301
|
Boudker O, Verdon G. Structural perspectives on secondary active transporters. Trends Pharmacol Sci 2010; 31:418-26. [PMID: 20655602 DOI: 10.1016/j.tips.2010.06.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/15/2010] [Accepted: 06/18/2010] [Indexed: 01/04/2023]
Abstract
Secondary active transporters catalyze the concentrative transport of substrates across lipid membranes by harnessing the energy of electrochemical ion gradients. These transporters bind their ligands on one side of the membrane, and undergo a global conformational change to release them on the other side of the membrane. Over the last few years, crystal structures have captured several bacterial secondary transporters in different states along their transport cycle, providing insight into possible molecular mechanisms. In this review, we summarize recent findings focusing on the emerging structural and mechanistic similarities between evolutionary diverse transporters. We also discuss the structural basis of substrate binding, ion coupling and inhibition viewed from the perspective of these similarities.
Collapse
Affiliation(s)
- Olga Boudker
- Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA.
| | | |
Collapse
|
302
|
Jiang X, Leidi EO, Pardo JM. How do vacuolar NHX exchangers function in plant salt tolerance? PLANT SIGNALING & BEHAVIOR 2010; 5:792-5. [PMID: 20495345 PMCID: PMC3014531 DOI: 10.4161/psb.5.7.11767] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 05/18/2023]
Abstract
Potassium (K(+)) is a major osmoticum of plant cells, and the vacuolar accumulation of this element is a especially crucial feature for plants under high-salt conditions. Emerging evidence indicates that cation/proton transporters of the NHX family are instrumental in the H(+)-linked K(+) transport that mediate active K(+) uptake at the tonoplast for the unequal partitioning of K(+) between vacuole and cytosol. However, and in spite of tenuous supporting evidence, NHX proteins are widely regarded as key players in the sequestration of sodium (Na(+)) into vacuoles to avert ion toxicity in the cytosol of plants under salinity stress. Here, we propose an updated model positing that NHX proteins fulfill a protective function to minimize salt-related stress mainly through the vacuolar compartmentalization of K(+) and, in some cases, of Na(+) as well thereby preventing toxic Na(+)-K(+) ratios in the cytosol while accruing solutes for osmotic balance.
Collapse
Affiliation(s)
- Xingyu Jiang
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas, Reina Mercedes, Sevilla, Spain
| | | | | |
Collapse
|
303
|
Harada K, Fukuda E, Hirohashi N, Chiba K. Regulation of intracellular pH by p90Rsk-dependent activation of an Na(+)/H(+) exchanger in starfish oocytes. J Biol Chem 2010; 285:24044-54. [PMID: 20507995 DOI: 10.1074/jbc.m109.072553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Starfish oocytes arrest at metaphase of the first meiotic division (MI arrest) in the ovary and resume meiosis after spawning into seawater. MI arrest is maintained by lower intracellular pH (pH(i)) and release from arrest by cellular alkalization. To elucidate pH(i) regulation in oocytes, we cloned the starfish (Asterina pectinifera) Na(+)/H(+) exchanger 3 (ApNHE3) expressed in the plasma membrane of oocytes. The cytoplasmic domain of ApNHE3 contains p90 ribosomal S6 kinase (p90Rsk) phosphorylation sites, and injection of a constitutively active p90Rsk and the upstream regulator Mos to immature oocytes, stimulated an increase in pH(i). This increase was blocked by 5-(N-ethyl-N-isopropyl)-amiloride, a NHE inhibitor, and SL0101, a specific Rsk inhibitor. The MAPK kinase (MEK) inhibitor U0126 blocked the Mos-induced, but not the p90Rsk-induced, pH(i) increase, suggesting that the Mos-MEK-MAPK-p90Rsk pathway promotes ApNHE3 activation. In a cell-free extract, the Mos-MEK-MAPK-p90Rsk pathway phosphorylates ApNHE3 at Ser-590, -606, and -673. When p90Rsk-dependent ApNHE3 phosphorylation was blocked by a dominant-negative C-terminal fragment, or neutralizing antibody, the p90Rsk-induced pH(i) increase was suppressed in immature oocytes. However, ApNHE3 is up-regulated via the upstream phosphatidylinositol 3-kinase pathway before MAPK activation and the active state is maintained until spawning, suggesting that the p90Rsk-dependent ApNHE3 phosphorylation is unlikely to be the primary regulatory mechanism involved in MI arrest exit. After meiosis is completed, unfertilized eggs maintain their elevated pH(i) ( approximately 7.4) until the onset of apoptosis. We suggest that the p90Rsk/ApNHE3-dependent elevation of pH(i) increases fertilization success by delaying apoptosis initiation.
Collapse
Affiliation(s)
- Kaori Harada
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | | | | | | |
Collapse
|
304
|
Abstract
The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.
Collapse
|
305
|
Rummer JL, Roshan-Moniri M, Balfry SK, Brauner CJ. Use it or lose it? Sablefish, Anoplopoma fimbria, a species representing a fifth teleostean group where the βNHE associated with the red blood cell adrenergic stress response has been secondarily lost. J Exp Biol 2010; 213:1503-12. [DOI: 10.1242/jeb.038844] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Like most teleosts, sablefish (Anoplopoma fimbria Pallas 1814) blood exhibits a moderate Root effect (~35% maximal desaturation), where a reduction in blood pH dramatically reduces O2 carrying capacity, a mechanism important for oxygenating the eye and filling the swim bladder (SB) in teleosts. Although sablefish lack a SB, we observed a well-defined choroid rete at the eye. The adrenergically mediated cell swelling typically associated with a functional red blood cell (RBC) β-adrenergic Na+/H+ exchanger (βNHE), which would normally protect RBC pH, and thus O2 transport, during a generalized acidosis, was not observed in sablefish blood. Neither isoproterenol (a β-agonist) nor 8-bromo cAMP could elicit this response. Furthermore, RBC osmotic shrinkage, known to stimulate NHEs in general and βNHE in other teleosts such as trout and flounder, resulted in no significant regulatory volume increase (RVI), further supporting the absence of a functional RBC βNHE. The onset of the Root effect occurs at a much lower RBC pH (6.83–6.92) than in other teleosts, and thus RBC βNHE may not be required to protect O2 transport during a generalized acidosis in vivo. Phylogenetically, sablefish may represent a fifth group of teleosts exhibiting a secondary reduction or loss of βNHE activity. However, sablefish have not lost the choroid rete at the eye (unlike in the other four groups), which may still function with the Root effect to oxygenate the retina, but the low pH onset of the Root effect may ensure haemoglobin (Hb)-O2 binding is not compromised at the respiratory surface during a general acidosis in the absence of RBC βNHE. The sablefish may represent an anomaly within the framework of Root effect evolution, in that they possess a moderate Root effect and a choroid rete at the eye, but lack the RBC βNHE and the SB system.
Collapse
Affiliation(s)
- Jodie L. Rummer
- Department of Zoology, University of British Columbia, No. 2370–6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| | - Mani Roshan-Moniri
- Department of Zoology, University of British Columbia, No. 2370–6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| | - Shannon K. Balfry
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Colin J. Brauner
- Department of Zoology, University of British Columbia, No. 2370–6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
306
|
Li T(Y, Zhang Y, Liu H, Wu Y, Li W, Zhang H. Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-0092-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
307
|
Mechanisms of the regulation of the intestinal Na+/H+ exchanger NHE3. J Biomed Biotechnol 2010; 2010:238080. [PMID: 20011065 PMCID: PMC2789519 DOI: 10.1155/2010/238080] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/11/2009] [Indexed: 01/25/2023] Open
Abstract
A major of Na+ absorptive process in the proximal part of intestine and kidney is electroneutral exchange of Na+ and H+ by Na+/H+ exchanger type 3 (NHE3). During the past decade, significant advance has been achieved in the mechanisms of NHE3 regulation. A bulk of the current knowledge on Na+/H+ exchanger regulation is based on heterologous expression of mammalian Na+/H+ exchangers in Na+/H+ exchanger deficient fibroblasts, renal epithelial, and intestinal epithelial cells. Based on the reductionist's approach, an understanding of NHE3 regulation has been greatly advanced. More recently, confirmations of in vitro studies have been made using animals deficient in one or more proteins but in some cases unexpected findings have emerged. The purpose of this paper is to provide a brief overview of recent progress in the regulation and functions of NHE3 present in the luminal membrane of the intestinal tract.
