301
|
Zhang L, Cai P, Hou J, Luo M, Li Y, Jiang X. Radiomics Model Based on Gadoxetic Acid Disodium-Enhanced MR Imaging to Predict Hepatocellular Carcinoma Recurrence After Curative Ablation. Cancer Manag Res 2021; 13:2785-2796. [PMID: 33790652 PMCID: PMC8006953 DOI: 10.2147/cmar.s300627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Background A practical prognostic prediction model is absent for hepatocellular carcinoma (HCC) patients after curative ablation. We aimed to develop a radiomics model based on gadoxetic acid disodium-enhanced magnetic resonance (MR) images to predict HCC recurrence after curative ablation. Methods We retrospectively enrolled 132 patients with HCC who underwent curative ablation. Patients were randomly divided into the training (n = 92) and validation (n = 40) cohorts. Radiomic features were extracted from gadoxetic acid disodium-enhanced MR images of the liver before curative ablation, and various baseline clinical characteristics were collected. Cox regression and random survival forests were used to construct models that incorporated radiomic features and/or clinical characteristics. The predictive performance of the different models was compared using the concordance index (C-index) and decision curves analysis (DCA). A cutoff derived from the combined model was used for risk categorization, and recurrence-free survival (RFS) was compared between groups using the Kaplan-Meier survival curve analysis. Results Twenty radiomic features and four clinical characteristics were identified and used for model construction. The radiomics model constructed by tumoral and peritumoral radiomic features had better predictive performance (C-index 0.698, 95% confidence interval [CI] 0.640-0.755) compared with the clinical model (C-index 0.614, 95% CI 0.499-0.695), while the combined model had the best predictive performance (C-index 0.706, 95% CI 0.638-0.763). A better net benefit was observed with the combined model compared with the other two models according to the DCA. Distinct RFS distributions were observed when patients were categorized based on the cutoff derived from the combined model (Log rank test, p = 0.007). Conclusion The radiomics model which combined radiomic features extracted from gadoxetic acid disodium-enhanced MR images with clinical characteristics could predict HCC recurrence after curative ablation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Radiology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Peiqiang Cai
- Department of Radiology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Jingyu Hou
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Ma Luo
- Department of Radiology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
| | - Xinhua Jiang
- Department of Radiology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
302
|
Zheng S, Liu L, Xue T, Jing C, Xu X, Wu Y, Wang M, Xie X, Zhang B. Comprehensive Analysis of the Prognosis and Correlations With Immune Infiltration of S100 Protein Family Members in Hepatocellular Carcinoma. Front Genet 2021; 12:648156. [PMID: 33815482 PMCID: PMC8013731 DOI: 10.3389/fgene.2021.648156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 01/27/2023] Open
Abstract
S100 protein family members (S100s) are commonly dysregulated in various tumors including hepatocellular carcinoma (HCC). However, the diverse expression, mutation, prognosis and associations with immune infiltration of S100s in HCC have yet to be analyzed. Herein we investigated the roles of S100s in HCC from the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Human Protein Atlas, Kaplan-Meier Plotter, cBioPortal and TIMER databases. Compared with para-cancer tissues, the expression levels of S100A4/S100A6/S100A10/S100A11/S100A13/S100A14/S100P were higher in HCC tissues, while the expression levels of S100A8/S100A9/S100A12 were decreased in tumor tissues. The mRNA levels of S100A2/S100A7/S100A7A/S100A8/S100A9/S100A11 were correlated with advanced tumor stage. Besides, higher mRNA expressions of S100A6/S100A10/S100A11/S100A13/S100A14/S100P were shown to have shorter overall survival (OS), while higher expression of S100A12 was associated with favorable OS. Further, the mutation rate of S100s was investigated, and the high mutation rate (53%) was associated with shorter OS. Additionally, the expressions of S100s were found to be significantly associated with various immune infiltrating cells. Hence, our results showed that S100A6/S100A10/S100A11/S10012/S100A13/S100A14/S100P may be regarded as new prognostic or therapeutic markers and S100s inhibitors may be helpful in the combination of immunotherapies.
Collapse
Affiliation(s)
- Susu Zheng
- Xiamen Branch, Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Xiamen, China.,Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China
| | - Linxia Liu
- School of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Tongchun Xue
- Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China
| | - Chuyu Jing
- Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China
| | - Xin Xu
- Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China
| | - Yanfang Wu
- Xiamen Branch, Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Meixia Wang
- Xiamen Branch, Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xiaoying Xie
- Xiamen Branch, Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Xiamen, China.,Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China
| | - Boheng Zhang
- Xiamen Branch, Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Xiamen, China.,Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China.,Center for Evidence-Based Medicine, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
303
|
Zhang F, Xue M, Jiang X, Yu H, Qiu Y, Yu J, Yang F, Bao Z. Identifying SLC27A5 as a potential prognostic marker of hepatocellular carcinoma by weighted gene co-expression network analysis and in vitro assays. Cancer Cell Int 2021; 21:174. [PMID: 33731144 PMCID: PMC7968262 DOI: 10.1186/s12935-021-01871-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background The incidence and mortality rates of hepatocellular carcinoma are among the highest of all cancers all over the world. However the survival rates are relatively low due to lack of effective treatments. Efforts to elucidate the mechanisms of HCC and to find novel prognostic markers and therapeutic targets are ongoing. Here we tried to identify prognostic genes of HCC through co-expression network analysis. Methods We conducted weighted gene co-expression network analysis with a microarray dataset GSE14520 of HCC from Gene Expression Omnibus database and identified a hub module associated with HCC prognosis. Function enrichment analysis of the hub module was performed. Clinical information was analyzed to select candidate hub genes. The expression profiles and survival analysis of the selected genes were performed using additional datasets (GSE45267 and TCGA-LIHC) and the hub gene was identified. GSEA and in vitro experiments were conducted to further verify the function of the hub gene. Results Genes in the hub module were mostly involved in the metabolism pathway. Four genes (SLC27A5, SLC10A1, PCK2 and FMO4) from the module were identified as candidate hub genes according to correlation analysis with prognostic indicators. All these genes were significantly down-regulated in tumor tissues compared with non-tumor tissues in additional datasets. After survival analysis and network construction, SLC27A5 was selected as a prognostic marker. GSEA analysis and in vitro assays suggested that SLC27A5 downregulation promoted tumor cell migration via enhancing epithelial-mesenchymal transition. Conclusion SLC27A5 is a potential biomarker of HCC and SLC27A5 downregulation promoted HCC progression by enhancing EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01871-6.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, People's Republic of China
| | - Mengjuan Xue
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, People's Republic of China
| | - Xin Jiang
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, People's Republic of China
| | - Huiyuan Yu
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yixuan Qiu
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, People's Republic of China
| | - Jiaming Yu
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, People's Republic of China
| | - Fan Yang
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China. .,Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Zhijun Bao
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, No. 221 Yan'an West Road, Shanghai, 200040, People's Republic of China. .,Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
304
|
Prognostic Cancer Gene Expression Signatures: Current Status and Challenges. Cells 2021; 10:cells10030648. [PMID: 33804045 PMCID: PMC8000474 DOI: 10.3390/cells10030648] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Current staging systems of cancer are mainly based on the anatomical extent of disease. They need refinement by biological parameters to improve stratification of patients for tumor therapy or surveillance strategies. Thanks to developments in genomic, transcriptomic, and big-data technologies, we are now able to explore molecular characteristics of tumors in detail and determine their clinical relevance. This has led to numerous prognostic and predictive gene expression signatures that have the potential to establish a classification of tumor subgroups by biological determinants. However, only a few gene signatures have reached the stage of clinical implementation so far. In this review article, we summarize the current status, and present and future challenges of prognostic gene signatures in three relevant cancer entities: breast cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
|
305
|
Jang JH, Kim DH, Surh YJ. Dynamic roles of inflammasomes in inflammatory tumor microenvironment. NPJ Precis Oncol 2021; 5:18. [PMID: 33686176 PMCID: PMC7940484 DOI: 10.1038/s41698-021-00154-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The inflammatory tumor microenvironment has been known to be closely connected to all stages of cancer development, including initiation, promotion, and progression. Systemic inflammation in the tumor microenvironment is increasingly being recognized as an important prognostic marker in cancer patients. Inflammasomes are master regulators in the first line of host defense for the initiation of innate immune responses. Inflammasomes sense pathogen-associated molecular patterns and damage-associated molecular patterns, following recruitment of immune cells into infection sites. Therefore, dysregulated expression/activation of inflammasomes is implicated in pathogenesis of diverse inflammatory disorders. Recent studies have demonstrated that inflammasomes play a vital role in regulating the development and progression of cancer. This review focuses on fate-determining roles of the inflammasomes and the principal downstream effector cytokine, IL-1β, in the tumor microenvironment.
