301
|
Nascimento CV, Souza FHM, Masui DC, Leone FA, Peralta RM, Jorge JA, Furriel RPM. Purification and biochemical properties of a glucose-stimulated beta-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. J Microbiol 2010; 48:53-62. [PMID: 20221730 DOI: 10.1007/s12275-009-0159-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 08/17/2009] [Indexed: 11/24/2022]
Abstract
The effect of several carbon sources on the production of mycelial-bound beta-glucosidase by Humicola grisea var. thermoidea in submerged fermentation was investigated. Maximum production occurred when cellulose was present in the culture medium, but higher specific activities were achieved with cellobiose or sugarcane bagasse. Xylose or glucose (1%) in the reaction medium stimulated beta-glucosidase activity by about 2-fold in crude extracts from mycelia grown in sugarcane bagasse. The enzyme was purified by ammonium sulfate precipitation, followed by Sephadex G-200 and DEAE-cellulose chromatography, showing a single band in PAGE and SDS-PAGE. The beta-glucosidase had a carbohydrate content of 43% and showed apparent molecular masses of 57 and 60 kDa, as estimated by SDS-PAGE and gel filtration, respectively. The optimal pH and temperature were 6.0 and 50 degrees C, respectively. The purified enzyme was thermostable up to 60 min in water at 55 degrees C and showed half-lives of 7 and 14 min when incubated in the absence or presence of 50 mM glucose, respectively, at 60 degrees C. The enzyme hydrolyzed p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-galactopyranoside, p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-xylopyranoside, o-nitrophenyl-beta-D-galactopyranoside, lactose, and cellobiose. The best synthetic and natural substrates were p-nitrophenyl-beta-D-fucopyranoside and cellobiose, respectively. Purified enzyme activity was stimulated up to 2-fold by glucose or xylose at concentrations from 25 to 200 mM. The addition of purified or crude beta-glucosidase to a reaction medium containing Trichoderma reesei cellulases increased the saccharification of sugarcane bagasse by about 50%. These findings suggest that H. grisea var. thermoidea beta-glucosidase has a potential for biotechnological applications in the bioconversion of lignocellulosic materials.
Collapse
Affiliation(s)
- Cesar Vanderlei Nascimento
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
302
|
Purification and characterization of a thermostable endo-β-1,4-glucanase from a novel strain of Penicillium purpurogenum. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
303
|
Purification, characterization and mass spectrometric identification of two thermophilic xylanases from Sporotrichum thermophile. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
304
|
Souza FHM, Nascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM. Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.09.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
305
|
Gonzalez-Figueredo C, de La Torre L, Sanchez A. Dynamic Modelling and Experimental Validation of a Solid State Fermentation Reactor*. ACTA ACUST UNITED AC 2010. [DOI: 10.3182/20100707-3-be-2012.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
306
|
Mushtaq Z, Saadia M, Anjum RS, Jamil A. Cloning of an intronlesscre1 gene fromChaetomium thermophilum. ANN MICROBIOL 2009. [DOI: 10.1007/bf03179224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
307
|
Takó M, Tóth A, G. Nagy L, Krisch J, Vágvölgyi C, Papp T. A new β-glucosidase gene from the zygomycete fungus Rhizomucor miehei. Antonie van Leeuwenhoek 2009; 97:1-10. [DOI: 10.1007/s10482-009-9382-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/23/2009] [Indexed: 11/29/2022]
|
308
|
Kwon-Chung KJ, Sugui JA. Sexual reproduction in Aspergillus species of medical or economical importance: why so fastidious? Trends Microbiol 2009; 17:481-7. [PMID: 19783441 DOI: 10.1016/j.tim.2009.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 08/10/2009] [Accepted: 08/17/2009] [Indexed: 12/28/2022]
Abstract
Heterothallism is dependent upon the obligatory cross-mating between self-sterile homokaryotic individuals and represents a common pattern of sexuality in yeasts and molds. Heterothallic reproductive cycles have recently been discovered in three Aspergillus species of medical and economic importance, namely Aspergillus fumigatus,A. parasiticus and A. flavus. Together with Aspergillus udagawae (Neosartorya udagawae), heterothallism has now been discovered in a total of four aspergilli that affect human health or economy. These fungi appear to express relatively low levels of fertility compared to other heterothallic or homothallic aspergilli and require unusually fastidious environmental parameters to complete the sexual cycle. Because the purpose of sex is to reproduce, we favor the hypothesis that while fertility of these species is on the decline this is compensated by their proficiency to reproduce asexually in a wider range of environmental conditions. Heterothallism in these species could provide an invaluable tool for the recombinational analysis of factors relevant to pathogenicity or toxin production. There is concern, however, whether extensive recombinational analysis can be very practical in light of the fact that formation of ascospores in these species requires a long period of time and the construction of genetically marked strains is likely to decrease fertility even further.
Collapse
Affiliation(s)
- Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
309
|
Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 2009; 5:578-95. [PMID: 19774110 PMCID: PMC2748470 DOI: 10.7150/ijbs.5.578] [Citation(s) in RCA: 338] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/02/2009] [Indexed: 11/28/2022] Open
Abstract
The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and beta-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.