Collapse
|
308
|
Liu T, Huang JC, Lu CL, Yang JL, Hu ZY, Gao F, Liu YX. Immunization with a DNA vaccine of testis-specific sodium-hydrogen exchanger by oral feeding or nasal instillation reduces fertility in female mice. Fertil Steril 2010; 93:1556-66. [DOI: 10.1016/j.fertnstert.2009.03.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 11/15/2022]
|
309
|
Leidi EO, Barragán V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernández JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM. The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:495-506. [PMID: 19912566 DOI: 10.1111/j.1365-313x.2009.04073.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
NHX-type antiporters in the tonoplast have been reported to increase the salt tolerance of various plants species, and are thought to mediate the compartmentation of Na(+) in vacuoles. However, all isoforms characterized so far catalyze both Na(+)/H(+) and K(+)/H(+) exchange. Here, we show that AtNHX1 has a critical involvement in the subcellular partitioning of K(+), which in turn affects plant K(+) nutrition and Na(+) tolerance. Transgenic tomato plants overexpressing AtNHX1 had larger K(+) vacuolar pools in all growth conditions tested, but no consistent enhancement of Na(+) accumulation was observed under salt stress. Plants overexpressing AtNHX1 have a greater capacity to retain intracellular K(+) and to withstand salt-shock. Under K(+)-limiting conditions, greater K(+) compartmentation in the vacuole occurred at the expense of the cytosolic K(+) pool, which was lower in transgenic plants. This caused the early activation of the high-affinity K(+) uptake system, enhanced K(+) uptake by roots, and increased the K(+) content in plant tissues and the xylem sap of transformed plants. Our results strongly suggest that NHX proteins are likely candidates for the H(+)-linked K(+) transport that is thought to facilitate active K(+) uptake at the tonoplast, and the partitioning of K(+) between vacuole and cytosol.
Collapse
Affiliation(s)
- Eduardo O Leidi
- Instituto de Recursos Naturales y Agrobiología (IRNASE), Consejo Superior de Investigaciones Científicas, Reina Mercedes, 10, Sevilla - 41012, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Edwards SL, Weakley JC, Diamanduros AW, Claiborne JB. Molecular identification of Na(+)-H(+) exchanger isoforms (NHE2) in the gills of the euryhaline teleost Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2010; 76:415-426. [PMID: 20738718 DOI: 10.1111/j.1095-8649.2009.02534.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the current study, reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR were used to clone full-length putative Na(+)-H(+) exchanger isoforms (NHE2a) cDNA from the gills of Fundulus heteroclitus. The 2480 bp cDNA includes a coding region for a protein that shows a 57% amino acid homology to rabbit NHE2. These sequences allowed data mining of available fish genome data, which revealed at least three NHE2 subtypes in some teleost species.
Collapse
Affiliation(s)
- S L Edwards
- Department of Biology, Appalachian State University, Boone, NC 28608, USA.
| | | | | | | |
Collapse
|
311
|
Lee JS, Lee YM, Kim JY, Park HW, Grinstein S, Orlowski J, Kim E, Kim KH, Lee MG. BetaPix up-regulates Na+/H+ exchanger 3 through a Shank2-mediated protein-protein interaction. J Biol Chem 2010; 285:8104-13. [PMID: 20080968 DOI: 10.1074/jbc.m109.055079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)/H(+) exchanger 3 (NHE3) plays an important role in neutral Na(+) transport in mammalian epithelial cells. The Rho family of small GTPases and the PDZ (PSD-95/discs large/ZO-1) domain-based adaptor Shank2 are known to regulate the membrane expression and activity of NHE3. In this study we examined the role of betaPix, a guanine nucleotide exchange factor for the Rho GTPase and a strong binding partner to Shank2, in NHE3 regulation using integrated molecular and physiological approaches. Immunoprecipitation and pulldown assays revealed that NHE3, Shank2, and betaPix form a macromolecular complex when expressed heterologously in mammalian cells as well as endogenously in rat colon, kidney, and pancreas. In addition, these proteins co-segregated at the apical surface of rat colonic epithelial cells, as detected by immunofluorescence staining. When expressed in PS120/NHE3 cells, betaPix increased membrane expression and basal activity of NHE3. Interestingly, the effects of betaPix on NHE3 were abolished by cotransfection with dominant-negative Shank2 mutants and by treatment with Clostridium difficile toxin B, a Rho GTPase inhibitor, indicating that Shank2 and Rho GTPases are involved in betaPix-mediated NHE3 regulation. Knockdown of endogenous betaPix by RNA interference decreased Shank2-induced increase of NHE3 membrane expression in HEK 293T cells. These results indicate that betaPix up-regulates NHE3 membrane expression and activity by Shank2-mediated protein-protein interaction and by activating Rho GTPases in the apical regions of epithelial cells.
Collapse
Affiliation(s)
- Jung-Soo Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Schushan M, Xiang M, Bogomiakov P, Padan E, Rao R, Ben-Tal N. Model-guided mutagenesis drives functional studies of human NHA2, implicated in hypertension. J Mol Biol 2010; 396:1181-96. [PMID: 20053353 DOI: 10.1016/j.jmb.2009.12.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/22/2009] [Accepted: 12/27/2009] [Indexed: 11/18/2022]
Abstract
Human NHA2 is a poorly characterized Na(+)/H(+) antiporter recently implicated in essential hypertension. We used a range of computational tools and evolutionary conservation analysis to build and validate a three-dimensional model of NHA2 based on the crystal structure of a distantly related bacterial transporter, NhaA. The model guided mutagenic evaluation of transport function, ion selectivity, and pH dependence of NHA2 by phenotype screening in yeast. We describe a cluster of essential, highly conserved titratable residues located in an assembly region made of two discontinuous helices of inverted topology, each interrupted by an extended chain. Whereas in NhaA, oppositely charged residues compensate for partial dipoles generated within this assembly, in NHA2, polar but uncharged residues suffice. Our findings led to a model for transport mechanism that was compared to the well-known electroneutral NHE1 and electrogenic NhaA subtypes. This study establishes NHA2 as a prototype for the poorly understood, yet ubiquitous, CPA2 antiporter family recently recognized in plants and metazoans and illustrates a structure-driven approach to derive functional information on a newly discovered transporter.
Collapse
Affiliation(s)
- Maya Schushan
- Department of Biochemistry, The George S Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
313
|
Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 2009; 11:50-61. [PMID: 19997129 DOI: 10.1038/nrm2820] [Citation(s) in RCA: 1580] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.
Collapse
Affiliation(s)
- Joseph R Casey
- Departments of Physiology and Biochemistry, University of Alberta, Canada
| | | | | |
Collapse
|
314
|
Herz K, Rimon A, Olkhova E, Kozachkov L, Padan E. Transmembrane segment II of NhaA Na+/H+ antiporter lines the cation passage, and Asp65 is critical for pH activation of the antiporter. J Biol Chem 2009; 285:2211-20. [PMID: 19923224 DOI: 10.1074/jbc.m109.047134] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5-8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent K(m) to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent K(m) of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp(65) negative charge for pH activation of the antiporter.
Collapse
Affiliation(s)
- Katia Herz
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
315
|
Ye CY, Zhang HC, Chen JH, Xia XL, Yin WL. Molecular characterization of putative vacuolar NHX-type Na(+)/H(+) exchanger genes from the salt-resistant tree Populus euphratica. PHYSIOLOGIA PLANTARUM 2009; 137:166-174. [PMID: 19678897 DOI: 10.1111/j.1399-3054.2009.01269.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The vacuolar NHX-type Na(+)/H(+) exchangers play a key role in salt tolerance in plants. However, little is known about the Na(+)/H(+) exchangers in the salt-resistant tree, Populus euphratica. In this study, we identified six putative vacuolar Na(+)/H(+) exchanger genes from P. euphratica, designated as PeNHX1-6. Real-time polymerase chain reaction indicated that the PeNHX1/3/6 transcripts were abundant compared with the other three PeNHX genes in the three tissues (roots, stems and leaves) examined. After NaCl treatment for 6 h, the transcript levels of PeNHX1-6 were upregulated in the roots. To address the function of PeNHX1-6, complementation studies were performed with the salt-sensitive yeast mutant strain R100, which lacks activity of the endosomal Na(+)/H(+) antiporter NHX1. The results showed that PeNHX1-6 compensates, at least in part, for the function of yeast NHX1. Moreover, PeNHX3 was targeted to the tonoplast when transiently expressed in onion. Together, these results suggest that PeNHX1-6 function as vacuolar Na(+)/H(+) exchangers and that PeNHX products play an important role in the salt resistance of P. euphratica.