Collapse
Affiliation(s)
- Jeong-Hoon Jang
- grid.31501.360000 0004 0470 5905Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- grid.411203.50000 0001 0691 2332Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do South Korea
| | - Young-Joon Surh
- grid.31501.360000 0004 0470 5905Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
306
|
Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat Commun 2021; 12:1455. [PMID: 33674593 PMCID: PMC7935900 DOI: 10.1038/s41467-021-21804-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
T-cell exhaustion denotes a hypofunctional state of T lymphocytes commonly found in cancer, but how tumor cells drive T-cell exhaustion remains elusive. Here, we find T-cell exhaustion linked to overall survival in 675 hepatocellular carcinoma (HCC) patients with diverse ethnicities and etiologies. Integrative omics analyses uncover oncogenic reprograming of HCC methionine recycling with elevated 5-methylthioadenosine (MTA) and S-adenosylmethionine (SAM) to be tightly linked to T-cell exhaustion. SAM and MTA induce T-cell dysfunction in vitro. Moreover, CRISPR-Cas9-mediated deletion of MAT2A, a key SAM producing enzyme, results in an inhibition of T-cell dysfunction and HCC growth in mice. Thus, reprogramming of tumor methionine metabolism may be a viable therapeutic strategy to improve HCC immunity. Intratumoral CD8+ T cells commonly display a dysfunctional state, however it remains unclear whether tumor cell metabolism actively promotes T-cell exhaustion. Here, the authors show that the tumor methionine recycling pathway has a central role in promoting T-cell dysfunction in hepatocellular carcinoma, contributing to tumor immune evasion.
Collapse
|
307
|
Abstract
T-cell exhaustion denotes a hypofunctional state of T lymphocytes commonly found in cancer, but how tumor cells drive T-cell exhaustion remains elusive. Here, we find T-cell exhaustion linked to overall survival in 675 hepatocellular carcinoma (HCC) patients with diverse ethnicities and etiologies. Integrative omics analyses uncover oncogenic reprograming of HCC methionine recycling with elevated 5-methylthioadenosine (MTA) and S-adenosylmethionine (SAM) to be tightly linked to T-cell exhaustion. SAM and MTA induce T-cell dysfunction in vitro. Moreover, CRISPR-Cas9-mediated deletion of MAT2A, a key SAM producing enzyme, results in an inhibition of T-cell dysfunction and HCC growth in mice. Thus, reprogramming of tumor methionine metabolism may be a viable therapeutic strategy to improve HCC immunity.
Collapse
|
308
|
Zhao N, Dang H, Ma L, Martin SP, Forgues M, Ylaya K, Hewitt SM, Wang XW. Intratumoral γδ T-Cell Infiltrates, Chemokine (C-C Motif) Ligand 4/Chemokine (C-C Motif) Ligand 5 Protein Expression and Survival in Patients With Hepatocellular Carcinoma. Hepatology 2021; 73:1045-1060. [PMID: 32502310 PMCID: PMC9175512 DOI: 10.1002/hep.31412] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is an aggressive malignancy which is often associated with a complex tumor microenvironment attributable to etiology-induced cellular inflammation. γδ T cells are known to detect and react to chronic inflammation, which is linked to cancer development, progression, and metastasis. Our recent genomic study revealed an increased infiltration of several immune cell types, including γδ T cells, in tumor microenvironments of a Thai HCC subtype associated with a good prognosis. APPROACH AND RESULTS Here, we quantified the amount of γδ T cells using a γδ T-cell-specific gene signature in 247 Chinese HCC patients. We also validated the γδ T-cell signature in American HCC patients. Additionally, such an association was only found in tumor transcriptomic data, but not in adjacent nontumor transcriptomic data, suggesting a selective enrichment of γδ T cells in the tumor microenvironment. Moreover, the γδ T-cell signature was positively correlated with the expression of natural killer cell receptor genes, such as NKG2D and cytolytic T-cell genes granzymes and perforin, suggesting a stronger T-cell-mediated cytotoxic activity. Furthermore, we found that the γδ T-cell-specific gene expression is positively correlated with the expression of chemokine (C-C motif) ligand 4 (CCL4)/chemokine (C-C motif) ligand 5 (CCL5) and C-C chemokine receptor type 1 (CCR1)/C-C chemokine receptor type 5 (CCR5), the receptors for γδ T cells. We validated these results using immunohistochemical analysis of formalin-fixed, paraffin-embedded tumor biopsies from 182 HCC patients. Moreover, we found evidence of CCL4/CCL5-mediated recruitment of γδ T cells both in vitro and in a murine orthotopic Hepa1-6 HCC model. CONCLUSIONS We propose that CCL4/CCL5 may interact with their receptor, CCR1/CCR5, which may facilitate the recruitment of γδ T cells from peripheral blood or peritumor regions to the tumor regions. Consequently, an increasing infiltration of γδ T cells in tumors may enhance antitumor immunity and improve patients' prognosis.
Collapse
Affiliation(s)
- Na Zhao
- Laboratory of Human CarcinogenesisCenter for Cancer ResearchNational Cancer InstituteBethesdaMD.,Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Hien Dang
- Laboratory of Human CarcinogenesisCenter for Cancer ResearchNational Cancer InstituteBethesdaMD
| | - Lichun Ma
- Laboratory of Human CarcinogenesisCenter for Cancer ResearchNational Cancer InstituteBethesdaMD
| | - Sean P Martin
- Laboratory of Human CarcinogenesisCenter for Cancer ResearchNational Cancer InstituteBethesdaMD
| | - Marshonna Forgues
- Laboratory of Human CarcinogenesisCenter for Cancer ResearchNational Cancer InstituteBethesdaMD
| | - Kris Ylaya
- Laboratory of PathologyCenter for Cancer ResearchNational Cancer InstituteBethesdaMD
| | - Stephen M Hewitt
- Laboratory of PathologyCenter for Cancer ResearchNational Cancer InstituteBethesdaMD
| | - Xin Wei Wang
- Laboratory of Human CarcinogenesisCenter for Cancer ResearchNational Cancer InstituteBethesdaMD.,Liver Cancer ProgramCenter for Cancer ResearchNational Cancer InstituteBethesdaMD
| |
Collapse
|
309
|
Zhu C, Ho YJ, Salomao MA, Dapito DH, Bartolome A, Schwabe RF, Lee JS, Lowe SW, Pajvani UB. Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features. J Hepatol 2021; 74:613-626. [PMID: 33038431 PMCID: PMC7897246 DOI: 10.1016/j.jhep.2020.09.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The hepatocyte Notch pathway is a pathogenic factor in non-alcoholic steatohepatitis (NASH)-associated fibrosis, but its role in hepatocellular carcinoma (HCC) is less well defined. Herein, we aimed to characterize the molecular and clinical features of Notch-active human HCC, and to investigate the mechanisms by which Notch affects NASH-driven HCC. METHODS Using a 14-gene Notch score, we stratified human HCCs from multiple comprehensively profiled datasets. We performed gene set enrichment analyses to compare Notch-active HCCs with published HCC subtype signatures. Next, we sorted Notch-active hepatocytes from Notch reporter mice for RNA sequencing and characterized Notch-active tumors in an HCC model combining a carcinogen and a NASH-inducing diet. We used genetic mouse models to manipulate hepatocyte Notch to investigate the sufficiency and necessity of Notch in NASH-driven tumorigenesis. RESULTS Notch-active signatures were found in ~30% of human HCCs that transcriptionally resemble cholangiocarcinoma-like HCC, exhibiting a lack of activating CTNNB1 (β-catenin) mutations and a generally poor prognosis. Endogenous Notch activation in hepatocytes is associated with repressed β-catenin signaling and hepatic metabolic functions, in lieu of increased interactions with the extracellular matrix in NASH. Constitutive hepatocyte Notch activation is sufficient to induce β-catenin-inactive HCC in mice with NASH. Notch and β-catenin show a pattern of mutual exclusivity in carcinogen-induced HCC; in this mouse model, chronic blockade of Notch led to β-catenin-dependent tumor development. CONCLUSIONS Notch activity characterizes a distinct HCC molecular subtype with unique histology and prognosis. Sustained Notch signaling in chronic liver diseases can drive tumor formation without acquiring specific genomic driver mutations. LAY SUMMARY The Notch signaling pathway is known to be involved in the pathogenesis of liver fibrosis. However, its role in liver cancer has not been well defined. Herein, we show that Notch activity is increased in a subset of liver cancers and is associated with poor outcomes. We also used a mouse model to show that aberrant Notch activity can drive cancer progression in obese mice.