Collapse
Affiliation(s)
- Mehdi Dashtban
- 1. Biorefining Research Initiative, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
- 2. Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
| | - Heidi Schraft
- 2. Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
| | - Wensheng Qin
- 1. Biorefining Research Initiative, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
- 2. Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
| |
Collapse
|
310
|
Hunter AC, Watts KR, Dedi C, Dodd HT. An unusual ring--a opening and other reactions in steroid transformation by the thermophilic fungus Myceliophthora thermophila. J Steroid Biochem Mol Biol 2009; 116:171-7. [PMID: 19482085 DOI: 10.1016/j.jsbmb.2009.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 05/19/2009] [Accepted: 05/22/2009] [Indexed: 11/24/2022]
Abstract
A series of steroids (progesterone, testosterone acetate, 17beta-acetoxy-5 alpha-androstan-3-one, testosterone and androst-4-en-3,17-dione) have been incubated with the thermophilic ascomycete Myceliophthora thermophila CBS 117.65. A wide range of biocatalytic activity was observed with modification at all four rings of the steroid nucleus and the C-17beta side-chain. This is the first thermophilic fungus to demonstrate the side-chain cleavage of progesterone. A unique fungal transformation was observed following incubation of the saturated steroid 17beta-acetoxy-5 alpha-androstan-3-one resulting in 4-hydroxy-3,4-seco-pregn-20-one-3-oic acid which was the product generated following the opening of an A-homo steroid, presumably by lactonohydrolase activity. Hydroxylation predominated at axial protons of the steroids containing 3-one-4-ene ring-functionality. This organism also demonstrated reversible acetylation and oxidation of the 17beta-alcohol of testosterone. All steroidal metabolites were isolated by column chromatography and were identified by (1)H, (13)C NMR, DEPT analysis and other spectroscopic data. The range of steroidal modification achieved with this fungus indicates that these organisms may be a rich source of novel steroid biocatalysis which deserve greater investigation in the future.
Collapse
Affiliation(s)
- A Christy Hunter
- Molecular Targeting and Polymer Toxicology Group, School of Pharmacy, University of Brighton, East Sussex BN2 4GJ, UK.
| | | | | | | |
Collapse
|
311
|
Kumar KS, Manimaran A, Permaul K, Singh S. Production of beta-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. J Biosci Bioeng 2009; 107:494-8. [PMID: 19393546 DOI: 10.1016/j.jbiosc.2008.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 12/24/2008] [Accepted: 12/25/2008] [Indexed: 11/24/2022]
Abstract
The production of hemicellulases by Thermomyces lanuginosus SK using oatspelts xylan was examined during submerged cultivation. A high level of extracellular xylanase (346+/-10 U ml(-1)) production was observed on the fifth day; however, accessory enzyme levels were low. T. lanuginosus SK was further subjected to UV and N-methyl-N-nitro-N-nitrosoguanidine mutagenesis. The T. lanuginosus MC 134 mutant showed a 1.5 fold increase in xylanase production on oatspelts xylan, compared to the wild type strain. Xylanase production was further enhanced to 3299+/-95 U ml(-1) by using corn cobs under optimized growth conditions. A reduction in xylanase production was observed in a 5 L fermenter. Also, the biobleaching efficiency of crude xylanase was evaluated on bagasse pulp, and a brightness of 46.07+/-0.05% was observed with the use of 50 U of crude xylanase per gram of pulp. This brightness was 3.6 points higher than that of the untreated samples. Reducing sugars (25.78+/-0.14 mg g(-1)) and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. T. lanuginosus MC 134 has a potential application in the pulp and paper industries.
Collapse
Affiliation(s)
- Kuttanpillai Santhosh Kumar
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, South Africa
| | | | | | | |
Collapse
|
312
|
Li YL, Li H, Li AN, Li DC. Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungusChaetomium thermophilumand its expression inPichia pastoris. J Appl Microbiol 2009; 106:1867-75. [DOI: 10.1111/j.1365-2672.2009.04171.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
313
|
Kapasakalidis PG, Rastall RA, Gordon MH. Effect of a cellulase treatment on extraction of antioxidant phenols from black currant (Ribes nigrum L.) pomace. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4342-4351. [PMID: 19354247 DOI: 10.1021/jf8029176] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effect of a commercial cellulase preparation on phenol liberation and extraction from black currant pomace was studied. The enzyme used, which was from Trichoderma spp., was an effective "cellulase-hemicellulase" blend with low β-glucosidase activity and various side activities. Enzyme treatment significantly increased plant cell wall polysaccharide degradation as well as increasing the availability of phenols for subsequent methanolic extraction. The release of anthocyanins and other phenols was dependent on reaction parameters, including enzyme dosage, temperature, and time. At 50 °C, anthocyanin yields following extraction increased by 44% after 3 h and by 60% after 1.5 h for the lower and higher enzyme/substrate ratio (E/S), respectively. Phenolic acids were more easily released in the hydrolytic mixture (supernatant) and, although a short hydrolysis time was adequate to release hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCA) required longer times. The highest E/S value of 0.16 gave a significant increase of flavonol yields in all samples. The antioxidant capacity of extracts, assessed by scavenging of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, the oxygen radical absorbance capacity, and the ferric reducing antioxidant potential depended on the concentration and composition of the phenols present.