Collapse
Affiliation(s)
- Chu-Yu Ye
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | | | | | | | | |
Collapse
|
316
|
Olkhova E, Kozachkov L, Padan E, Michel H. Combined computational and biochemical study reveals the importance of electrostatic interactions between the "pH sensor" and the cation binding site of the sodium/proton antiporter NhaA of Escherichia coli. Proteins 2009; 76:548-59. [PMID: 19274728 DOI: 10.1002/prot.22368] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sodium proton antiporters are essential enzymes that catalyze the exchange of sodium ions for protons across biological membranes. The crystal structure of NhaA has provided a basis to explore the mechanism of ion exchange and its unique regulation by pH. Here, the mechanism of the pH activation of the antiporter is investigated through functional and computational studies of several variants with mutations in the ion-binding site (D163, D164). The most significant difference found computationally between the wild type antiporter and the active site variants, D163E and D164N, are low pK(a) values of Glu78 making them insensitive to pH. Although in the variant D163N the pK(a) of Glu78 is comparable to the physiological one, this variant cannot demonstrate the long-range electrostatic effect of Glu78 on the pH-dependent structural reorganization of trans-membrane helix X and, hence, is proposed to be inactive. In marked contrast, variant D164E remains sensitive to pH and can be activated by alkaline pH shift. Remarkably, as expected computationally and discovered here biochemically, D164E is viable and active in Na(+)/H(+) exchange albeit with increased apparent K(M). Our results unravel the unique electrostatic network of NhaA that connect the coupled clusters of the "pH sensor" with the binding site, which is crucial for pH activation of NhaA.
Collapse
Affiliation(s)
- Elena Olkhova
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
317
|
Abstract
Transepithelial transport is one of the major processes involved in the mechanism of homeostasis of body fluids in vertebrates including fish. The current models of ion regulation in fish gill ionocytes have been proposed mainly based on studies in traditional model species like salmon, trout, tilapia, eel and killifish, but the mechanisms are still being debated due to the lack of convincing molecular physiological evidence. Taking advantage of plentiful genetic databases for zebrafish, we studied the molecular/cellular mechanisms of ion regulation in fish skin/gills. In our recently proposed model, there are at least three subtypes of ionocytes in zebrafish skin/gills: Na(+)-K(+)-ATPase-rich (NaR), Na(+)-Cl(-) cotransporter (NCC) and H(+)-ATPase-rich (HR) cells. Specific isoforms of transporters and enzymes have been identified as being expressed by these ionocytes: zECaC, zPMCA2 and zNCX1b by NaR cells; zNCC gill form by NCC cells; and zH(+)-ATPase, zNHE3b, zCA2-like a and zCA15a by HR cells. Serial molecular physiological experiments demonstrated the distinct roles of these ionocytes in the transport of various ions: HR, NaR and NCC cells are respectively responsible for acid secretion/Na(+) uptake, Ca(2+) uptake and Cl(-) uptake. The expression, regulation and function of transporters in HR and NaR cells are much better understood than those in NCC cells. The basolateral transport pathways in HR and NCC cells are still unclear, and the driving forces for the operations of apical NHE and NCC are another unresolved issue. Studies on zebrafish skin/gill ionocytes are providing new insights into fish ion-regulatory mechanisms, but the zebrafish model cannot simply be applied to other species because of species differences and a lack of sufficient molecular physiological evidence in other species.
Collapse
Affiliation(s)
- Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China.
| |
Collapse
|
318
|
Donowitz M, Mohan S, Zhu CX, Chen TE, Lin R, Cha B, Zachos NC, Murtazina R, Sarker R, Li X. NHE3 regulatory complexes. ACTA ACUST UNITED AC 2009; 212:1638-46. [PMID: 19448074 DOI: 10.1242/jeb.028605] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The epithelial brush border Na/H exchanger NHE3 is active under basal conditions and functions as part of neutral NaCl absorption in the intestine and renal proximal tubule, where it accounts for the majority of total Na absorbed. NHE3 is highly regulated. Both stimulation and inhibition occur post-prandially. This digestion related regulation of NHE3 is mimicked by multiple extracellular agonists and intracellular second messengers. The regulation of NHE3 depends on its C-terminal cytoplasmic domain, which acts as a scaffold to bind multiple regulatory proteins and links NHE3 to the cytoskeleton. The cytoskeletal association occurs by both direct binding to ezrin and by indirect binding via ezrin binding to the C-terminus of the multi-PDZ domain containing proteins NHERF1 and NHERF2. This is a review of the domain structure of NHE3 and of the scaffolding function and role in the regulation of NHE3 of the NHE3 C-terminal domain.
Collapse
Affiliation(s)
- Mark Donowitz
- Johns Hopkins University School of Medicine, 720 Rutland Avenue Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Abstract
The ubiquitously expressed Na(+)/H(+) exchanger NHE1 plays an important role in regulating polarized membrane protrusion and directional motility in non-neuronal cells. Using NGF-differentiated PC12 cells and murine neocortical neurons in vitro, we now show that NHE1 plays a role in regulating early neurite morphogenesis. NHE1 was expressed in growth cones in which it gave rise to an elevated intracellular pH in actively extending neurites. The NHE1 inhibitor cariporide reversibly reduced growth cone filopodia number and the formation and elongation of neurites, especially branches, whereas the transient overexpression of full-length NHE1, but not NHE1 mutants deficient in either ion translocation activity or actin cytoskeletal anchoring, elicited opposite effects. In addition, compared with neocortical neurons obtained from wild-type littermates, neurons isolated from NHE1-null mice exhibited reductions in early neurite outgrowth, an effect that was rescued by overexpression of full-length NHE1 but not NHE1 mutants. Finally, the growth-promoting effects of netrin-1, but not BDNF or IGF-1, were markedly reduced by cariporide in wild-type neocortical neurons and were not observed in NHE1-null neurons. Although netrin-1 failed to increase growth cone intracellular pH or Na(+)/H(+) exchange activity, netrin-1-induced increases in early neurite outgrowth were restored in NHE1-null neurons transfected with full-length NHE1 but not an ion translocation-deficient mutant. Collectively, the results indicate that NHE1 participates in the regulation of early neurite morphogenesis and identify a novel role for NHE1 in the promotion of early neurite outgrowth by netrin-1.
Collapse
|
320
|
Di Sole F, Babich V, Moe OW. The calcineurin homologous protein-1 increases Na(+)/H(+) -exchanger 3 trafficking via ezrin phosphorylation. J Am Soc Nephrol 2009; 20:1776-86. [PMID: 19556366 DOI: 10.1681/asn.2008121255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The Na(+)/H(+)-exchanger 3 (NHE3) is essential for regulation of Na(+) transport in the renal and intestinal epithelium. Although changes in cell surface abundance control NHE3 function, the molecular signals that regulate NHE3 surface expression are not well defined. We found that overexpression of the calcineurin homologous protein-1 (CHP1) in opossum kidney cells increased NHE3 transport activity, surface protein abundance, and ezrin phosphorylation. CHP1 knockdown by small interfering RNA had the opposite effects. Overexpression of wild-type ezrin increased both NHE3 transport activity and surface protein abundance, confirming that NHE3 is downstream of ezrin. Expression of a pseudophosphorylated ezrin enhanced these effects, whereas expression of an ezrin variant that could not be phosphorylated prevented the downstream effects on NHE3. Furthermore, CHP1 knockdown reversed the activation of NHE3 by wild-type ezrin but not by the pseudophosphorylated ezrin. Taken together, these results demonstrate that CHP1 increases NHE3 abundance and constitutive function in a manner dependent on ezrin phosphorylation.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8885, USA.
| | | | | |
Collapse
|
321
|
Roslyakova TV, Lazareva EM, Kononenko NV, Babakov AV. New isoform HvNHX3 of vacuolar Na+/H+-antiporter in barley: expression and immunolocalization. BIOCHEMISTRY. BIOKHIMIIA 2009; 74:549-56. [PMID: 19538129 DOI: 10.1134/s0006297909050101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The gene HvNHX3 encoding a new isoform of vacuolar Na+/H+-antiporter was identified in barley. This gene is expressed in roots and leaves of barley seedlings, and it encodes a protein consisting of 541 amino acid residues with predicted molecular weight 59.7 kDa. It was found that by its amino acid sequence HvNHX3 is closest to the Na+/H+-antiporter HbNHX1 of wild type from Hordeum brevisibulatum that grows on salt-marsh (solonchak) soils (95% homology). The expression of HvNHX3 during salt stress is increased several-fold in roots and leaves of barley seedlings. At the same time, the amount of HvNHX3 protein in roots does not change, but in leaves it increases significantly. It was shown using HvNHX3 immunolocalization in roots that this protein is present in all tissues, but in control plants it was clustered and in experimental plants after salt stress it was visualized as small granules. It has been proposed that HvNHX3 is converted into active form during declusterization. The conversion of HvNHX3 into its active form along with its quantitative increase in leaves during salt stress activates Na+/H+-exchange across the vacuolar membrane and Na+ release from cytoplasm, and, as a consequence, an increase of salt stress tolerance.
