, 7, 9, 11, 12, 16 and 20 MeV electron energies, which had d90 depth between 1.5 cm and 6.0 cm (from 1.5 cm to 4.0 cm in 0.5 cm increments) to meet our clinical needs.
Collapse
Affiliation(s)
- Sean Zhang
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Praimakorn Liengsawangwong
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Patricia Lindsay
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Karl Prado
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Tzouh-Liang Sun
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Roy Steadham
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Xiaochun Wang
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Mohammad R Salehpour
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Michael Gillin
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| |
Collapse
|
307
|
Gerbi BJ, Antolak JA, Deibel FC, Followill DS, Herman MG, Higgins PD, Huq MS, Mihailidis DN, Yorke ED, Hogstrom KR, Khan FM. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25. Med Phys 2009; 36:3239-79. [PMID: 19673223 DOI: 10.1118/1.3125820] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of.Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around the world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at 60Co energy, N60Co(D,w), together with the theoretical beam quality conversion coefficient k(Q) for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy electron beams. The use of radiochromic film for electrons is addressed, and radiographic film that is no longer available has been replaced by film that is available. Realistic stopping-power data are incorporated when appropriate along with enhanced tables of electron fluence data. A larger list of clinical applications of electron beams is included in the full TG-70 report available at http://www.aapm.org/pubs/reports. Descriptions of the techniques in the clinical sections are not exhaustive but do describe key elements of the procedures and how to initiate these programs in the clinic. There have been no major changes since the TG-25 report relating to flatness and symmetry, surface dose, use of thermoluminescent dosimeters or diodes, virtual source position designation, air gap corrections, oblique incidence, or corrections for inhomogeneities. Thus these topics are not addressed in the TG-70 report.
Collapse
Affiliation(s)
- Bruce J Gerbi
- University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Chiu-Tsao ST, Chan MF. Photon beam dosimetry in the superficial buildup region using radiochromic EBT film stack. Med Phys 2009; 36:2074-83. [PMID: 19610296 DOI: 10.1118/1.3125134] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
It has been a challenge to perform accurate 2D or 3D dosimetry in the surface region with steep dose gradient for megavoltage photon beams. We developed a dosimetry method in the superficial buildup region for the 6 and 15 MV photon beams using a radiochromic EBT film stack. Eight radiochromic EBT film strips (3 x 20 x 0.024 cm3) stacked together formed a 3D dosimeter. The film stack was positioned above a polystyrene phantom and surrounded by Solid Water slabs (0.2 cm) with the top film layer at 100 cm SSD. A 10 x 10 cm2 open field was used to irradiate the film stack with 1000 MU. All films were scanned using Epson 4870 flatbed scanner with transmission mode, 48 bit color, and 150 dpi (0.017 cm pixel resolution). The pixel values were converted to doses using an established calibration curve. This method allowed dose measurement for depths from 0.012 to 0.18 cm with fine spatial resolution (0.017 cm horizontally and 0.024 cm vertically). For each energy modality, we obtained both the central axis percent depth doses and the beam profiles along the central line covering the primary field and peripheral region at each depth. The primary field doses varied steeply with depth, while those in the peripheral region were weakly dependent on depth. For the 6 MV and 15 MV photon beams, (1) the central axis percent depth doses in the eight film layers ranged from 22% to 66% and from 15% to 44%, respectively; (2) the extrapolated percent depth doses at d = 0 were 15% and 14%, respectively. Agreement with the previously reported central axis percent depth doses in this region using parallel plate thin window ion chamber and ultrathin TLD was observed. The percent depth doses and beam profiles data can be incorporated in the treatment planning system for more accurate assessment of the doses to skin and shallow tumors to accomplish more accurate calculation results in the clinical usage.