Collapse
Affiliation(s)
- Petros G Kapasakalidis
- Department of Food Biosciences, School of Chemistry, Food Biosciences and Pharmacy, The University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, United Kingdom.
| | | | | |
Collapse
|
314
|
Expression and Characterization of the Dictyoglomus thermophilum Rt46B.1 Xylanase Gene (xynB) in Bacillus subtilis. Appl Biochem Biotechnol 2009; 160:1484-95. [DOI: 10.1007/s12010-009-8634-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|
315
|
Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B. Appl Microbiol Biotechnol 2009; 83:261-72. [DOI: 10.1007/s00253-008-1848-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/15/2008] [Accepted: 12/26/2008] [Indexed: 10/21/2022]
|
316
|
Gangavaram LP, Mchunu N, Ramakrishnan P, Singh S, Permaul K. Improved electroporation-mediated non-integrative transformation of Thermomyces lanuginosus. J Microbiol Methods 2009; 77:159-64. [DOI: 10.1016/j.mimet.2009.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/22/2009] [Accepted: 01/22/2009] [Indexed: 11/30/2022]
|
317
|
Abstract
In order to survive extremes of pH, temperature, salinity and pressure, organisms have been found to develop unique defences against their environment, leading to the biosynthesis of novel molecules ranging from simple osmolytes and lipids to complex secondary metabolites. This review highlights novel molecules isolated from microorganisms that either tolerate or favour extreme growth conditions.
Collapse
Affiliation(s)
- Zoe E Wilson
- Department of Chemistry, University of Auckland, 23 Symonds St, Auckland, 1010, New Zealand
| | | |
Collapse
|
318
|
Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Appl Biochem Biotechnol 2009; 160:1267-76. [PMID: 19333564 DOI: 10.1007/s12010-009-8593-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
Phytase of the thermophilic mold Sporotrichum thermophile Apinis hydrolyzed and liberated inorganic phosphate from Ca(+2), Mg(+2), and Co(+2) phytates more efficiently than those of Al(3+), Fe(2+), Fe(3+), and Zn(2+). The hydrolysis rate was higher at 60 degrees C as compared to 26 degrees Celsius. Among all the organic acids tested, citrate was more effective in enhancing solubilization of insoluble phytate salts by phytase than others. The dry weight and inorganic phosphate contents of the wheat plants were high when supplemented with phytase or fungal spores. The plants provided with 5 mg phytate per plant exhibited enhanced growth and inorganic phosphate. With increase in the dosage of phytase, there was increase in growth and inorganic phosphate of plants, the highest being at 20 U per plant. The compost made employing the combined native microflora of the wheat straw and S. thermophile promoted growth of the plants. The plant-growth-promoting effect was also higher with the compost made using S. thermophile than that from only the native microflora.
Collapse
|
319
|
Cloning, expression, and characterization of thermostable Manganese superoxide dismutase from Thermoascus aurantiacus var. levisporus. J Microbiol 2009; 47:123-30. [DOI: 10.1007/s12275-008-0217-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
|
320
|
|
321
|
Bokhari SAI, Latif F, Rajoka MI. Purification and characterization of xylanases from Thermomyces lanuginosus and its mutant derivative possessing novel kinetic and thermodynamic properties. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9915-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
322
|
Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. BIORESOURCE TECHNOLOGY 2008; 99:7623-9. [PMID: 18346891 DOI: 10.1016/j.biortech.2008.02.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/03/2008] [Accepted: 02/05/2008] [Indexed: 05/16/2023]
Abstract
The production of extracellular cellulases by a newly isolated thermoacidophilic fungus, Aspergillus terreus M11, on the lignocellulosic materials was studied in solid-state fermentation (SSF). The results showed that the high-level cellulase activity was produced at 45 degrees C pH 3 and moisture 80% with corn stover and 0.8% yeast extract as carbon and nitrogen sources. 581 U endoglucanase activity, 243 U filter paper activity and 128 U beta-glucosidase activity per gram of carbon source were obtained in the optimal condition. Endoglucanase and beta-glucosidase exhibited their maximum activity at pH 2 and pH 3, respectively, and both of them showed remarkable stability in the range of pH 2-5. The activities of endoglucanase and beta-glucosidase were up to the maximum at 70 degrees C and maintained about 65% and 53% of their original activities after incubation at 70 degrees C for 6h. The enzyme preparations from this strain were used to hydrolyze Avicel. Higher hydrolysis yields of Avicel were up to 63% on 5% Avicel (w/v) for 72 h with 20 U FPase/g substrate.
Collapse
Affiliation(s)
- Jianmin Gao
- Department of Bioengineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, PR China
| | | | | | | | | | | |
Collapse
|
323
|
Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT. A xylose-tolerant beta-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. BIORESOURCE TECHNOLOGY 2008; 99:5402-5410. [PMID: 18180153 DOI: 10.1016/j.biortech.2007.11.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 05/25/2023]
Abstract
An extracellular beta-xylosidase from the thermophilic fungus Paecilomyces thermophila J18 was purified 31.9-fold to homogeneity with a recovery yield of 2.27% from the cell-free culture supernatant. It appeared as a single protein band on SDS-PAGE with a molecular mass of approx 53.5 kDa. The molecular mass of beta-xylosidase was 51.8 kDa determined by Superdex 75 gel filtration. The enzyme was a glycoprotein with a carbohydrate content of 61.5%. It exhibited an optimal activity at 55 degrees C and pH 6.5, respectively. The enzyme was stable in the range of pH 6.0-9.0 and at 55 degrees C. The purified enzyme hydrolyzed xylobiose and higher xylooligosaccharides but was inactive against xylan substrates. It released xylose from xylooligosaccharides with a degree of polymerization ranging between 2 and 5. The rate of xylose released from xylooligosaccharides by the purified enzyme increased with increasing chain length. It had a K(m) of 4.3mM for p-nitrophenol-beta-d-xylopyranoside and was competitively inhibited by xylose with a K(i) value of 139 mM. Release of reducing sugars from xylans by a purified xylanase produced by the same organism increased markedly in the presence of beta-xylosidase. During 24-hour hydrolysis, the amounts of reducing sugar released in the presence of added beta-xylosidase were about 1.5-1.73 times that of the reaction employing the xylanase alone. This is the first report on the purification and characterization of a beta-xylosidase from Paecilomyces thermophila.