Collapse
Affiliation(s)
- T V Roslyakova
- Institute of Agricultural Biotechnology, Russian Agricultural Academy of Sciences, Moscow, 127550, Russia
| | | | | | | |
Collapse
|
322
|
Padan E, Kozachkov L, Herz K, Rimon A. NhaA crystal structure: functional–structural insights. J Exp Biol 2009; 212:1593-603. [DOI: 10.1242/jeb.026708] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SUMMARY
Na+/H+ antiporters are integral membrane proteins that exchange Na+ for H+ across the cytoplasmic membrane and many intracellular membranes. They are essential for Na+, pH and volume homeostasis, which are crucial processes for cell viability. Accordingly, antiporters are important drug targets in humans and underlie salt-resistance in plants. Many Na+/H+ antiporters are tightly regulated by pH. Escherichia coli NhaA Na+/H+ antiporter, a prototype pH-regulated antiporter,exchanges 2 H+ for 1 Na+ (or Li+). The NhaA crystal structure has provided insights into the pH-regulated mechanism of antiporter action and opened up new in silico and in situavenues of research. The monomer is the functional unit of NhaA yet the dimer is essential for the stability of the antiporter under extreme stress conditions. Ionizable residues of NhaA that strongly interact electrostatically are organized in a transmembrane fashion in accordance with the functional organization of the cation-binding site, `pH sensor', the pH transduction pathway and the pH-induced conformational changes. Remarkably,NhaA contains an inverted topology motive of transmembrane segments, which are interrupted by extended mid-membrane chains that have since been found to vary in other ion-transport proteins. This novel structural fold creates a delicately balanced electrostatic environment in the middle of the membrane,which might be essential for ion binding and translocation. Based on the crystal structure of NhaA, a model structure of the human Na+/H+ exchanger (NHE1) was constructed, paving the way to a rational drug design.
Collapse
Affiliation(s)
- Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lena Kozachkov
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Katia Herz
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Abraham Rimon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
323
|
Harvey WR. Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters. J Exp Biol 2009; 212:1620-9. [PMID: 19448072 PMCID: PMC2683009 DOI: 10.1242/jeb.031534] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2009] [Indexed: 01/23/2023]
Abstract
This review provides alternatives to two well established theories regarding membrane energization by H(+) V-ATPases. Firstly, we offer an alternative to the notion that the H(+) V-ATPase establishes a protonmotive force (pmf) across the membrane into which it is inserted. The term pmf, which was introduced by Peter Mitchell in 1961 in his chemiosmotic hypothesis for the synthesis of ATP by H(+) F-ATP synthases, has two parts, the electrical potential difference across the phosphorylating membrane, Deltapsi, and the pH difference between the bulk solutions on either side of the membrane, DeltapH. The DeltapH term implies three phases - a bulk fluid phase on the H(+) input side, the membrane phase and a bulk fluid phase on the H(+) output side. The Mitchell theory was applied to H(+) V-ATPases largely by analogy with H(+) F-ATP synthases operating in reverse as H(+) F-ATPases. We suggest an alternative, voltage coupling model. Our model for V-ATPases is based on Douglas B. Kell's 1979 'electrodic view' of ATP synthases in which two phases are added to the Mitchell model - an unstirred layer on the input side and another one on the output side of the membrane. In addition, we replace the notion that H(+) V-ATPases normally acidify the output bulk solution with the hypothesis, which we introduced in 1992, that the primary action of a H(+) V-ATPase is to charge the membrane capacitance and impose a Deltapsi across the membrane; the translocated hydrogen ions (H(+)s) are retained at the outer fluid-membrane interface by electrostatic attraction to the anions that were left behind. All subsequent events, including establishing pH differences in the outside bulk solution, are secondary. Using the surface of an electrode as a model, Kell's 'electrodic view' has five phases - the outer bulk fluid phase, an outer fluid-membrane interface, the membrane phase, an inner fluid-membrane interface and the inner bulk fluid phase. Light flash, H(+) releasing and binding experiments and other evidence provide convincing support for Kell's electrodic view yet Mitchell's chemiosmotic theory is the one that is accepted by most bioenergetics experts today. First we discuss the interaction between H(+) V-ATPase and the K(+)/2H(+) antiporter that forms the caterpillar K(+) pump, and use the Kell electrodic view to explain how the H(+)s at the outer fluid-membrane interface can drive two H(+) from lumen to cell and one K(+) from cell to lumen via the antiporter even though the pH in the bulk fluid of the lumen is highly alkaline. Exchange of outer bulk fluid K(+) (or Na(+)) with outer interface H(+) in conjunction with (K(+) or Na(+))/2H(+) antiport, transforms the hydrogen ion electrochemical potential difference, mu(H), to a K(+) electrochemical potential difference, mu(K) or a Na(+) electrochemical potential difference, mu(Na). The mu(K) or mu(Na) drives K(+)- or Na(+)-coupled nutrient amino acid transporters (NATs), such as KAAT1 (K(+) amino acid transporter 1), which moves Na(+) and an amino acid into the cell with no H(+)s involved. Examples in which the voltage coupling model is used to interpret ion and amino acid transport in caterpillar and larval mosquito midgut are discussed.
Collapse
Affiliation(s)
- William R Harvey
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA.
| |
Collapse
|
324
|
Benito B, Garciadeblás B, Pérez-Martín J, Rodríguez-Navarro A. Growth at high pH and sodium and potassium tolerance in media above the cytoplasmic pH depend on ENA ATPases in Ustilago maydis. EUKARYOTIC CELL 2009; 8:821-9. [PMID: 19363061 PMCID: PMC2698300 DOI: 10.1128/ec.00252-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 04/02/2009] [Indexed: 11/20/2022]
Abstract
Potassium and Na(+) effluxes across the plasma membrane are crucial processes for the ionic homeostasis of cells. In fungal cells, these effluxes are mediated by cation/H(+) antiporters and ENA ATPases. We have cloned and studied the functions of the two ENA ATPases of Ustilago maydis, U. maydis Ena1 (UmEna1) and UmEna2. UmEna1 is a typical K(+) or Na(+) efflux ATPase whose function is indispensable for growth at pH 9.0 and for even modest Na(+) or K(+) tolerances above pH 8.0. UmEna1 locates to the plasma membrane and has the characteristics of the low-Na(+)/K(+)-discrimination ENA ATPases. However, it still protects U. maydis cells in high-Na(+) media because Na(+) showed a low cytoplasmic toxicity. The UmEna2 ATPase is phylogenetically distant from UmEna1 and is located mainly at the endoplasmic reticulum. The function of UmEna2 is not clear, but we found that it shares several similarities with Neurospora crassa ENA2, which suggests that endomembrane ENA ATPases may exist in many fungi. The expression of ena1 and ena2 transcripts in U. maydis was enhanced at high pH and at high K(+) and Na(+) concentrations. We discuss that there are two modes of Na(+) tolerance in fungi: the high-Na(+)-content mode, involving ENA ATPases with low Na(+)/K(+) discrimination, as described here for U. maydis, and the low-Na(+)-content mode, involving Na(+)-specific ENA ATPases, as in Neurospora crassa.