Collapse
Affiliation(s)
- Changyu Zhu
- Department of Medicine, Columbia University, New York, NY, USA;,Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcela A. Salomao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY, USA;,Corresponding author: Utpal B. Pajvani, Department of Medicine, Columbia University, Russ Berrie Medical Science Pavilion, 1150 St Nicholas Ave, New York, NY, 10032. ; fax: (212) 851-5493
| |
Collapse
|
310
|
Tanabe S. Cancer recognition of artificial intelligence. Artif Intell Cancer 2021; 2:1-6. [DOI: 10.35713/aic.v2.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Kanagawa, Japan
| |
Collapse
|
311
|
Wang H, Hou W, Perera A, Bettler C, Beach JR, Ding X, Li J, Denning MF, Dhanarajan A, Cotler SJ, Joyce C, Yin J, Ahmed F, Roberts LR, Qiu W. Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling. Cell Rep 2021; 34:108765. [PMID: 33626345 PMCID: PMC7954228 DOI: 10.1016/j.celrep.2021.108765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the deadliest malignancies worldwide. One major obstacle to treatment is a lack of effective molecular-targeted therapies. In this study, we find that EphA2 expression and signaling are enriched in human HCC and associated with poor prognosis. Loss of EphA2 suppresses the initiation and growth of HCC both in vitro and in vivo. Furthermore, CRISPR/CAS9-mediated EphA2 inhibition significantly delays tumor development in a genetically engineered murine model of HCC. Mechanistically, we discover that targeting EphA2 suppresses both AKT and JAK1/STAT3 signaling, two separate oncogenic pathways in HCC. We also identify a small molecule kinase inhibitor of EphA2 that suppresses tumor progression in a murine HCC model. Together, our results suggest EphA2 as a promising therapeutic target for HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Databases, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Janus Kinase 1/genetics
- Janus Kinase 1/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, EphA2/antagonists & inhibitors
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Retrospective Studies
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hao Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Carlee Bettler
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Asha Dhanarajan
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Scott J Cotler
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jun Yin
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fowsiyo Ahmed
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
312
|
Zhang Q, Qiao L, Liao J, Liu Q, Liu P, Liu L. A novel hypoxia gene signature indicates prognosis and immune microenvironments characters in patients with hepatocellular carcinoma. J Cell Mol Med 2021; 25:3772-3784. [PMID: 33616276 PMCID: PMC8051726 DOI: 10.1111/jcmm.16249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
Due to the lack of a suitable gene signature, it is difficult to assess the hypoxic exposure of HCC tissues. The clinical value of assessing hypoxia in HCC is short of tissue‐level evidence. We tried to establish a robust and HCC‐suitable hypoxia signature using microarray analysis and a robust rank aggregation algorithm. Based on the hypoxia signature, we obtained a hypoxia‐associated HCC subtypes system using unsupervised hierarchical clustering and a hypoxia score system was provided using gene set variation analysis. A novel signature containing 21 stable hypoxia‐related genes was constructed to effectively indicate the exposure of hypoxia in HCC tissues. The signature was validated by qRT‐PCR and compared with other published hypoxia signatures in multiple large‐size HCC cohorts. The subtype of HCC derived from this signature had different prognosis and other clinical characteristics. The hypoxia score obtained from the signature could be used to indicate clinical characteristics and predict prognoses of HCC patients. Moreover, we reveal a landscape of immune microenvironments in patients with different hypoxia score. In conclusion, we identified a novel HCC‐suitable 21‐gene hypoxia signature that could be used to estimate the hypoxia exposure in HCC tissues and indicated prognosis and a series of important clinical features in HCCs. It may enable the development of personalized counselling or treatment strategies for HCC patients with different levels of hypoxia exposure.
Collapse
Affiliation(s)
- Qiangnu Zhang
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Lijun Qiao
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Juan Liao
- Department of Gastroenterology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Quan Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Pengyu Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, NY, USA
| | - Liping Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Department of Hepatobiliary and Pancreas Surgery, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
313
|
Lin L, Chen S, Wang H, Gao B, Kallakury B, Bhuvaneshwar K, Cahn K, Gusev Y, Wang X, Wu Y, Marshall JL, Zhi X, He AR. SPTBN1 inhibits inflammatory responses and hepatocarcinogenesis via the stabilization of SOCS1 and downregulation of p65 in hepatocellular carcinoma. Theranostics 2021; 11:4232-4250. [PMID: 33754058 PMCID: PMC7977457 DOI: 10.7150/thno.49819] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Spectrin, beta, non-erythrocytic 1 (SPTBN1), an adapter protein for transforming growth factor beta (TGF-β) signaling, is recognized as a tumor suppressor in the development of hepatocellular carcinoma (HCC); however, the underlying molecular mechanisms of this tumor suppression remain obscure. Methods: The effects on expression of pro-inflammatory cytokines upon the inhibition or impairment of SPTBN1 in HCC cell lines and liver tissues of Sptbn1+/- and wild-type (WT) mice were assessed by analyses of quantitative real-time reverse-transcription polymerase chain reaction (QRT-PCR), enzyme linked immunosorbent assay (ELISA), Western blotting and gene array databases from HCC patients. We investigated the detailed molecular mechanisms underlying the inflammatory responses by immunoprecipitation-Western blotting, luciferase reporter assay, chromatin immunoprecipitation quantitative real time PCR (ChIP-qPCR), immunohistochemistry (IHC) and electrophoretic mobility shift assay (EMSA). The proportion of myeloid-derived suppressor cells in liver, spleen, bone marrow and peripheral blood samples from WT and Sptbn1+/- mice were measured by fluorescence-activated cell sorting (FACS) analysis. Further, the hepatocacinogenesis and its correlation with inflammatory microenvironment by loss of SPTBN1/SOCS1 and induction of p65 were analyzed by treating WT and Sptbn1+/- mice with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Results: Loss of SPTBN1 in HCC cells upregulated the expression of pro-inflammatory cytokines including interleukin-1α (IL-1α), IL-1β, and IL-6, and enhanced NF-κB transcriptional activation. Mechanistic analyses revealed that knockdown of SPTBN1 by siRNA downregulated the expression of suppressor of cytokine signaling 1 (SOCS1), an E3 ligase of p65, and subsequently upregulated p65 accumulation in the nucleus of HCC cells. Restoration of SOCS1 abrogated this SPTBN1 loss-associated elevation of p65 in HCC cells. In human HCC tissues, SPTBN1 gene expression was inversely correlated with gene expression of IL-1α, IL-1β and IL-6. Furthermore, a decrease in the levels of SPTBN1 gene, as well as an increase in the gene expression of IL-1β or IL-6 predicted shorter relapse free survival in HCC patients, and that HCC patients with low expression of SPTBN1 or SOCS1 protein is associated with poor survival. Heterozygous loss of SPTBN1 (Sptbn1+/-) in mice markedly upregulated hepatic expression of IL-1α, IL-1β and IL-6, and elevated the proportion of myeloid-derived suppressor cells (MDSCs) and CD4+CD25+Foxp3+ regulatory T cells (Foxp3+Treg) cells in the liver, promoting hepatocarcinogenesis of mouse fed by DDC. Conclusions: Our findings provided evidence that loss of SPTBN1 in HCC cells increases p65 protein stability via the inhibition of SOCS1 and enhances NF-κB activation, stimulating the release of inflammatory cytokines, which are critical molecular mechanisms for the loss of SPTBN1-induced liver cancer formation. Reduced SPTBN1 and SOCS1 predict poor outcome in HCC patients.