Collapse
Affiliation(s)
- Q J Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
324
|
Valasaki K, Staikou A, Theodorou LG, Charamopoulou V, Zacharaki P, Papamichael EM. Purification and kinetics of two novel thermophilic extracellular proteases from Lactobacillus helveticus, from kefir with possible biotechnological interest. BIORESOURCE TECHNOLOGY 2008; 99:5804-5813. [PMID: 18032033 DOI: 10.1016/j.biortech.2007.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 05/25/2023]
Abstract
Two thermophilic extracellular proteases, designated Lmm-protease-Lh ( approximately 29 kDa) and Hmm-protease-Lh ( approximately 62 kDa), were purified from the Lactobacillus helveticus from kefir, and found active in media containing dithiothreitol; the activity of Lmm-protease-Lh was increased significantly in media containing also EDTAK(2). Both novel proteases maintained full activity at 60 degrees C after 1-h incubation at 10 degrees C as well as at 80 degrees C, showing optimum k(cat)/K(m) values at pH 7.00 and 60 degrees C. Only irreversible inhibitors specific for cysteine proteinases strongly inhibited the activity of both novel enzymes, while they remained unaffected by irreversible inhibitors specific for serine proteinases. Both enzymes hydrolyzed the substrate Suc-FR-pNA via Michaelis-Menten kinetics; conversely, the substrate Cbz-FR-pNA was hydrolyzed by Lmm-protease-Lh via Michaelis-Menten kinetics and by Hmm-protease-Lh via substrate inhibition kinetics. Valuable rate constants and activation energies were estimated from the temperature-(k(cat)/K(m)) profiles of both enzymes, and useful results were obtained from the effect of different metallic ions on their Michaelis-Menten parameters.
Collapse
Affiliation(s)
- Krystalenia Valasaki
- University of Ioannina, Department of Chemistry, Sector of Organic Chemistry and Biochemistry, Laboratory of Enzymology, Ioannina 45110, Greece
| | | | | | | | | | | |
Collapse
|
325
|
Sharma D, Shukla A. Starch Hydrolysis and α-Amylase Activity of Aspergillus and Chaetomium. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/ajb.2008.284.289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
326
|
Brienzo M, Arantes V, Milagres AM. Enzymology of the thermophilic ascomycetous fungus Thermoascus aurantiacus. FUNGAL BIOL REV 2008. [DOI: 10.1016/j.fbr.2009.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
327
|
Wilson MS, Siering PL, White CL, Hauser ME, Bartles AN. Novel archaea and bacteria dominate stable microbial communities in North America's Largest Hot Spring. MICROBIAL ECOLOGY 2008; 56:292-305. [PMID: 18080156 DOI: 10.1007/s00248-007-9347-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 11/12/2007] [Indexed: 05/25/2023]
Abstract
Boiling Springs Lake is an approximately 12,000 m(2), 55 degrees C, pH 2 thermal feature located in Lassen Volcanic National Park in northern California, USA. We assessed the microbial diversity in the lake by analyzing approximately 500 sequences from clone libraries constructed using three different primer sets targeted at 16S rRNA genes and one targeted at 18S rRNA genes. We assessed the stability of the microbial community by constructing terminal restriction fragment length polymorphism (T-RFLP) profiles using DNA extracts collected in four separate years over a 7-year period. The four most prevalent phylotypes in the clone libraries shared an average approximately 85% sequence identity with their closest cultured relatives, and three fourths of the prokaryotic sequences shared less than 91% identity. Phylogenetic analyses revealed novel lineages devoid of cultivated representatives in the Bacterial and Archaeal domains. Many detected phylotypes were related to taxonomically diverse genera previously associated with high-temperature environments, while others were related to diverse Proteobacteria and Firmicutes that would not be expected to grow within BSL conditions. All of the 18S rRNA sequences most closely matched fungi in the phyla Ascomycota and Basidiomycota (91-99% identity). T-RFLP detected fragments corresponding to the most prevalent phylotypes detected in 16S rRNA gene libraries. The T-RFLPs from separate years were similar, and the water-derived T-RFLPs were similar to the sediment-derived (average pairwise Sorenson's similarity index of 0.74, and 0.78, respectively). Collectively, these results indicate that a stable community of diverse novel microorganisms exists in Boiling Springs Lake.