Collapse
Affiliation(s)
- Begoña Benito
- Departamento de Biotecnología, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
325
|
Alexander RT, Grinstein S. Tethering, recycling and activation of the epithelial sodium–proton exchanger, NHE3. J Exp Biol 2009; 212:1630-7. [DOI: 10.1242/jeb.027375] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
NHE3 is a sodium–proton exchanger expressed predominantly in the apical membrane of renal and intestinal epithelia, where it plays a key role in salt and fluid absorption and pH homeostasis. It performs these functions through the exchange of luminal sodium for cytosolic protons. Acute regulation of NHE3 function is mediated by altering the total number of exchangers in the plasma membrane as well as their individual activity. Traffic between endomembrane and plasmalemmal pools of NHE3 dictates the density of exchangers available at the cell surface. The activity of the plasmalemmal pool, however,is not fixed and can be altered by the association with modifier proteins, by post-translational alterations (such as cAMP-mediated phosphorylation) and possibly also via interaction with specific plasmalemmal phospholipids. Interestingly, association with cytoskeletal components affects both levels of regulation, tethering NHE3 molecules at the surface and altering their intrinsic activity. This paper reviews the role of proteins and lipids in the modulation of NHE3 function.
Collapse
Affiliation(s)
- R. Todd Alexander
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,T6G 2R7
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada,M5G 1X8
- Department of Biochemistry, University of Toronto, Ontario, Canada
| |
Collapse
|
326
|
Ganea C, Fendler K. Bacterial transporters: Charge translocation and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:706-13. [DOI: 10.1016/j.bbabio.2009.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 12/01/2022]
|
327
|
Yamaguchi T, Tsutsumi F, Putnoky P, Fukuhara M, Nakamura T. pH-dependent regulation of the multi-subunit cation/proton antiporter Pha1 system from Sinorhizobium meliloti. MICROBIOLOGY-SGM 2009; 155:2750-2756. [PMID: 19460820 DOI: 10.1099/mic.0.028563-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pha1 gene cluster (pha1A'-G) of Sinorhizobium meliloti has previously been characterized as a necessary component for proper invasion into plant root tissue. It has been suggested to encode a multi-subunit K(+)/H(+) antiporter, since mutations in the pha1 region rendered S. meliloti cells sensitive to K(+) and alkali, and because there is high amino acid sequence similarity to previously characterized multi-subunit cation/H(+) antiporters (Mrp antiporters). However, the detailed transport properties of the Pha1 system are yet to be determined. Interestingly, most of the Mrp antiporters are highly selective for Na(+), unlike the Pha1 system. Here, we report the functional expression of the Pha1 system in Escherichia coli and the measurement of cation/H(+) antiport activity. We showed that the Pha1 system is indeed a K(+)/H(+) antiporter with a pH optimum under mildly alkaline conditions. Moreover, we found that the Pha1 system can transport Na(+); this was unexpected based on previous phenotypic analyses of pha1 mutants. Furthermore, we demonstrated that the cation selectivity of the Pha1 system was altered when the pH was lowered from the optimum. The downregulation of Na(+)/H(+) and K(+)/H(+) antiport activities upon acidic shift appeared to occur via different processes, which might indicate the presence of distinct mechanisms for the regulation of the K(+)/H(+) and Na(+)/H(+) antiport activities of the Pha1 system.
Collapse
Affiliation(s)
- Toshio Yamaguchi
- Department of Microbiology, Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata-shi 956-8603, Japan
| | - Fuminori Tsutsumi
- Department of Microbiology, Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata-shi 956-8603, Japan
| | - Péter Putnoky
- Department of Genetics and Molecular Biology, Faculty of Sciences, University of Pécs, H-7601 Pécs, Hungary
| | - Masahiro Fukuhara
- Department of Microbiology, Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata-shi 956-8603, Japan
| | - Tatsunosuke Nakamura
- Department of Microbiology, Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata-shi 956-8603, Japan
| |
Collapse
|
328
|
Bobulescu IA, Moe OW. Luminal Na(+)/H (+) exchange in the proximal tubule. Pflugers Arch 2009; 458:5-21. [PMID: 18853182 PMCID: PMC2878283 DOI: 10.1007/s00424-008-0595-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
Abstract
The proximal tubule is critical for whole-organism volume and acid-base homeostasis by reabsorbing filtered water, NaCl, bicarbonate, and citrate, as well as by excreting acid in the form of hydrogen and ammonium ions and producing new bicarbonate in the process. Filtered organic solutes such as amino acids, oligopeptides, and proteins are also retrieved by the proximal tubule. Luminal membrane Na(+)/H(+) exchangers either directly mediate or indirectly contribute to each of these processes. Na(+)/H(+) exchangers are a family of secondary active transporters with diverse tissue and subcellular distributions. Two isoforms, NHE3 and NHE8, are expressed at the luminal membrane of the proximal tubule. NHE3 is the prevalent isoform in adults, is the most extensively studied, and is tightly regulated by a large number of agonists and physiological conditions acting via partially defined molecular mechanisms. Comparatively little is known about NHE8, which is highly expressed at the lumen of the neonatal proximal tubule and is mostly intracellular in adults. This article discusses the physiology of proximal Na(+)/H(+) exchange, the multiple mechanisms of NHE3 regulation, and the reciprocal relationship between NHE3 and NHE8 at the lumen of the proximal tubule.
Collapse
Affiliation(s)
- I. Alexandru Bobulescu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
| | - Orson W. Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA,
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
| |
Collapse
|
329
|
Li HT, Liu H, Gao XS, Zhang H. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress. Biochem Biophys Res Commun 2009; 382:637-41. [DOI: 10.1016/j.bbrc.2009.03.091] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 03/17/2009] [Indexed: 01/13/2023]
|
330
|
Champion MD, Zeng Q, Nix EB, Nano FE, Keim P, Kodira CD, Borowsky M, Young S, Koehrsen M, Engels R, Pearson M, Howarth C, Larson L, White J, Alvarado L, Forsman M, Bearden SW, Sjöstedt A, Titball R, Michell SL, Birren B, Galagan J. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog 2009; 5:e1000459. [PMID: 19478886 PMCID: PMC2682660 DOI: 10.1371/journal.ppat.1000459] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 04/29/2009] [Indexed: 01/15/2023] Open
Abstract
Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.
Collapse
Affiliation(s)
- Mia D Champion
- Microbial Analysis Group, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Harvey WR, Boudko DY, Rheault MR, Okech BA. NHE(VNAT): an H+ V-ATPase electrically coupled to a Na+:nutrient amino acid transporter (NAT) forms an Na+/H+ exchanger (NHE). ACTA ACUST UNITED AC 2009; 212:347-57. [PMID: 19151209 DOI: 10.1242/jeb.026047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycolysis, the citric acid cycle and other metabolic pathways of living organisms generate potentially toxic acids within all cells. One ubiquitous mechanism for ridding cells of the acids is to expel H(+) in exchange for extracellular Na(+), mediated by electroneutral transporters called Na(+)/H(+) exchangers (NHEs) that are driven by Na(+) concentration gradients. The exchange must be important because the human genome contains 10 NHEs along with two Na(+)/H(+) antiporters (NHAs). By contrast, the genomes of two principal disease vector mosquitoes, Anopheles gambiae and Aedes aegypti, contain only three NHEs along with the two NHAs. This shortfall may be explained by the presence of seven nutrient amino acid transporters (NATs) in the mosquito genomes. NATs transport Na(+) stoichiometrically linked to an amino acid into the cells by a process called symport or co-transport. Three of the mosquito NATs and two caterpillar NATs have previously been investigated after heterologous expression in Xenopus laevis oocytes and were found to be voltage driven (electrophoretic). Moreover, the NATs are present in the same membrane as the H(+) V-ATPase, which generates membrane potentials as high as 120 mV. We review evidence that the H(+) V-ATPase moves H(+) out of the cells and the resulting membrane potential (V(m)) drives Na(+) linked to an amino acid into the cells via a NAT. The H(+) efflux by the V-ATPase and Na(+) influx by the NAT comprise the same ion exchange as that mediated by an NHE; so the V and NAT working together constitute an NHE that we call NHE(VNAT). As the H(+) V-ATPase is widely distributed in mosquito epithelial cells and there are seven NATs in the mosquito genomes, there are potentially seven NHE(VNAT)s that could replace the missing NHEs. We review published evidence in support of this hypothesis and speculate about broader functions of NHE(VNAT)s.