Collapse
|
314
|
Gao X, Huang H, Wang Y, Pan C, Yin S, Zhou L, Zheng S. Tumor Immune Microenvironment Characterization in Hepatocellular Carcinoma Identifies Four Prognostic and Immunotherapeutically Relevant Subclasses. Front Oncol 2021; 10:610513. [PMID: 33680932 PMCID: PMC7933665 DOI: 10.3389/fonc.2020.610513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The tumor microenvironment (TME) plays a critical role in the pathogenesis of hepatocellular carcinoma (HCC). However, underlying compositions and functions that drive the establishment and maintenance of the TME classifications are less-well understood. Methods A total of 766 HCC patients from three public cohorts were clustered into four immune-related subclasses based on 13 TME signatures (11 immune-related cells and 2 immune-related pathways) calculated by MCP-counter. After analyzing the landscapes of functional annotation, methylation, somatic mutation, and clinical characteristics, we built a TME-based Support Vector Machine of 365 patients (discovery phase) and 401 patients (validation phase). We applied this SVM model on another two independent cohorts of patients who received sorafenib/pembrolizumab treatment. Results About 33% of patients displayed an immune desert pattern. The other subclasses were different in abundance of tumor infiltrating cells. The Immunogenic subclass (17%) associated with the best prognosis presented a massive T cell infiltration and an activation of immune checkpoint pathway. The 13 TME signatures showed a good potential to predict the TME classification (average AUC = 88%). Molecular characteristics of immunohistochemistry from Zhejiang cohort supported our SVM classification. The optimum response to pembrolizumab (78%) and sorafenib (81%) was observed in patients belonging to the Immunogenic subclass. Conclusions The HCC patients from distinct immune subclass showed significant differences in clinical prognosis and response to personalized treatment. Based on tumor transcriptome data, our workflow can help to predict the clinical outcomes and to find appropriate treatment strategies for HCC patients.
Collapse
Affiliation(s)
- Xingxing Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Hechen Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Yubo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Caixu Pan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| |
Collapse
|
315
|
Identification of MCM family as potential therapeutic and prognostic targets for hepatocellular carcinoma based on bioinformatics and experiments. Life Sci 2021; 272:119227. [PMID: 33607151 DOI: 10.1016/j.lfs.2021.119227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
AIMS The minichromosome maintenance (MCM) complex is highly conserved, which has drawn increasing attention on physiology and pathology process. However, the role of MCM in hepatocellular carcinoma (HCC) remains largely unclear. We aimed to conduct systematic analysis of expression patterns, prognostic values and potential functions of nine MCM genes in HCC, thus identifying their role in HCC. MAIN METHODS In our study, we systemically analyzed the role of MCM in prognosis and HCC progression by several bioinformatics analysis tools. Immunohistochemical (IHC) assays were utilized to valid the protein expression of MCM in HCC and in vitro experiments were used to confirm the functions of MCMs in HCC proliferation. KEY FINDINGS Overexpression of MCM2-8 and MCM10 were found to be significantly associated with clinical parameters and poor prognosis of HCC patients. The function of MCM was mainly enriched in DNA replication. Moreover, MCM were also associated with several cancer pathway and drug sensitivity in HCC. Close correlations were observed between immune cell infiltration and MCM in HCC. Cell Counting Kit-8 (CCK-8) and clone formation assays suggested the role of MCM2-8 and MCM10 in HCC proliferation. SIGNIFICANCE These results have implied that deregulated MCM played an important role in HCC progression and might be considered as potential therapeutic and prognostic targets for HCC.
Collapse
|
316
|
Deng J, Zhong F, Gu W, Qiu F. Exploration of Prognostic Biomarkers among Replication Factor C Family in the Hepatocellular Carcinoma. Evol Bioinform Online 2021; 17:1176934321994109. [PMID: 33628006 PMCID: PMC7885030 DOI: 10.1177/1176934321994109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common cancers with a high incidence and mortality. The human replication factor C (RFC) family contains 5 subunits that play an important role in DNA replication and DNA damage repair. RFCs are abnormally expressed in a variety of cancers; some of them are differentially expressed in HCC tissues and related to tumor growth. However, the expression, prognostic value, and effect targets of the whole RFC family in HCC are still unclear. To address these issues, we performed a multidimensional analysis of RFCs in HCC patients by Oncomine, UALCAN, GEPIA, Human protein atlas, Kaplan-Meier plotter, cBioPortal, GeneMANIA, String, and LinkedOmics. mRNA expression of RFCs was significantly increased in HCC tissues. There was a significant correlation between the expression of RFC2/3/4/5 and tumor stage of HCC patients. Besides, high mRNA expression of RFC2/4 was associated with worse overall survival (OS). Moreover, genetic alterations of RFCs were associated with worse OS in HCC patients. We found that genes co-expressed with RFC2/4 were mainly involved in biological processes, such as chromosome segregation, mitotic cell cycle phase transition, and telomere organization and they activated the cell cycle and spliceosome pathways. The gene set is mainly enriched in cancer-related kinases AURKA, ATR, CDK1, PLK1, and CHEK1. E2F family members were the key transcription factors for RFCs. Our results suggest that differentially expressed RFC2 and RFC4 are potential prognostic biomarkers in HCC and may act on E2F transcription factors and some kinase targets to dysregulate the cell cycle pathway. These efforts may provide new research directions for prognostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Jianxiong Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Fangyan Zhong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Weiguo Gu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Feng Qiu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
317
|
TMEM106C contributes to the malignant characteristics and poor prognosis of hepatocellular carcinoma. Aging (Albany NY) 2021; 13:5585-5606. [PMID: 33591950 PMCID: PMC7950261 DOI: 10.18632/aging.202487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Transmembrane protein (TMEM) is a kind of integral membrane protein that spans biological membranes. The functions of most members of the TMEM family are unknown. Here, we conducted bioinformatic analysis and biological validation to investigate the role of TMEM106C in HCC. First, GEPIA and OncomineTM were used to analyze TMEM106C expression, which was verified by real-time PCR and western blot analyses. Then, the biological functions of TMEM106C were explored by CCK8 and transwell assays. The prognostic value of TMEM106C was analyzed by UALCAN. LinkedOmics was used to analyze TMEM106C pathways generated by Gene Ontology. A protein-protein interaction network (PPI) was constructed by GeneMANIA. We demonstrated that TMEM106C was overexpressed in HCC and that inhibition of TMEM106C significantly suppressed the proliferation and metastasis of HCC through targeting CENPM and DLC-1. Upregulation of TMEM106C was closely correlated with sex, tumor stage, tumor grade and prognosis. Overexpression of TMEM106C was linked to functional networks involving organelle fission and cell cycle signaling pathways through the regulation of CDK kinases, E2F1 transcription factors and miRNAs. Our data demonstrated that TMEM106C contributes to malignant characteristics and poor prognosis in HCC, which may serve as a prognostic biomarker and potential therapeutic target.