Collapse
Affiliation(s)
- Mark S Wilson
- Department of Biology, Humboldt State University, 1 Harpst St., Arcata, CA, 95521, USA,
| | | | | | | | | |
Collapse
|
328
|
Maalej I, Belhaj I, Masmoudi NF, Belghith H. Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: purification and characterization. Appl Biochem Biotechnol 2008; 158:200-12. [PMID: 18668373 DOI: 10.1007/s12010-008-8317-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
A thermostable xylanase from a newly isolated thermophilic fungus Talaromyces thermophilus was purified and characterized. The enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl cellulose anion exchange chromatography, P-100 gel filtration, and Mono Q chromatography with a 23-fold increase in specific activity and 17.5% recovery. The molecular weight of the xylanase was estimated to be 25 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The enzyme was highly active over a wide range of pH from 4.0 to 10.0. The relative activities at pH5.0, 9.0, and 10.0 were about 80%, 85.0%, and 60% of that at pH7.5, respectively. The optimum temperature of the purified enzyme was 75 degrees C. The enzyme showed high thermal stability at 50 degrees C (7 days) and the half-life of the xylanase at 100 degrees C was 60 min. The enzyme was free from cellulase activity. K (m) and V (max) values at 50 degrees C of the purified enzyme for birchwood xylan were 22.51 mg/ml and 1.235 micromol min(-1) mg(-1), respectively. The enzyme was activated by Ag(+), Co(2+), and Cu(2+); on the other hand, Hg(2+), Ba(2+), and Mn(2+) inhibited the enzyme. The present study is among the first works to examine and describe a secreted, cellulase-free, and highly thermostable xylanase from the T. thermophilus fungus whose application as a pre-bleaching aid is of apparent importance for pulp and paper industries.
Collapse
Affiliation(s)
- Ines Maalej
- Laboratoire de Génétique Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | | | | | | |
Collapse
|
329
|
Yang S, Qiaojuan Y, Jiang Z, Fan G, Wang L. Biochemical characterization of a novel thermostable beta-1,3-1,4-glucanase (lichenase) from Paecilomyces thermophila. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5345-5351. [PMID: 18543932 DOI: 10.1021/jf800303b] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The purification and characterization of a novel extracellular beta-1,3-1,4-glucanase from the thermophilic fungus Paecilomyces thermophila J18 were studied. The strain produced the maximum level of extracellular beta-glucanase (135.6 U mL(-1)) when grown in a medium containing corncob (5%, w/v) at 50 degrees C for 4 days. The crude enzyme solution was purified by 122.5-fold with an apparent homogeneity and a recovery yield of 8.9%. The purified enzyme showed as a single protein band on SDS-PAGE with a molecular mass of 38.6 kDa. The molecular masses were 34.6 kDa and 31692.9 Da when detected by gel filtration and mass spectrometry, respectively, suggesting that it is a monomeric protein. The enzyme was a glycoprotein with a carbohydrate content of 19.0% (w/w). Its N-terminal sequence of 10 amino acid residues was determined as H2N-A(?)GYVSNIVVN. The purified enzyme was optimally active at pH 7.0 and 70 degrees C. It was stable within pH range 4.0-10.0 and up to 65 degrees C, respectively. Substrate specificity studies revealed that the enzyme is a true beta-1,3-1,4-D-glucanase. The K m values determined for barley beta-D-glucan and lichenan were 2.46 and 1.82 mg mL(-1), respectively. The enzyme hydrolyzed barley beta-D-glucan and lichenan to yield bisaccharide, trisaccharide, and tetrasaccharide as the main products. Circular dichroism studies indicated that the protein contains 28% alpha-helix, 24% beta-sheet, and 48% random coil. Circular dichroism spectroscopy is also used to investigate the thermostability of the purified enzyme. This is the first report on the purification and characterization of a beta-1,3-1,4-glucanase from Paecilomyces sp. These properties make the enzyme highly suitable for industrial applications.
Collapse
Affiliation(s)
- Shaoqing Yang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | |
Collapse
|
330
|
Parkkinen T, Koivula A, Vehmaanperä J, Rouvinen J. Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci 2008; 17:1383-94. [PMID: 18499583 DOI: 10.1110/ps.034488.108] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cellobiohydrolase from Melanocarpus albomyces (Cel7B) is a thermostable, single-module, cellulose-degrading enzyme. It has relatively low catalytic activity under normal temperatures, which allows structural studies of the binding of unmodified substrates to the native enzyme. In this study, we have determined the crystal structure of native Ma Cel7B free and in complex with three different cello-oligomers: cellobiose (Glc(2)), cellotriose (Glc(3)), and cellotetraose (Glc(4)), at high resolution (1.6-2.1 A). In each case, four molecules were found in the asymmetric unit, which provided 12 different complex structures. The overall fold of the enzyme is characteristic of a glycoside hydrolase family 7 cellobiohydrolase, where the loops extending from the core beta-sandwich structure form a long tunnel composed of multiple subsites for the binding of the glycosyl units of a cellulose chain. The catalytic residues at the reducing end of the tunnel are conserved, and the mechanism is expected to be retaining similarly to the other family 7 members. The oligosaccharides in different complex structures occupied different subsite sets, which partly overlapped and ranged from -5 to +2. In four cellotriose and one cellotetraose complex structures, the cello-oligosaccharide also spanned over the cleavage site (-1/+1). There were surprisingly large variations in the amino acid side chain conformations and in the positions of glycosyl units in the different cello-oligomer complexes, particularly at subsites near the catalytic site. However, in each complex structure, all glycosyl residues were in the chair (4C(1)) conformation. Implications in relation to the complex structures with respect to the reaction mechanism are discussed.