Collapse
|
309
|
Scherf C, Peter C, Moog J, Licher J, Kara E, Zink K, Rödel C, Ramm U. Silicon Diodes as an Alternative to Diamond Detectors for Depth Dose Curves and Profile Measurements of Photon and Electron Radiation. Strahlenther Onkol 2009; 185:530-6. [DOI: 10.1007/s00066-009-2004-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/05/2009] [Indexed: 10/20/2022]
|
310
|
Borca VC, Pasquino M, Ozzello F, Tofani S. The use of a diode matrix in commissioning activities for electron energies > or = 9 MeV: a feasibility study. Med Phys 2009; 36:1144-54. [PMID: 19472620 DOI: 10.1118/1.3081414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The contribution of a commercially available diode matrix (MapCHECK, provided by Sun Nuclear, Melbourne, FL) for the commissioning procedures of the voxel based Monte Carlo (VMC++) algorithm for electron beams of MasterPlan treatment planning system was investigated. The attention is mainly focused on the calculation in homogeneous and heterogeneous phantoms. With this aim, following a data set similar to that proposed by Electron Collaborative Working Group (ECWG), the dose profiles and two-dimensional (2D) dose distributions measured by the diode matrix were compared with the calculated ones using the gamma analysis method with acceptance criteria for the dose difference and the distance to agreement equal to 4% and 4 mm, respectively. The average and standard deviation of the percentage of points satisfying the constraint gamma < or = 1 are 98.3 +/- 4.1% and 99.3 +/- 1.7% for the 9 and 12 MeV electron beam, respectively, showing that the accuracy of MasterPlan electron beam algorithm is good for simple two-dimensional geometries as well as for more complicated three-dimensional ones. The results are in agreement with those reported in literature by Cygler et al. ["Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning," Med. Phys. 31, 142-153 (2004)]. In addition, the authors have also analyzed the response of the 2D array in terms of dose profiles at different depths, comparing the results with those obtained in water phantom using an electron diode. The results show that in the low gradient regions there were no deviations larger than the criteria of acceptability set by Van Dyk et al. ["Commissioning and quality assurance of treatment planning computers," Int. J. Radiat. Oncol. Biol. Phys. 26, 261-273 (1993)]; in the high gradient region, the maximum deviations are less than 2 mm with most of the values less than 1 mm. The present article shows that MapCHECK can play a useful role in the commissioning of electron algorithms of treatment planning systems in the evaluation of the 2D dose distributions in homogeneous and heterogeneous phantoms. In fact, it provides accurate results with the merit of expediting the commissioning process by using measuring device that requires minimal setup time and data processing time.
Collapse
Affiliation(s)
- Valeria Casanova Borca
- S. C. Fisica Sanitaria, Azienda Sanitaria ASL TO 4, Via Di Vittorio 1, 10015 Ivrea, Torino, Italy
| | | | | | | |
Collapse
|
311
|
Ververs JD, Schaefer MJ, Kawrakow I, Siebers JV. A method to improve accuracy and precision of water surface identification for photon depth dose measurements. Med Phys 2009; 36:1410-20. [PMID: 19472648 DOI: 10.1118/1.3098125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The objective of this study is to present a method to reduce the setup error inherent in clinical depth dose measurements and, in doing so, to improve entrance dosimetry measurement reliability. Ionization chamber (IC) depth dose measurements are acquired with the depth scan extended into the air above the water surface. An inflection region is obtained in each resulting percent depth ionization (PDI) curve that can be matched against other measurements or to an inflection region obtained from an analogous Monte Carlo (MC) simulation. Measurements are made with various field sizes for the 6 and 18 MV photon beams, with and without a Pb foil in the beam, to determine the sensitivity of the dose inflection region to the beam conditions. The offset between reference and test data set inflection regions is quantified using two separate methods. When comparing sets of measured data, maxima in the second derivative of ionization are compared. When comparing measured data to MC simulation, the offset that minimizes the sum of squared differences between the reference and test curves in the ionization inflection region is found. These methods can be used to quantify the offset between an initial setup (test) position and the true surface (reference) position. The ionization inflection location is found to be insensitive to changes in field size, electron contamination, and beam energy. Data from a single reference condition should be sufficient to identify the surface location. The method of determining IC offsets is general and should be applicable to any IC and other radiation sources. The measurement method could reduce the time and effort required in the initial IC setup at a water surface as setup errors can be corrected offline. Given a reliable set of reference data to compare with, this method could increase the ability of quality assurance (QA) measurements to detect discrepancies in beam output as opposed to discrepancies in IC localization. Application of the measurement method standardizes the procedure for localizing cylindrical ICs at a water surface and thereby improves the reliability of measurements taken with these devices at all depths.
Collapse
Affiliation(s)
- J D Ververs
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | |
Collapse
|