Collapse
|
318
|
Qian F, Wang J, Wang Y, Gao Q, Yan W, Lin Y, Shen L, Xie Y, Jiang X, Shen B. MiR-378a-3p as a putative biomarker for hepatocellular carcinoma diagnosis and prognosis: Computational screening with experimental validation. Clin Transl Med 2021; 11:e307. [PMID: 33634974 PMCID: PMC7882078 DOI: 10.1002/ctm2.307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant disease with high morbidity and mortality, and the molecular mechanism for the genesis and progression is complex and heterogeneous. Biomarker discovery is crucial for the personalized and precision treatment of HCC. The accumulation of reported microRNA biomarkers makes it possible to combine computational identification with experimental validation to accelerate the discovery of novel biomarker. RESULTS In the present work, we applied a rational computer-aided biomarker discovery model to screen for the HCC diagnosis biomarker. Two HCC-associated networks were constructed based on the microRNA and mRNA expression profiles, and the potential microRNA biomarkers were identified based on their unique regulatory and influential power in the network. These putative biomarkers were then experimentally validated. One prominent example among these identified biomarkers is MiR-378a-3p: It was shown to independently regulate several important transcription factors such as PLAGL2 and β-catenin, affecting the β-catenin signaling. Such mechanism may indicate a potential tumor suppressor role of MiR-378a-3p and the impact of its abnormal expression on the cell growth and invasion of HCC. CONCLUSIONS A bioinformatics model with network topological and functional characterization was successfully applied to the identification of HCC biomarkers. The predicted microRNA biomarkers were than validated with experiments using human HCC cell lines, model animal, and clinical specimens. The results confirmed the prediction by our proposed model that miR-378a-3p was a putative biomarker for diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Fuliang Qian
- Center for Systems BiologySoochow UniversitySuzhouChina
| | - Jinghan Wang
- Department of the First Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery HospitalNavy Military Medical UniversityShanghaiChina
| | - Ying Wang
- Department of the First Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery HospitalNavy Military Medical UniversityShanghaiChina
| | - Qian Gao
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wenying Yan
- Center for Systems BiologySoochow UniversitySuzhouChina
| | - Yuxin Lin
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Yufeng Xie
- Center for Systems BiologySoochow UniversitySuzhouChina
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaoqing Jiang
- Department of the First Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery HospitalNavy Military Medical UniversityShanghaiChina
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
319
|
Wang Z, Xu J, Zhang S, Chang L. Expression of cell divisioncycle-associated genes and their prognostic significance in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:151-169. [PMID: 33564348 PMCID: PMC7868782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The cell division cycle-associated (CDCA) protein family plays an essential role in tumor progression by cell division. However, the function of each CDCA family member in hepatocellular carcinoma (HCC) is not well known. This study is to find the roles of CDCAs in the prognosis of HCC patients by using ONCOMINE, UALCAN, Human Protein Atlas, Kaplan-Meier Plotter, and cBioPortal databases. Overexpression of CDCA mRNA and protein were found to be significantly associated with individual cancer stages and tumor grades in HCC patients. Higher mRNA expressions of 6 CDCA family members were found to be significantly associated with shorter overall survival (OS) in HCC patients. Multivariate analysis showed that overexpressions of CDCA mRNA were independent prognostic factors for shorter OS in HCC patients. Moreover, a high mutation rate of CDCAs (27%) was also detected in HCC patients, and genetic alteration in CDCAs was associated with shorter overall survival (OS) and disease-free survival (DFS) in HCC patients. Finally, a functional analysis showed that CDCAs were mainly enriched in the cell cycle (hsa04110) and oocyte meiosis. Overall, these results indicated that CDCA2/3/4/5/8 could be prognostic biomarkers of survival in HCC patients.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Gastroenterology, Shijiazhuang People’s HospitalShijiazhuang, Hebei, P. R. China
| | - Jianduo Xu
- Department of General Surgery, Shijiazhuang People’s HospitalShijiazhuang, Hebei, P. R. China
| | - Shumei Zhang
- Department of Gastroenterology, Shijiazhuang People’s HospitalShijiazhuang, Hebei, P. R. China
| | - Lili Chang
- Department of Gastroenterology, Shijiazhuang People’s HospitalShijiazhuang, Hebei, P. R. China
| |
Collapse
|
320
|
He P, Wang C, Wang Y, Wang C, Zhou C, Cao D, Li J, Bushnell DA, Li Q, Kornberg RD, Xie W, Wang Z. A Novel AKR1C3 Specific Prodrug TH3424 With Potent Antitumor Activity in Liver Cancer. Clin Pharmacol Ther 2021; 110:229-237. [PMID: 33483974 DOI: 10.1002/cpt.2171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
Overexpression of AKR1C3, an aldo-keto reductase, was recently discovered in liver cancers. In this study, an inverse correlation between AKR1C3 expression and survival of patients with liver cancer was observed. AKR1C3 inhibitors, however, failed to suppress liver cancer cell growth. The prodrug TH3424, which releases a DNA alkylating reagent upon reduction by AKR1C3, was developed to target tumors with overexpression of AKR1C3. TH3424 showed specific killing of liver cancer cells with AKR1C3 overexpression both in vitro and in vivo. In patient-derived mouse xenograft models, TH3424 at doses as low as 1.5 mg/kg eliminated liver tumors with no apparent toxicity. Therefore, TH3424 is a promising drug candidate for liver cancer and other types of cancers overexpressing AKR1C3.
Collapse
Affiliation(s)
- Ping He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Chunnian Wang
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
| | - Yanlan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong No. 2 Provincial People's Hospital, Guangzhou, China
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, China
| | - David A Bushnell
- Department of Structural Biology, Stanford University, Stanford, California, USA
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Roger D Kornberg
- Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China.,Department of Structural Biology, Stanford University, Stanford, California, USA
| | - Wei Xie
- Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China.,MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
321
|
Zhu P, Ren Q, He N, Zhou C, Jin Q, Gong Z. Construction and validation of an N6-methyladenosine-associated prognostic signature in hepatocellular carcinoma. Oncol Lett 2021; 21:221. [PMID: 33613710 PMCID: PMC7859476 DOI: 10.3892/ol.2021.12482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common types of cancer that threat the public health worldwide. N6-methyladenosine (m6A) RNA methylation is associated with cancer initiation and progression, and is dynamically regulated by m6A RNA methylation-associated genes. However, little is known about the expression status and the prognostic value of m6A-associated genes in HCC. The present study aimed to identify the expression profiling pattern and clinical significance of m6A-associated genes in HCC. Consensus clustering analysis was performed to identify the clusters of HCC with different clinical outcomes. A prognostic signature built by the least absolute shrinkage and selection operator Cox regression model was utilized to discover subtypes associated with different clinical outcomes of patients with HCC in the discovery cohort from The Cancer Genome Atlas. The differences between subgroups were characterized in terms of epigenetic dysregulation and somatic mutation frequencies. The International Cancer Genome Consortium cohort and two independent cohorts from the meta-Gene Expression Omnibus database were used for external validation. Most of the m6A-associated genes were upregulated and involved in the prognosis and malignancy of HCC. A four-gene prognostic signature revealed two HCC subtypes (namely, high- and low-risk group) that was associated with different clinical outcomes. Patients in the high-risk group were accompanied with increased epigenetic silencing and significant mutations in TP53 and FLG, while ALB was frequently mutated in the low-risk group. In conclusion, an m6A-based signature was constructed to predict the prognosis of patients with HCC, which may provide a tool for reliable prognosis assessment for clinicians, and aid clinical treatment decision-making.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, Hubei 430022, P.R. China
| | - Qianqian Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, P.R. China
| | - Nan He