Collapse
Affiliation(s)
- Tarja Parkkinen
- Department of Chemistry, University of Joensuu, 80101 Joensuu, Finland
| | | | | | | |
Collapse
|
331
|
Stachybotrys atra BP-A produces alkali-resistant and thermostable cellulases. Antonie Van Leeuwenhoek 2008; 94:307-16. [PMID: 18454347 DOI: 10.1007/s10482-008-9248-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
A cellulose-degrading fungal strain has been isolated from a rotten rag. Morphological characterization and ITS1, 5.8S and ITS2 rDNA sequencing showed that the strain is a new isolate of Stachybotrys atra. The strain secreted high cellulase activity in media supplemented with rice straw. However, cellulases were not produced in glucose-supplemented media. The crude cellulase showed the highest activity on amorphous celluloses such as carboxymethyl cellulose, while activity on crystalline celluloses such as Avicel was lower. The optimal temperature and pH for CMCase activity were 70 degrees C and pH 5 respectively, although a second peak of activity was found at pH 8. Activity was strongly inhibited by Cu(2+), Mn(2+) and Hg(2+). Analysis by SDS-PAGE, isoelectric focusing and zymography showed that the strain secretes a complex cellulase system comprising several enzymes. Most of these enzymes are alkali-resistant CMCases that remained stable at pH 9 and 65 degrees C for at least 1 h. Cellulose binding assays showed notable differences among the CMCases. While some CMCase bands did not bind Avicel, other bands bound to this polymer and were eluted either with NaCl or by boiling with SDS. Analysis by two-dimensional electrophoresis showed that the band eluted by SDS boiling contained at least 4 different polypeptides. The complex set of cellulases produced by the strain, and their activity and stability at alkaline pH and a high temperature indicate that both the isolated strain and the cellulases identified are good candidates for biotechnological applications involving cellulose modification.
Collapse
|
332
|
Sharma M, Chadha B, Kaur M, Ghatora S, Saini H. Molecular characterization of multiple xylanase producing thermophilic/thermotolerant fungi isolated from composting materials. Lett Appl Microbiol 2008; 46:526-35. [DOI: 10.1111/j.1472-765x.2008.02357.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
333
|
Karnchanatat A, Petsom A, Sangvanich P, Piapukiew J, Whalley AJ, Reynolds CD, Gadd GM, Sihanonth P. A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
334
|
|
335
|
Yang S, Jiang Z, Yan Q, Zhu H. Characterization of a thermostable extracellular beta-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:602-608. [PMID: 18092750 DOI: 10.1021/jf072279+] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The purification and characterization of a novel extracellular beta-glucosidase from Paecilomyces thermophila J18 was studied. The beta-glucosidase was purified to 105-fold apparent homogeneity with a recovery yield of 21.7% by DEAE 52 and Sephacryl S-200 chromatographies. Its molecular masses were 116 and 197 kDa when detected by SDS-PAGE and gel filtration, respectively. It was a homodimeric glycoprotein with a carbohydrate content of 82.3%. The purified enzyme exhibited an optimal activity at 75 degrees C and pH 6.2. It was stable up to 65 degrees C and in the pH range of 5.0-8.5. The enzyme exhibited a broad substrate specificity and significantly hydrolyzed p-nitrophenyl-beta- d-glucopyranoside ( pNPG), cellobiose, gentiobiose, sophorose, amygdalin, salicin, daidzin, and genistin. Moreover, it displayed substantial activity on beta-glucans such as laminarin and lichenan, indicating that the enzyme has some exoglucanase activity. The rate of glucose released by the purified enzyme from cellooligosaccharides with a degree of polymerization (DP) ranging between 2 and 5 decreased with increasing chain length. Glucose and glucono-delta-lactone inhibited the beta-glucosidase competitively with Ki values of 73 and 0.49 mM, respectively. The beta-glucosidase hydrolyzed pNPG, cellobiose, gentiobiose, sophorose, salicin, and amygdalin, exhibiting apparent Km values of 0.26, 0.65, 0.77, 1.06, 1.39, and 1.45 mM, respectively. Besides, the enzyme showed transglycosylation activity, producing oligosaccharides with higher DP than the substrates when cellooligosaccharides were hydrolyzed. These properties make this beta-glucosidase useful for various biotechnological applications.
Collapse
Affiliation(s)
- Shaoqing Yang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | |
Collapse
|
336
|
Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S. Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 2008; 35:275-82. [DOI: 10.1007/s10295-008-0304-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Accepted: 12/22/2007] [Indexed: 11/24/2022]
|
337
|
Hunter AC, Mills PW, Dedi C, Dodd HT. Predominant allylic hydroxylation at carbons 6 and 7 of 4 and 5-ene functionalized steroids by the thermophilic fungus Rhizomucor tauricus IMI23312. J Steroid Biochem Mol Biol 2008; 108:155-63. [PMID: 17981459 DOI: 10.1016/j.jsbmb.2007.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 09/19/2007] [Accepted: 09/19/2007] [Indexed: 11/30/2022]
Abstract
This paper demonstrates for the first time transformation of a series of steroids (progesterone, androst-4-en-3,17-dione, testosterone, pregnenolone and dehydroepiandrosterone) by the thermophilic fungus Rhizomucor tauricus. All transformations were found to be oxidative (monohydroxylation and dihydroxylation) with allylic hydroxylation the predominant route of attack functionalizing the steroidal skeleta. Timed experiments demonstrated that dihydroxylation of progesterone, androst-4-en-3,17-dione and pregnenolone all initiated with hydroxylation on ring-B followed by attack on ring-C. Similar patterns of steroidal transformation to those observed with R. tauricus have been observed with some species of thermophilic Bacilli and mesophilic fungi. All metabolites were isolated by column chromatography and were identified by (1)H, (13)C NMR, DEPT analysis and other spectroscopic data. The application of thermophilic fungi to steroid transformation may represent a potentially rich source for the generation of new steroidal compounds as well as for uncovering inter and intraspecies similarities and differences in steroid metabolism.
