Cummins MM, O'Mullane LM, Barden JA, Cook DI, Poronnik P. Purinergic responses in HT29 colonic epithelial cells are mediated by G protein alpha -subunits.
Cell Calcium 2000;
27:247-55. [PMID:
10859591 DOI:
10.1054/ceca.2000.0120]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using Fura-2 to measure changes in intracellular calcium ([Ca(2+)](i)), we show that P(2U)receptors in HT29 cells trigger an increase in [Ca(2+)](i)by pertussis toxin-insensitive G proteins. We then use replication-deficient adenoviruses expressing wild-type and dominant negative mutants of G(alpha q)and G(alpha i2), antisense directed against G(alpha q)or the C-terminal fragment of beta-adrenergic receptor kinase (beta ARK-CT) to identify these G proteins. We find the [Ca(2+)](i)response to UTP is not affected by increased expression of the wild-type G(alpha q), wild-type G(alpha i2)or beta ARK-CT, while it is blocked by over-expression of dominant negative G(alpha q). The timecourse of the UTP response is, however, altered by wild-type G(alpha q)and is only weakly inhibited by antisense G(alpha q). This suggests that the P(2U)response is mediated, at least partially, by a G protein distinct from G(alpha q). In contrast, the M(3)muscarinic response is inhibited by over-expression of antisense against G(alpha q), or over-expression of beta ARK-CT, a finding in agreement with our previous observation that the muscarinic response in HT29 cells is mediated by the beta gamma-subunits of G(q). We also find that P(2U)and M(3)receptors do not control identical Ca(2+)stores, suggesting that differential activation of G proteins can lead to Ca(2+)release from distinct stores.
Collapse