- Cancer Center, Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cheng Zhou
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, Hubei 430022, P.R. China
| | - Qianna Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, P.R. China
| | - Zhao Gong
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
322
|
Dong X, Wang F, Liu C, Ling J, Jia X, Shen F, Yang N, Zhu S, Zhong L, Li Q. Single-cell analysis reveals the intra-tumor heterogeneity and identifies MLXIPL as a biomarker in the cellular trajectory of hepatocellular carcinoma. Cell Death Discov 2021; 7:14. [PMID: 33462196 PMCID: PMC7814056 DOI: 10.1038/s41420-021-00403-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a globally prevailing cancer with a low 5-year survival rate. Little is known about its intricate gene expression profile. Single-cell RNA sequencing is an indispensable tool to explore the genetic characteristics of HCC at a more detailed level. In this study, we profiled the gene expression of single cells from human HCC tumor and para-tumor tissues using the Smart-seq 2 sequencing method. Based on differentially expressed genes, we identified heterogeneous subclones in HCC tissues, including five HCC and two hepatocyte subclones. We then carried out hub-gene co-network and functional annotations analysis followed pseudo-time analysis with regulated transcriptional factor co-networks to determine HCC cellular trajectory. We found that MLX interacting protein like (MLXIPL) was commonly upregulated in the single cells and tissues and associated with a poor survival rate in HCC. Mechanistically, MLXIPL activation is crucial for promoting cell proliferation and inhibits cell apoptosis by accelerating cell glycolysis. Taken together, our work identifies the heterogeneity of HCC subclones, and suggests MLXIPL might be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chuan Liu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jing Ling
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xuebing Jia
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Feifei Shen
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ning Yang
- Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Sibo Zhu
- Center for Pharmacogenomics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lin Zhong
- Department of Hepatobiliary and General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
323
|
Zhang F, Guo S, Zhong W, Huang K, Liu Y. Integrative Analysis of Metallothioneins Identifies MT1H as Candidate Prognostic Biomarker in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:672416. [PMID: 34676244 PMCID: PMC8523949 DOI: 10.3389/fmolb.2021.672416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Metallothioneins (MTs) play crucial roles in the modulation of zinc/copper homeostasis, regulation of neoplastic growth and proliferation, and protection against apoptosis. The present study attempted to visualize the prognostic landscape of MT functional isoforms and identify potential prognostic biomarkers in hepatocellular carcinoma (HCC). Methods: The transcriptional expression, comprehensive prognostic performances, and gene-gene interaction network of MT isoforms in HCC were evaluated via Oncomine, GEPIA, Kaplan-Meier plotter, and GeneMANIA databases. Characterized by good prognostic value in three external cohorts, MT1H was specifically selected as a potential prognostic biomarker in HCC with various clinicopathological features. Functional and pathway enrichment analyses of MT1H status were performed using cBioPortal, the Database for Annotation, Visualization, and Integrated Discovery (DAVID), and ssGSVA method. Results: MT1E/1F/1G/1H/1M/1X/2A was greatly downregulated in HCC. Prognostic analyses elucidated the essential correlations between MT1A/1B/1H/1X/2A/4 attenuation and poor overall survival, between MT1B/1H/4 downregulation and worse relapse-free survival, and between MT1A/1B/1E/1H/1M/2A/4 downregulation and diminished progression-free survival in HCC. Taken together, these results indicated the powerful prognostic value of MT1H among MTs in HCC. In-depth analyses suggested that MT1H may be more applicable to alcohol-derived HCC and involved in the downregulation of the inflammatory pathway, Jak-STAT pathway, TNF pathway, and Wnt signaling pathway. Conclusion: MT-specific isoforms displayed aberrant expression and varying prognostic value in HCC. MT1H repression in HCC was multi-dimensionally detrimental to patient outcomes. Therefore, MT1H was possibly associated with carcinogenesis and exploited as a novel prognostic biomarker and candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Feng Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Shuijiao Guo
- Department of Operating Room, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenhui Zhong
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Kaijun Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yubin Liu, ; Kaijun Huang,
| | - Yubin Liu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yubin Liu, ; Kaijun Huang,
| |
Collapse
|
324
|
Ni Z, Lu J, Huang W, Khan H, Wu X, Huang D, Shi G, Niu Y, Huang H. Transcriptomic identification of HBx-associated hub genes in hepatocellular carcinoma. PeerJ 2021; 9:e12697. [PMID: 35036167 PMCID: PMC8710059 DOI: 10.7717/peerj.12697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies around the world. Among the risk factors involved in liver carcinogenesis, hepatitis B virus (HBV) X protein (HBx) is considered to be a key regulator in hepatocarcinogenesis. Whether HBx promotes or protects against HCC remains controversial, therefore exploring new HBx-associated genes is still important. METHODS HBx was overexpressed in HepG2, HepG2.2.15 and SMMC-7721 cell lines, primary mouse hepatocytes and livers of C57BL/6N mice. High-throughput RNA sequencing profiling of HepG2 cells with HBx overexpression and related differentially-expressed genes (DEGs), pathway enrichment analysis, protein-protein interaction networks (PPIs), overlapping analysis were conducted. In addition, Gene Expression Omnibus (GEO) and proteomic datasets of HBV-positive HCC datasets were used to verify the expression and prognosis of selected DEGs. Finally, we also evaluated the known oncogenic role of HBx by oncogenic array analysis. RESULTS A total of 523 DEGs were obtained from HBx-overexpressing HepG2 cells. Twelve DEGs were identified and validated in cells transiently transfected with HBx and three datasets of HBV-positive HCC transcription profiles. In addition, using the Kaplan-Meier plotter database, the expression levels of the twelve different genes were further analyzed to predict patient outcomes. CONCLUSION Among the 12 identified HBx-associated hub genes, HBV-positive HCC patients expressing ARG1 and TAT showed a good overall survival (OS) and relapse-free survival (RFS). Thus, ARG1 and TAT expression could be potential prognostic markers.
Collapse
Affiliation(s)
- Zhengzhong Ni
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weiyi Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Hanif Khan
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xuejun Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Haihua Huang
- Department of Pathology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
325
|
López-Cánovas JL, Del Rio-Moreno M, García-Fernandez H, Jiménez-Vacas JM, Moreno-Montilla MT, Sánchez-Frias ME, Amado V, L-López F, Fondevila MF, Ciria R, Gómez-Luque I, Briceño J, Nogueiras R, de la Mata M, Castaño JP, Rodriguez-Perálvarez M, Luque RM, Gahete MD. Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma. Cancer Lett 2021; 496:72-83. [PMID: 33038489 DOI: 10.1016/j.canlet.2020.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Splicing alterations represent an actionable cancer hallmark. Splicing factor 3B subunit 1 (SF3B1) is a crucial splicing factor that can be targeted pharmacologically (e.g. pladienolide-B). Here, we show that SF3B1 is overexpressed (RNA/protein) in hepatocellular carcinoma (HCC) in two retrospective (n = 154 and n = 172 samples) and in five in silico cohorts (n > 900 samples, including TCGA) and that its expression is associated with tumor aggressiveness, oncogenic splicing variants expression (KLF6-SV1, BCL-XL) and decreased overall survival. In vitro, SF3B1 silencing reduced cell viability, proliferation and migration and its pharmacological blockade with pladienolide-B inhibited proliferation, migration, and formation of tumorspheres and colonies in liver cancer cell lines (HepG2, Hep3B, SNU-387), whereas its effects on normal-like hepatocyte-derived THLE-2 proliferation were negligible. Pladienolide-B also reduced the in vivo growth and the expression of tumor-markers in Hep3B-induced xenograft tumors. Moreover, SF3B1 silencing and/or blockade markedly modulated the activation of key signaling pathways (PDK1, GSK3b, ERK, JNK, AMPK) and the expression of cancer-associated genes (CDK4, CD24) and oncogenic SVs (KLF6-SV1). Therefore, the genetic and/or pharmacological inhibition of SF3B1 may represent a promising novel therapeutic strategy worth to be explored through randomized controlled trials.