Collapse
Affiliation(s)
- A Christy Hunter
- Molecular Targeting and Polymer Toxicology Group, School of Pharmacy, University of Brighton, Lewes Road, Brighton, East Sussex, UK.
| | | | | | | |
Collapse
|
338
|
Yang S, Huang Z, Jiang Z, Li L. Partition and purification of a thermostable xylanase produced by Paecilomyces thermophila in solid-state fermentation using aqueous two-phase systems. Process Biochem 2008. [DOI: 10.1016/j.procbio.2007.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
339
|
Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA. Phylogenetic systematics of microorganisms inhabiting thermal environments. BIOCHEMISTRY (MOSCOW) 2007; 72:1299-312. [DOI: 10.1134/s0006297907120048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
340
|
Wonganu B, Pootanakit K, Boonyapakron K, Champreda V, Tanapongpipat S, Eurwilaichitr L. Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein Expr Purif 2007; 58:78-86. [PMID: 18083533 DOI: 10.1016/j.pep.2007.10.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/18/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
Endoglucanase is a major cellulolytic enzyme produced by Syncephalastrum racemosum (BCC18080). Preliminary results showed that this endoglucanase is thermotolerant as it retained more than 50% of its activity after incubation at 80 degrees C for an hour. As this property may be of industrial use, we have cloned the full-length BCC18080 endoglucanase gene of 1020 nucleotides. Sequence analysis suggested that it belonged to the glycosyl hydrolase family 45. N-terminal sequencing and analysis by SignalP program suggested that the first 32 amino acid residues encoded the signal peptide. Expression of the recombinant clones with and without its own signal peptide in Pichia pastoris demonstrated that P. pastoris produced active 55 and 30 kDa secreted proteins. N-terminal sequencing suggested that the 55 kDa band was the mature protein while the 30 kDa band was the truncated protein. Glycoprotein analysis showed that the 55 kDa protein was glycosylated; while the smaller protein was not. All recombinant endoglucanases showed optimal temperature of 70 degrees C and optimal pH of 5-6. They retained more than 50% activity for 4h at 70 degrees C. In addition, high k(cat) and low apparent K(m) of these recombinant proteins indicated good properties of this enzyme against carboxylmethylcellulose.
Collapse
Affiliation(s)
- Benjamaporn Wonganu
- Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakhorn-Pathom 73170, Thailand
| | | | | | | | | | | |
Collapse
|
341
|
|
342
|
Studies on Productivity and Characterization of Polygalacturonase from Aspergillus giganteus Submerged Culture Using Citrus Pectin and Orange Waste. Appl Biochem Biotechnol 2007; 144:191-200. [DOI: 10.1007/s12010-007-8059-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
343
|
Gao J, Weng H, Xi Y, Zhu D, Han S. Purification and characterization of a novel endo-beta-1,4-glucanase from the thermoacidophilic Aspergillus terreus. Biotechnol Lett 2007; 30:323-7. [PMID: 17928959 DOI: 10.1007/s10529-007-9536-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/04/2007] [Accepted: 09/04/2007] [Indexed: 11/29/2022]
Abstract
An endo-beta-1,4-glucanase from a thermoacidophilic fungus, Aspergillus terreus M11, was purified 18-fold with 14% yield and a specific activity of 67 U mg(-1) protein. The optimal pH was 2 and the cellulase was stable from pH 2 to 5. The cellulase had a temperature optimum of 60 degrees C measured over 30 min and retained more than 60% of its activity after heating at 70 degrees C for 1 h. The molecular mass of the cellulase was about 25 kDa. Its activity was inhibited by 77% by Hg(2+) (2 mM) and by 59% by Cu(2+) (2 mM).
Collapse
Affiliation(s)
- Jianmin Gao
- Department of Bioengineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, PR China
| | | | | | | | | |
Collapse
|
344
|
Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
345
|
Chen J, Zhang YQ, Zhao CQ, Li AN, Zhou QX, Li DC. Cloning of a gene encoding thermostable glucoamylase from Chaetomium thermophilum and its expression in Pichia pastoris. J Appl Microbiol 2007; 103:2277-84. [DOI: 10.1111/j.1365-2672.2007.03475.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
346
|
Leite RSR, Gomes E, da Silva R. Characterization and comparison of thermostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus. Process Biochem 2007. [DOI: 10.1016/j.procbio.2007.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
347
|
Optimization of xylanase production by Chaetomium thermophilum in wheat straw using response surface methodology. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
348
|
Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-Aho M. Thermostable enzymes in lignocellulose hydrolysis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:121-45. [PMID: 17589813 DOI: 10.1007/10_2007_065] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Thermostable enzymes offer potential benefits in the hydrolysis of lignocellulosic substrates; higher specific activity decreasing the amount of enzymes, enhanced stability allowing improved hydrolysis performance and increased flexibility with respect to process configurations, all leading to improvement of the overall economy of the process. New thermostable cellulase mixtures were composed of cloned fungal enzymes for hydrolysis experiments. Three thermostable cellulases, identified as the most promising enzymes in their categories (cellobiohydrolase, endoglucanase and beta-glucosidase), were cloned and produced in Trichoderma reesei and mixed to compose a novel mixture of thermostable cellulases. Thermostable xylanase was added to enzyme preparations used on substrates containing residual hemicellulose. The new optimised thermostable enzyme mixtures were evaluated in high temperature hydrolysis experiments on technical steam pretreated raw materials: spruce and corn stover. The hydrolysis temperature could be increased by about 10-15 degrees C, as compared with present commercial Trichoderma enzymes. The same degree of hydrolysis, about 90% of theoretical, measured as individual sugars, could be obtained with the thermostable enzymes at 60 degrees C as with the commercial enzymes at 45 degrees C. Clearly more efficient hydrolysis per assayed FPU unit or per amount of cellobiohydrolase I protein used was obtained. The maximum FPU activity of the novel enzyme mixture was about 25% higher at the optimum temperature at 65 degrees C, as compared with the highest activity of the commercial reference enzyme at 60 degrees C. The results provide a promising basis to produce and formulate improved enzyme products. These products can have high temperature stability in process conditions in the range of 55-60 degrees C (with present industrial products at 45-50 degrees C) and clearly improved specific activity, essentially decreasing the protein dosage required for an efficient hydrolysis of lignocellulosic substrates. New types of process configurations based on thermostable enzymes are discussed.