Collapse
Affiliation(s)
- William R Harvey
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA.
| | | | | | | |
Collapse
|
332
|
Roepe PD, Ferdig MT. P. falciparum Na(+)/H(+) exchanger (PfNHE) function and quinine resistance (QNR) [Reply to: Spillman et al. "Acid extrusion from the intraerythrocytic malaria parasite is not via a Na(+)/H(+) exchanger" Mol. Biochem. Parasitol. 2008 162 (1) 96-99]. Mol Biochem Parasitol 2009; 166:1-2; author reply 3. [PMID: 19428665 DOI: 10.1016/j.molbiopara.2009.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/22/2008] [Accepted: 01/13/2009] [Indexed: 10/20/2022]
|
333
|
Piermarini PM, Weihrauch D, Meyer H, Huss M, Beyenbach KW. NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti. Am J Physiol Renal Physiol 2009; 296:F730-50. [PMID: 19193723 PMCID: PMC2670640 DOI: 10.1152/ajprenal.90564.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/27/2009] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to identify and characterize the hypothesized apical cation/H(+) exchanger responsible for K(+) and/or Na(+) secretion in the renal (Malpighian) tubules of the yellow fever mosquito Aedes aegypti. From Aedes Malpighian tubules, we cloned "AeNHE8," a full-length cDNA encoding an ortholog of mammalian Na(+)/H(+) exchanger 8 (NHE8). The expression of AeNHE8 transcripts is ubiquitous among mosquito tissues and is not enriched in Malpighian tubules. Western blots of Malpighian tubules suggest that AeNHE8 is expressed primarily as an intracellular protein, which was confirmed by immunohistochemical localizations in Malpighian tubules. AeNHE8 immunoreactivity is expressed in principal cells of the secretory, distal segments, where it localizes to a subapical compartment (e.g., vesicles or endosomes), but not in the apical brush border. Furthermore, feeding mosquitoes a blood meal or treating isolated tubules with dibutyryl-cAMP, both of which stimulate a natriuresis by Malpighian tubules, do not influence the intracellular localization of AeNHE8 in principal cells. When expressed heterologously in Xenopus laevis oocytes, AeNHE8 mediates EIPA-sensitive Na/H exchange, in which Li(+) partially and K(+) poorly replace Na(+). The expression of AeNHE8 in Xenopus oocytes is associated with the development of a conductive pathway that closely resembles the known endogenous nonselective cation conductances of Xenopus oocytes. In conclusion, AeNHE8 does not mediate cation/H(+) exchange in the apical membrane of Aedes Malpighian tubules; it is more likely involved with an intracellular function.
Collapse
Affiliation(s)
- Peter M Piermarini
- Cornell Univ., College of Veterinary Medicine, Dept. of Biomedical Sciences, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
334
|
Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K. Plant NHX cation/proton antiporters. PLANT SIGNALING & BEHAVIOR 2009; 4:265-76. [PMID: 19794841 PMCID: PMC2664485 DOI: 10.4161/psb.4.4.7919] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 05/18/2023]
Abstract
Although physiological and biochemical data since long suggested that Na(+)/H(+) and K(+)/H(+) antiporters are involved in intracellular ion and pH regulation in plants, it has taken a long time to identify genes encoding antiporters that could fulfil these roles. Genome sequencing projects have now shown that plants contain a very large number of putative Cation/Proton antiporters, the function of which is only beginning to be studied. The intracellular NHX transporters constitute the first Cation/Proton exchanger family studied in plants. The founding member, AtNHX1, was identified as an important salt tolerance determinant and suggested to catalyze Na(+) accumulation in vacuoles. It is, however, becoming increasingly clear, that this gene and other members of the family also play crucial roles in pH regulation and K(+) homeostasis, regulating processes from vesicle trafficking and cell expansion to plant development.
Collapse
|
335
|
Szczerba MW, Britto DT, Kronzucker HJ. K+ transport in plants: physiology and molecular biology. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:447-66. [PMID: 19217185 DOI: 10.1016/j.jplph.2008.12.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/10/2008] [Accepted: 12/10/2008] [Indexed: 05/06/2023]
Abstract
Potassium (K(+)) is an essential nutrient and the most abundant cation in plant cells. Plants have a wide variety of transport systems for K(+) acquisition, catalyzing K(+) uptake across a wide spectrum of external concentrations, and mediating K(+) movement within the plant as well as its efflux into the environment. K(+) transport responds to variations in external K(+) supply, to the presence of other ions in the root environment, and to a range of plant stresses, via Ca(2+) signaling cascades and regulatory proteins. This review will summarize the molecular identities of known K(+) transporters, and examine how this information supports physiological investigations of K(+) transport and studies of plant stress responses in a changing environment.
Collapse
Affiliation(s)
- Mark W Szczerba
- Department of Plant Sciences, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA.
| | | | | |
Collapse
|
336
|
Diering GH, Church J, Numata M. Secretory Carrier Membrane Protein 2 Regulates Cell-surface Targeting of Brain-enriched Na+/H+ Exchanger NHE5. J Biol Chem 2009; 284:13892-13903. [PMID: 19276089 DOI: 10.1074/jbc.m807055200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
NHE5 is a brain-enriched Na(+)/H(+) exchanger that dynamically shuttles between the plasma membrane and recycling endosomes, serving as a mechanism that acutely controls the local pH environment. In the current study we show that secretory carrier membrane proteins (SCAMPs), a group of tetraspanning integral membrane proteins that reside in multiple secretory and endocytic organelles, bind to NHE5 and co-localize predominantly in the recycling endosomes. In vitro protein-protein interaction assays revealed that NHE5 directly binds to the N- and C-terminal cytosolic extensions of SCAMP2. Heterologous expression of SCAMP2 but not SCAMP5 increased cell-surface abundance as well as transporter activity of NHE5 across the plasma membrane. Expression of a deletion mutant lacking the SCAMP2-specific N-terminal cytosolic domain, and a mini-gene encoding the N-terminal extension, reduced the transporter activity. Although both Arf6 and Rab11 positively regulate NHE5 cell-surface targeting and NHE5 activity across the plasma membrane, SCAMP2-mediated surface targeting of NHE5 was reversed by dominant-negative Arf6 but not by dominant-negative Rab11. Together, these results suggest that SCAMP2 regulates NHE5 transit through recycling endosomes and promotes its surface targeting in an Arf6-dependent manner.
Collapse
Affiliation(s)
- Graham H Diering
- Departments of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John Church
- Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Masayuki Numata
- Departments of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
337
|
Mitsui K, Hatakeyama K, Matsushita M, Kanazawa H. Saccharomyces cerevisiae Na+/H+ Antiporter Nha1p Associates with Lipid Rafts and Requires Sphingolipid for Stable Localization to the Plasma Membrane. J Biochem 2009; 145:709-20. [DOI: 10.1093/jb/mvp032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
338
|
Herz K, Rimon A, Jeschke G, Padan E. β-Sheet-dependent Dimerization Is Essential for the Stability of NhaA Na+/H+ Antiporter. J Biol Chem 2009; 284:6337-47. [DOI: 10.1074/jbc.m807720200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
339
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1050] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
340
|
Abstract
SUMMARYClassical physiological study of the Malpighian tubule has led to a detailed understanding of fluid transport and its control across several species. With the sequencing of the Drosophila genome, and the concurrent development of post-genomic technologies such as microarrays,proteomics, metabolomics and systems biology, completely unexpected roles for the insect Malpighian tubule have emerged. As the insect body plan is simpler than that of mammals, tasks analogous to those performed by multiple mammalian organ systems must be shared out among insect tissues. As well as the classical roles in osmoregulation, the Malpighian tubule is highly specialized for organic solute transport, and for metabolism and detoxification. In Drosophila, the adult Malpighian tubule is the key tissue for defence against insecticides such as DDT; and it can also detect and mount an autonomous defence against bacterial invasion. While it is vital to continue to set insights obtained in Drosophila into the context of work in other species, the combination of post-genomic technologies and physiological validation can provide insights that might not otherwise have been apparent for many years.