Collapse
Affiliation(s)
- Juan L López-Cánovas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Mercedes Del Rio-Moreno
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Helena García-Fernandez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Juan M Jiménez-Vacas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - M Trinidad Moreno-Montilla
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Marina E Sánchez-Frias
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain
| | - Víctor Amado
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Hepatic and Digestive Diseases (CIBERehd), Córdoba, 14004, Spain
| | - Fernando L-López
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Marcos F Fondevila
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Unit of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, Cordoba, 14004, Spain
| | - Irene Gómez-Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Unit of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, Cordoba, 14004, Spain
| | - Javier Briceño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Unit of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, Cordoba, 14004, Spain
| | - Rubén Nogueiras
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Manuel de la Mata
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Hepatic and Digestive Diseases (CIBERehd), Córdoba, 14004, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Manuel Rodriguez-Perálvarez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Hepatic and Digestive Diseases (CIBERehd), Córdoba, 14004, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
| |
Collapse
|
326
|
Jiang HY, Ning G, Wang YS, Lv WB. Ahypoxia-related signature enhances the prediction of the prognosis in hepatocellular carcinoma patients and correlates with sorafenib treatment response. Am J Transl Res 2020; 12:7762-7781. [PMID: 33437359 PMCID: PMC7791514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading cancer death and is the primary malignancy of the liver. Tumor hypoxia is the stressor that is involved in tumorigenesis and significantly increased the aggressiveness of HCC. Here, we systematically analyzed the expression profiles and prognostic values of 84 hypoxia associated genes in HCC. mRNA expression of 84 hypoxia associated genes and clinical parameters of HCC patients were downloaded from TCGA, GSE14520, GSE109211 and ICGC. Consensus clustering analysis was performed for unsupervised classes on the basis of 84 hypoxia associated genes. Univariate and LASSO analysis were used to develop the risk signature. A risk signature was developed, including the expression of APEX1, ATR, CTSA, DNAJC5, ENO1, EPO, HMOX1, LDHA, NDRG1, and PER1, and found to be significantly related with OS and DFS of HCC patients. We stratified HCC patients into the high-risk group and low-risk group by means of the risk signature. Patients of high-risk group had shorter OS and DFS, while that of the low-risk group had longer OS and DFS. The risk signature showed better predictive efficiency than the TNM staging in predicting OS and DFS. Also, macrophage M0 cells, regulatory T cells, and neutrophils were found to be significantly enriched in patients of high-risk group. Next, we validated the discrimination and prognostic value of the risk signature in GSE14520 and the ICGC HCC cohort. Finally, significantly lower risk scores were found in sorafenib treatment responders of GSE109211 cohort, and the AUC for predicting sorafenib treatment response was 0.881. In conclusion, a risk signature developed with the expression of 10 hypoxia associated genes improved the prognosis prediction of HCC and correlated with sorafenib treatment response.
Collapse
Affiliation(s)
- Hong-Ye Jiang
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)Foshan 528308, Guangdong Province, PR China
| | - Gang Ning
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People’s Hospital, South China University of TechnologyGuangzhou, Guangdong Province, PR China
| | - Yen-Sheng Wang
- Department of Medicine, Chang-Gung Memorial HospitalLinkou, Taiwan, PR China
| | - Wei-Biao Lv
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)Foshan 528308, Guangdong Province, PR China
| |
Collapse
|
327
|
Cai Y, Tian Y, Wang J, Wei W, Tang Q, Lu L, Luo Z, Li W, Lu Y, Pu J, Yang Z. Identification of Driver Genes Regulating the T-Cell-Infiltrating Levels in Hepatocellular Carcinoma. Front Genet 2020; 11:560546. [PMID: 33381145 PMCID: PMC7767976 DOI: 10.3389/fgene.2020.560546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The driver genes regulating T-cell infiltration are important for understanding immune-escape mechanisms and developing more effective immunotherapy. However, researches in this field have rarely been reported in hepatocellular carcinoma (HCC). In the present study, we identified cancer driver genes triggered by copy number alterations such as CDKN2B, MYC, TSC1, TP53, and GSK3B. The T-cell infiltration levels were significantly decreased in both HCC and recurrent HCC tissues compared with the adjacent normal liver tissues. Remarkably, we identified that copy number losses of MAX and TP53 were candidate driver genes that significantly suppress T-cell infiltration in HCC. Accordingly, their downstream oncogenic pathway, cell cycle, was significantly activated in the low T-cell infiltration HCC. Moreover, the chemokine-related target genes by TP53, which played key roles in T-cell recruitment, were also downregulated in HCC with TP53/MAX deletions, suggesting that copy number losses in MAX and TP53 might result in T-cell depletion in HCC via downregulating chemokines. Clinically, the T-cell infiltration levels and chemokines activity could accurately predict the response of sorafenib, and the prognostic outcomes in HCC. In conclusion, the systematic analysis not only facilitates identification of driver genes and signaling pathways involved in T-cell infiltration and immune escape, but also gains more insights into the functional roles of T cells in HCC.
Collapse
Affiliation(s)
- Yi Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Tian
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wang Wei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Libai Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zongjiang Luo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhengxia Yang
- Department of Gastroenterology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
328
|
Kong F, Li N, Tu T, Tao Y, Bi Y, Yuan D, Zhang N, Yang X, Kong D, You H, Zheng K, Tang R. Hepatitis B virus core protein promotes the expression of neuraminidase 1 to facilitate hepatocarcinogenesis. J Transl Med 2020; 100:1602-1617. [PMID: 32686743 DOI: 10.1038/s41374-020-0465-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
Neuraminidase 1 (NEU1) has been reported to be associated with hepatocellular carcinoma (HCC). However, the function and associated molecular mechanisms of NEU1 in hepatitis B virus (HBV)-related HCC have not been well investigated. In the present study, the expression of NEU1 mediated by HBV and HBV core protein (HBc) was measured in hepatoma cells. The expression of NEU1 protein was detected via immunohistochemical analysis in HBV-associated HCC tissues. The role of NEU1 in the activation of signaling pathways and epithelial-mesenchymal transition (EMT) and the proliferation and migration of hepatoma cells mediated by HBc was assessed. We found that NEU1 was upregulated in HBV-positive hepatoma cells and HBV-related HCC tissues. HBV promoted NEU1 expression at the mRNA and protein level via HBc in hepatoma cells. Mechanistically, HBc was able to enhance the activity of the NEU1 promoter through NF-κB binding sites. In addition, through the increase in NEU1 expression, HBc contributed to activation of downstream signaling pathways and EMT in hepatoma cells. Moreover, NEU1 facilitated the proliferation and migration of hepatoma cells mediated by HBc. Taken together, our findings provide novel insight into the molecular mechanism underlying the oncogenesis mediated by HBc and demonstrate that NEU1 plays a vital role in HBc-mediated functional abnormality in HCC. Thus, NEU1 may serve as a potential therapeutic target in HBV-associated HCC.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Nan Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, Jiangsu, P.R. China
| | - Tao Tu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Shuyang Traditional Chinese Medicine Hospital, Shuyang, Jiangsu, P.R. China
| | - Yukai Tao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yanwei Bi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Dongchen Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Ning Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China. .,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.