Collapse
Affiliation(s)
- Liisa Viikari
- University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
349
|
Wutor VC, Togo CA, Pletschke BI. The effect of physico-chemical parameters and chemical compounds on the activity of beta-d-galactosidase (B-GAL), a marker enzyme for indicator microorganisms in water. CHEMOSPHERE 2007; 68:622-7. [PMID: 17433413 DOI: 10.1016/j.chemosphere.2007.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 01/25/2007] [Accepted: 02/25/2007] [Indexed: 05/14/2023]
Abstract
The presence of coliforms in polluted water was determined enzymatically (in situ) by directly monitoring the activity of beta-d-galactosidase (B-GAL) through the hydrolysis of the yellow chromogenic subtrate, chlorophenol red beta-d-galactopyranoside (CPRG), which produced a red chlorophenol red (CPR) product. The objectives of this study were to monitor the effect of compounds commonly found in the environment and used in water treatment on a B-GAL CPRG assay and to investigate the differences between the environmental B-GAL enzyme and the pure commercial enzyme. Environmental B-GAL was optimally active at pH 7.8. Two temperature optima were observed at 35 and 55 degrees C, respectively. B-GAL activity was strongly inhibited by silver and copper ions. While calcium and ferrous ions at lower concentrations (50-100mgl(-1)) increased the enzyme activity, a reduction was observed at higher concentrations (200mgl(-1)). Sodium hypochlorite, normally used in rural areas to disinfect water gradually decreased B-GAL activity at concentrations between 0 and 5600ppm for both the commercial and environmental enzymes. B-GAL from the environment behaved differently from its commercially available counterpart.
Collapse
Affiliation(s)
- V C Wutor
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | | | | |
Collapse
|
350
|
Mouchacca J. Heat tolerant fungi and applied research: Addition to the previously treated group of strictly thermotolerant species. World J Microbiol Biotechnol 2007; 23:1755. [PMID: 27517832 DOI: 10.1007/s11274-007-9426-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 04/23/2007] [Indexed: 11/25/2022]
Abstract
Heat tolerant fungi are organisms that may perform bioconversion processes and produce industrially important metabolites. They may either be obligate thermophiles or simple thermotolerants. The present document is the continuation of a critical note on thermotolerant fungi erroneously reported in the literature as possessing thermophilic attributes. Fifty strictly thermotolerant taxa are here considered. Some of their binomials have only recently been introduced in the scientific literature. The reported thermotolerant species are grouped according to broad taxonomic categories. The nomenclature of zygomycetous taxa and anamorphic fungi is straightforward, as usually only one binomial is available or only one state is produced in culture respectively. For Ascomycetes regularly producing in culture a conidial state, the name of the sexual state (teleomorph) should be used to designate the organism even when a binomial is available for the anamorph; this prevents the practice of interchangeably using the name of either states of the same fungus. When ascomycetous taxa produce the anamorph regularly and the teleomorph only under specific cultural conditions, the name of the anamorph could be preferentially selected. The goal is to introduce uniformity in name citations of fungi, particularly in the literature of applied research. Each species is reported under its taxonomically correct name, either the original binomial or the latest combined binomial after generic transfer(s). Known synonyms are also specified. Maximum efforts were undertaken to trace updated information on the taxonomic position of these fifty strict thermotolerant species. For each, information on the type material, morphological features distinguishing it from related members of the genus (and when necessary a generic taxonomic assessment) and, finally, salient ecological features including heat tolerance levels are given. For some information on their biotechnological use is also provided. Overall 86 strictly thermotolerant fungi are so far documented in the corresponding published and present contributions; however, this figure should not be regarded as exhaustive for the group. Among these 86 taxa ascomycetous fungi (46) presently outnumber anamorphic microfungi (28) but their relevant figures should be regarded as provisional. Only 12 zygomycetous species proved to be strict thermotolerants. Further cardinal temperature growth values established for these 86 thermotolerants disclose no pattern linked to their broad taxonomic categories. Standardized growth temperature curves at increments smaller than 5 °C have to be performed to assess conclusively variability in growth temperature relationships. Several heat tolerant fungi are widely used in industry; however, more research is needed to explore the applied potential of these particular organisms. An exhaustive document on the biodiversity of heat tolerant fungi also awaits production. It would be informative in relation to the global warming process of the earth.
Collapse
Affiliation(s)
- Jean Mouchacca
- USM 602 Taxonomie & Collections, Département de Systématique & Evolution (Laboratoire de Cryptogamie), Muséum National d'Histoire Naturelle, Case Postale 39, 57 rue Cuvier, 75231, Paris Cedex 05, France.
| |
Collapse
|