Collapse
Affiliation(s)
- Julian A. T. Dow
- Integrative and Systems Biology, Faculty of Biomedical and Life Sciences,University of Glasgow, Glasgow G11 6NU, UK
| |
Collapse
|
341
|
Fuster D, Moe OW, Hilgemann DW. Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. ACTA ACUST UNITED AC 2008; 132:465-80. [PMID: 18824592 PMCID: PMC2553392 DOI: 10.1085/jgp.200810016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe the steady-state function of the ubiquitous mammalian Na/H exchanger (NHE)1 isoform in voltage-clamped Chinese hamster ovary cells, as well as other cells, using oscillating pH-sensitive microelectrodes to quantify proton fluxes via extracellular pH gradients. Giant excised patches could not be used as gigaseal formation disrupts NHE activity within the patch. We first analyzed forward transport at an extracellular pH of 8.2 with no cytoplasmic Na (i.e., nearly zero-trans). The extracellular Na concentration dependence is sigmoidal at a cytoplasmic pH of 6.8 with a Hill coefficient of 1.8. In contrast, at a cytoplasmic pH of 6.0, the Hill coefficient is <1, and Na dependence often appears biphasic. Results are similar for mouse skin fibroblasts and for an opossum kidney cell line that expresses the NHE3 isoform, whereas NHE1−/− skin fibroblasts generate no proton fluxes in equivalent experiments. As proton flux is decreased by increasing cytoplasmic pH, the half-maximal concentration (K1/2) of extracellular Na decreases less than expected for simple consecutive ion exchange models. The K1/2 for cytoplasmic protons decreases with increasing extracellular Na, opposite to predictions of consecutive exchange models. For reverse transport, which is robust at a cytoplasmic pH of 7.6, the K1/2 for extracellular protons decreases only a factor of 0.4 when maximal activity is decreased fivefold by reducing cytoplasmic Na. With 140 mM of extracellular Na and no cytoplasmic Na, the K1/2 for cytoplasmic protons is 50 nM (pH 7.3; Hill coefficient, 1.5), and activity decreases only 25% with extracellular acidification from 8.5 to 7.2. Most data can be reconstructed with two very different coupled dimer models. In one model, monomers operate independently at low cytoplasmic pH but couple to translocate two ions in “parallel” at alkaline pH. In the second “serial” model, each monomer transports two ions, and translocation by one monomer allosterically promotes translocation by the paired monomer in opposite direction. We conclude that a large fraction of mammalian Na/H activity may occur with a 2Na/2H stoichiometry.
Collapse
Affiliation(s)
- Daniel Fuster
- Department of Physiology and Department of Internal Medicine, University of Texas-Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
342
|
Fliegel L. Regulation of the Na+/H+exchanger in the healthy and diseased myocardium. Expert Opin Ther Targets 2008; 13:55-68. [PMID: 19063706 DOI: 10.1517/14728220802600707] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
343
|
He P, Zhang H, Yun CC. IRBIT, inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3, binds Na+/H+ exchanger NHE3 and activates NHE3 activity in response to calcium. J Biol Chem 2008; 283:33544-53. [PMID: 18829453 DOI: 10.1074/jbc.m805534200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium (Ca2+) is a highly versatile second messenger that regulates various cellular processes. Previous studies showed that elevation of intracellular Ca2+ regulates the activity of Na+/H+ exchanger 3 (NHE3). However, the effect of Ca2+-dependent signaling on NHE3 activity varies depending on cell types. In this study, we report the identification of IP3 receptor-binding protein released with IP3 (IRBIT) as a NHE3 interacting protein and its role in regulation of NHE3 activity. IRBIT bound to the carboxyl-terminal domain of NHE3, which is necessary for acute regulation of NHE3. Ectopic expression of IRBIT resulted in Ca2+-dependent activation of NHE3 activity, whereas silencing of endogenous IRBIT resulted in inhibition of NHE3 activity. Ca2+-dependent stimulation of NHE3 activity was dependent on the binding of IRBIT to NHE3. Previously Ca2+-dependent inhibition of NHE3 was demonstrated in the presence of NHERF2. Co-expression of IRBIT was able to reverse the NHERF2-dependent inhibition of NHE3. We also showed that IRBIT-dependent activation of NHE3 involves exocytic trafficking of NHE3 to the plasma membrane and this activation was blocked by inhibition of calmodulin (CaM) or CaM-dependent kinase II. These results suggest that the overall effect of Ca2+ on NHE3 activity is balanced by IRBIT-dependent activation and NHERF2-dependent inhibition.
Collapse
Affiliation(s)
- Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
344
|
Padan E. The enlightening encounter between structure and function in the NhaA Na+–H+ antiporter. Trends Biochem Sci 2008; 33:435-43. [DOI: 10.1016/j.tibs.2008.06.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 11/16/2022]
|
345
|
Britto DT, Kronzucker HJ. Cellular mechanisms of potassium transport in plants. PHYSIOLOGIA PLANTARUM 2008; 133:637-50. [PMID: 18312500 DOI: 10.1111/j.1399-3054.2008.01067.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Potassium (K(+)) is the most abundant ion in the plant cell and is required for a wide array of functions, ranging from the maintenance of electrical potential gradients across cell membranes, to the generation of turgor, to the activation of numerous enzymes. The majority of these functions depend more or less directly upon the activities and regulation of membrane-bound K(+) transport proteins, operating over a wide range of K(+) concentrations. Here, we review the physiological aspects of potassium transport systems in the plasma membrane, re-examining fundamental problems in the field such as the distinctions between high- and low-affinity transport systems, the interactions between K(+) and other ions such as NH(4)(+) and Na(+), the regulation of cellular K(+) pools, the generation of electrical potentials and the problems involved in measurement of unidirectional K(+) fluxes. We place these discussions in the context of recent discoveries in the molecular biology of K(+) acquisition and produce an overview of gene families encoding K(+) transporters.
Collapse
Affiliation(s)
- Dev T Britto
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada
| | | |
Collapse
|
346
|
Day JP, Wan S, Allan AK, Kean L, Davies SA, Gray JV, Dow JAT. Identification of two partners from the bacterial Kef exchanger family for the apical plasma membrane V-ATPase of Metazoa. J Cell Sci 2008; 121:2612-9. [PMID: 18628302 DOI: 10.1242/jcs.033084] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
The vital task of vectorial solute transport is often energised by a plasma membrane, proton-motive V-ATPase. However, its proposed partner, an apical alkali-metal/proton exchanger, has remained elusive. Here, both FlyAtlas microarray data and in situ analyses demonstrate that the bacterial kefB and kefC (members of the CPA2 family) homologues in Drosophila, CG10806 and CG31052, respectively, are both co-expressed with V-ATPase genes in transporting epithelia. Immunocytochemistry localises endogenous CG10806 and CG31052 to the apical plasma membrane of the Malpighian (renal) tubule. YFP-tagged CG10806 and CG31052 both localise to the plasma membrane of Drosophila S2 cells, and when driven in principal cells of the Malpighian tubule, they localise specifically to the apical plasma membrane. V-ATPase-energised fluid secretion is affected by overexpression of CG10806, but not CG31052; in the former case, overexpression causes higher basal rates, but lower stimulated rates, of fluid secretion compared with parental controls. Overexpression also impacts levels of secreted Na+ and K+. Both genes rescue exchanger-deficient (nha1 nhx1) yeast, but act differently; CG10806 is driven predominantly to the plasma membrane and confers protection against excess K+, whereas CG31052 is expressed predominantly on the vacuolar membrane and protects against excess Na+. Thus, both CG10806 and CG31052 are functionally members of the CPA2 gene family, colocalise to the same apical membrane as the plasma membrane V-ATPase and show distinct ion specificities, as expected for the Wieczorek exchanger.
Collapse
Affiliation(s)
- Jonathan P Day
- IBLS Division of Molecular Genetics, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
347
|
Rodríguez-Rosales MP, Jiang X, Gálvez FJ, Aranda MN, Cubero B, Venema K. Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. THE NEW PHYTOLOGIST 2008; 179:366-377. [PMID: 19086176 DOI: 10.1111/j.1469-8137.2008.02461.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Here, the function of the tomato (Solanum lycopersicon) K+/H+ antiporter LeNHX2 was studied using 35S-driven gene overexpression of a histagged LeNHX2 protein in Arabidopsis thaliana and LeNHX2 gene silencing in tomato. Transgenic A. thaliana plants expressed the histagged LeNHX2 both in shoots and in roots, as assayed by western blotting. Transitory expression of a green fluorescent protein (GFP) tagged protein showed that the antiporter is present in small vesicles. Internal membrane vesicles from transgenic plants displayed enhanced K+/H+ exchange activity, confirming the K+/H+ antiporter function of this enzyme. Transgenic A. thaliana plants overexpressing the histagged tomato antiporter LeNHX2 exhibited inhibited growth in the absence of K+ in the growth medium, but were more tolerant to high concentrations of Na+ than untransformed controls. When grown in the presence of NaCl, transgenic plants contained lower concentrations of intracellular Na+, but more K+, as compared with untransformed controls. Silencing of LeNHX2 in S. lycopersicon plants produced significant inhibition of plant growth and fruit and seed production as well as increased sensitivity to NaCl. The data indicate that regulation of K+ homeostasis by LeNHX2 is essential for normal plant growth and development, and plays an important role in the response to salt stress by improving K+ accumulation.
Collapse
Affiliation(s)
- María Pilar Rodríguez-Rosales
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Xingyu Jiang
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Department of Plant Biology, Instituto de Recursos Naturales y Agrobiología, CSIC, 41012 Sevilla, Spain
| | - Francisco Javier Gálvez
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - María Nieves Aranda
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Beatriz Cubero
- Department of Plant Biology, Instituto de Recursos Naturales y Agrobiología, CSIC, 41012 Sevilla, Spain
| | - Kees Venema
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
348
|
Okech BA, Boudko DY, Linser PJ, Harvey WR. Cationic pathway of pH regulation in larvae of Anopheles gambiae. ACTA ACUST UNITED AC 2008; 211:957-68. [PMID: 18310121 DOI: 10.1242/jeb.012021] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Anopheles gambiae larvae (Diptera: Culicidae) live in freshwater with low Na(+) concentrations yet they use Na(+) for alkalinization of the alimentary canal, for electrophoretic amino acid uptake and for nerve function. The metabolic pathway by which larvae accomplish these functions has anionic and cationic components that interact and allow the larva to conserve Na(+) while excreting H(+) and HCO(3)(-). The anionic pathway consists of a metabolic CO(2) diffusion process, carbonic anhydrase and Cl(-)/HCO(3)(-) exchangers; it provides weak HCO(3)(-) and weaker CO(3)(2-) anions to the lumen. The cationic pathway consists of H(+) V-ATPases and Na(+)/H(+) antiporters (NHAs), Na(+)/K(+) P-ATPases and Na(+)/H(+) exchangers (NHEs) along with several (Na(+) or K(+)):amino acid(+/-) symporters, a.k.a. nutrient amino acid transporters (NATs). This paper considers the cationic pathway, which provides the strong Na(+) or K(+) cations that alkalinize the lumen in anterior midgut then removes them and restores a lower pH in posterior midgut. A key member of the cationic pathway is a Na(+)/H(+) antiporter, which was cloned recently from Anopheles gambiae larvae, localized strategically in plasma membranes of the alimentary canal and named AgNHA1 based upon its phylogeny. A phylogenetic comparison of all cloned NHAs and NHEs revealed that AgNHA1 is the first metazoan NHA to be cloned and localized and that it is in the same clade as electrophoretic prokaryotic NHAs that are driven by the electrogenic H(+) F-ATPase. Like prokaryotic NHAs, AgNHA1 is thought to be electrophoretic and to be driven by the electrogenic H(+) V-ATPase. Both AgNHA1 and alkalophilic bacterial NHAs face highly alkaline environments; to alkalinize the larva mosquito midgut lumen, AgNHA1, like the bacterial NHAs, would have to move nH(+) inwardly and Na(+) outwardly. Perhaps the alkaline environment that led to the evolution of electrophoretic prokaryotic NHAs also led to the evolution of an electrophoretic AgNHA1 in mosquito larvae. In support of this hypothesis, antibodies to both AgNHA1 and H(+) V-ATPase label the same membranes in An. gambiae larvae. The localization of H(+) V-ATPase together with (Na(+) or K(+)):amino acid(+/-) symporter, AgNAT8, on the same apical membrane in posterior midgut cells constitutes the functional equivalent of an NHE that lowers the pH in the posterior midgut lumen. All NATs characterized to date are Na(+) or K(+) symporters so the deduction is likely to have wide application. The deduced colocalization of H(+) V-ATPase, AgNHA1 and AgNAT8, on this membrane forms a pathway for local cycling of H(+) and Na(+) in posterior midgut. The local H(+) cycle would prevent unchecked acidification of the lumen while the local Na(+) cycle would regulate pH and support Na(+):amino acid(+/-) symport. Meanwhile, a long-range Na(+) cycle first transfers Na(+) from the blood to gastric caeca and anterior midgut lumen where it initiates alkalinization and then returns Na(+) from the rectal lumen to the blood, where it prevents loss of Na(+) during H(+) and HCO(3)(-) excretion. The localization of H(+) V-ATPase and Na(+)/K(+)-ATPase in An. gambiae larvae parallels that reported for Aedes aegypti larvae. The deduced colocalization of the two ATPases along with NHA and NAT in the alimentary canal constitutes a cationic pathway for Na(+)-conserving midgut alkalinization and de-alkalinization which has never been reported before.
Collapse
Affiliation(s)
- Bernard A Okech
- The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | | | | | | |
Collapse
|
349
|
Tzubery T, Rimon A, Padan E. Structure-based functional study reveals multiple roles of transmembrane segment IX and loop VIII-IX in NhaA Na+/H+ antiporter of Escherichia coli at physiological pH. J Biol Chem 2008; 283:15975-87. [PMID: 18387952 PMCID: PMC3259659 DOI: 10.1074/jbc.m800482200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/31/2008] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional crystal structure of Escherichia coli NhaA determined at pH 4 provided the first structural insights into the mechanism of antiport and pH regulation of a Na(+)/H(+) antiporter. However, because NhaA is activated at physiological pH (pH 6.5-8.5), many questions pertaining to the active state of NhaA have remained open including the structural and physiological roles of helix IX and its loop VIII-IX. Here we studied this NhaA segment (Glu(241)-Phe(267)) by structure-based biochemical approaches at physiological pH. Cysteine-scanning mutagenesis identified new mutations affecting the pH dependence of NhaA, suggesting their contribution to the "pH sensor." Furthermore mutation F267C reduced the H(+)/Na(+) stoichiometry of the antiporter, and F267C/F344C inactivated the antiporter activity. Tests of accessibility to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide, a membrane-impermeant positively charged SH reagent with a width similar to the diameter of hydrated Na(+), suggested that at physiological pH the cytoplasmic cation funnel is more accessible than at acidic pH. Assaying intermolecular cross-linking in situ between single Cys replacement mutants uncovered the NhaA dimer interface at the cytoplasmic side of the membrane; between Leu(255) and the cytoplasm, many Cys replacements cross-link with various cross-linkers spanning different distances (10-18 A) implying a flexible interface. L255C formed intermolecular S-S bonds, cross-linked only with a 5-A cross-linker, and when chemically modified caused an alkaline shift of 1 pH unit in the pH dependence of NhaA and a 6-fold increase in the apparent K(m) for Na(+) of the exchange activity suggesting a rigid point in the dimer interface critical for NhaA activity and pH regulation.
Collapse
Affiliation(s)
| | | | - Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life
Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
350
|
Fuster DG, Zhang J, Shi M, Bobulescu IA, Andersson S, Moe OW. Characterization of the sodium/hydrogen exchanger NHA2. J Am Soc Nephrol 2008; 19:1547-56. [PMID: 18508966 DOI: 10.1681/asn.2007111245] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cation/proton exchange has been recognized for decades in mammalian mitochondria, but the exchanger proteins have eluded identification. In this study, a cDNA from a human brain library, previously designated NHA2 in the genome, was cloned and characterized. The NHA2 transcript bears more similarity to prokaryotic than known eukaryotic sodium/proton exchangers, but it was found to be expressed in multiple mammalian organs and cultured cells. A mAb to NHA2 was generated and found to label an approximately 55-kD native protein in multiple tissues and cell lines. The specificity of this antibody was confirmed by demonstrating the loss of the native NHA2 band on immunoblots when cultured cells were treated with NHA2-specific small interfering RNA. Although NHA2 protein was detected in multiple organs, within each, its expression was restricted to specific cell types. In the kidney, co-localization with calbindin 28k and reverse transcription-PCR of microdissected tubules revealed that NHA2 is limited to the distal convoluted tubule. In cell lines, native NHA2 was localized both to the plasma membrane and to the intracellular compartment; immunogold electron microscopy of rat distal convoluted tubule demonstrated NHA2 predominantly but not exclusively on the inner mitochondrial membrane. Furthermore, co-sedimentation of NHA2 antigen and mitochondrial membranes was observed with differential centrifugation, and two mitochondrial markers co-localized with NHA2 in cultured cells. Regarding function, human NHA2 reversed the sodium/hydrogen exchanger-null phenotype when expressed in sodium/hydrogen exchanger-deficient yeast and restored the ability to defend high salinity in the presence of acidic extracellular pH. In summary, NHA2 is a ubiquitous mammalian sodium proton/exchanger that is restricted to the distal convoluted tubule in the kidney.
Collapse
Affiliation(s)
- Daniel G Fuster
- Division of Nephrology and Hypertension and Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|