| |
Collapse
|
329
|
Wang W, Ning J, He Y, Zhai L, Xiang F, Yao L, Ye L, Wu L, Ji T, Tang Z. Unveiling the mechanism of Astragalus membranaceus in the treatment of gastrointestinal cancers based on network pharmacology. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
330
|
Lei Y, Yan W, Lin Z, Liu J, Tian D, Han P. Comprehensive analysis of partial epithelial mesenchymal transition-related genes in hepatocellular carcinoma. J Cell Mol Med 2020; 25:448-462. [PMID: 33215860 PMCID: PMC7810929 DOI: 10.1111/jcmm.16099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has revealed that cancer cells undergoing an intermediate state, partial epithelial mesenchymal transition (p‐EMT), tend to metastasize rather than complete EMT. We performed a comprehensive analysis of E‐cadherin and 25 p‐EMT‐related genes in HCC to explore the roles and regulatory mechanisms of them in HCC. We analysed E‐cadherin and 25 p‐EMT‐related genes in HCC and constructed an mRNA‐miRNA‐lncRNA ceRNA subnetwork containing p‐EMT‐related genes by bioinformatic approaches. IHC was used to identify the protein expression of key p‐EMT‐related genes, P4HA2, ITGA5, MMP9, MT1X and SPP1. Complete EMT is not necessary for HCC progression. Overexpression of P4HA2, ITGA5, MMP9, SPP1 and down‐regulation of MT1X were found in HCC tissues, which were significantly associated with poor prognosis of HCC patients. By means of stepwise reverse prediction and validation from mRNA to lncRNA, an mRNA‐miRNA‐lncRNA ceRNA subnetwork correlated with HCC prognosis was identified by expression and survival analysis. This study implied that key p‐EMT‐related genes P4HA2, ITGA5, MMP9, MT1X, SPP1 could be prognostic biomarkers and potential targets of therapy for HCC patients. We constructed an mRNA‐miRNA‐lncRNA subnetwork containing p‐EMT‐related genes successfully, among which each component might be utilized as a prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Yu Lei
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoying Lin
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
331
|
Zeng XC, Zhang L, Liao WJ, Ao L, Lin ZM, Kang W, Chen WN, Lin X. Screening and Identification of Potential Biomarkers in Hepatitis B Virus-Related Hepatocellular Carcinoma by Bioinformatics Analysis. Front Genet 2020; 11:555537. [PMID: 33193629 PMCID: PMC7556301 DOI: 10.3389/fgene.2020.555537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers globally. Hepatitis B virus (HBV) infection might cause chronic hepatitis and cirrhosis, leading to HCC. To screen prognostic genes and therapeutic targets for HCC by bioinformatics analysis and determine the mechanisms underlying HBV-related HCC, three high-throughput RNA-seq based raw datasets, namely GSE25599, GSE77509, and GSE94660, were obtained from the Gene Expression Omnibus database, and one RNA-seq raw dataset was acquired from The Cancer Genome Atlas (TCGA). Overall, 103 genes were up-regulated and 127 were down-regulated. A protein–protein interaction (PPI) network was established using Cytoscape software, and 12 pivotal genes were selected as hub genes. The 230 differentially expressed genes and 12 hub genes were subjected to functional and pathway enrichment analyses, and the results suggested that cell cycle, nuclear division, mitotic nuclear division, oocyte meiosis, retinol metabolism, and p53 signaling-related pathways play important roles in HBV-related HCC progression. Further, among the 12 hub genes, kinesin family member 11 (KIF11), TPX2 microtubule nucleation factor (TPX2), kinesin family member 20A (KIF20A), and cyclin B2 (CCNB2) were identified as independent prognostic genes by survival analysis and univariate and multivariate Cox regression analysis. These four genes showed higher expression levels in HCC than in normal tissue samples, as identified upon analyses with Oncomine. In addition, in comparison with normal tissues, the expression levels of KIF11, TPX2, KIF20A, and CCNB2 were higher in HBV-related HCC than in HCV-related HCC tissues. In conclusion, our results suggest that KIF11, TPX2, KIF20A, and CCNB2 might be involved in the carcinogenesis and development of HBV-related HCC. They can thus be used as independent prognostic genes and novel biomarkers for the diagnosis of HBV-related HCC and development of pertinent therapeutic strategies.
Collapse
Affiliation(s)
- Xian-Chang Zeng
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lu Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wen-Jun Liao
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lu Ao
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ze-Man Lin
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wen Kang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wan-Nan Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
332
|
Guo B, Tan X, Cen H. EZH2 is a negative prognostic biomarker associated with immunosuppression in hepatocellular carcinoma. PLoS One 2020; 15:e0242191. [PMID: 33180829 PMCID: PMC7660515 DOI: 10.1371/journal.pone.0242191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
The enhancer of zeste homolog 2 (EZH2) plays a critical role in different components of anti-tumor immunity. However, the specific role of EZH2 in modulating MHC Class I antigen presentation and T cell infiltration have not been investigated in HCC. This study analyzed the expression and clinical significance of EZH2 in HCC. The EZH2 genetic alterations were identified using cBioPortal. The EZH2 mRNA and protein levels were found to be significantly higher in HCC than in adjacent normal liver tissues in multiple datasets from the GEO and TCGA databases. High expression of EZH2 was significantly correlated with poor overall survival, disease-specific survival, progression-free survival, and relapse-free survival in almost all patients with HCC. The gene set variance analysis (GSVA) showed that the expression of EZH2 is positively correlated with an immunosuppressive microenvironment and negatively correlated with major MHC class I antigen presentation molecules. Gene set enrichment analysis (GSEA) showed that high EZH2 expression is positively associated with the MYC and glycolysis signaling pathway and negatively associated with the interferon-gamma signaling pathway in HCC tissues. These findings demonstrate that EZH2 is a potential prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Baoping Guo
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xiaohong Tan
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Hong Cen
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|
333
|
Zhu L, Wu W, Jiang S, Yu S, Yan Y, Wang K, He J, Ren Y, Wang B. Pan-Cancer Analysis of the Mitophagy-Related Protein PINK1 as a Biomarker for the Immunological and Prognostic Role. Front Oncol 2020; 10:569887. [PMID: 33244455 PMCID: PMC7683787 DOI: 10.3389/fonc.2020.569887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction The PINK1 gene encodes a serine/threonine protein kinase that localizes to mitochondria and has usually been considered to protect cells from stress-induced mitochondrial dysfunction. PINK1 mutations have been observed to lead to autosomal recessive Parkinson’s disease. However, the immunological and prognostic roles of PINK1 across cancers remain unclear. Material and method In the current study, we used multiple databases, including Oncomine, PrognoScan, Kaplan-Meier Plotter, GEPIA, TIMER, and cBioportal, to investigate the PINK1 expression distribution and its immunological and prognostic role across cancers. Results and discussion Bioinformatics data revealed that the mRNA expression of PINK1 was downregulated in most tumors. Although there was a significant prognostic value of PINK1 expression across cancers, PINK1 played a protective or detrimental role in different kinds of cancers. Liver hepatocellular carcinoma and lung squamous cell carcinoma were selected as representative cancer types for further exploration. We found that PINK1 always played a protective role in liver hepatocellular carcinoma patients in the stratified prognostic analyses of clinicopathological characteristics. There were contradictory results between liver hepatocellular carcinoma and lung squamous cell carcinoma in the correlations of PINK1 expression with immune infiltration, including infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Furthermore, specific markers of B cells and CD8+ T cells also exhibited different PINK1-related immune infiltration patterns. In addition, there was a significant association between PINK1 copy number variations and immune infiltrates across cancers. Conclusion The mitophagy-related protein PINK1 can work as a biomarker for prognosis and the immune response across cancers.
Collapse
Affiliation(s)
- Lizhe Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Siyuan Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shibo Yu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yan
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Ren
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
334
|
Liu X, Qin J, Gao T, Li C, Chen X, Zeng K, Xu M, He B, Pan B, Xu X, Pan Y, Sun H, Xu T, Wang S. Analysis of METTL3 and METTL14 in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:21638-21659. [PMID: 33159022 PMCID: PMC7695415 DOI: 10.18632/aging.103959] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/01/2020] [Indexed: 12/25/2022]
Abstract
N6-methyladenosine (m6A) RNA methylation is the most prevalent modification of messenger RNAs (mRNAs) and catalyzed by a multicomponent methyltransferase complex (MTC), among which methyltransferase-like 3 (METTL3) and METTL14 are two core molecules. However, METTL3 and METTL14 play opposite regulatory roles in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, we conducted a multi-omics analysis of METTL3 and METTL14 in HCC, including RNA-sequencing, m6ARIP-sequencing, and ribosome-sequencing profiles. We found that the expression and prognostic value of METTL3 and METTL14 are opposite in HCC. Besides, after METTL3 and METTL14 knockdown, most of the dysregulated mRNAs, signaling pathways and biological processes are distinct in HCC, which partly explains the contrary regulatory role of METTL3 and METTL14. Intriguingly, these mRNAs whose stability or translation efficiency are influenced by METTL3 or METTL14 in an m6A dependent manner, jointly regulate multiple signaling pathways and biological processes, which supports the cooperative role of METTL3 and METTL14 in catalyzing m6A modification. In conclusion, our study further clarified the contradictory role of METTL3 and METTL14 in HCC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Tianyi Gao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Chenmeng Li
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Kaixuan Zeng
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xueni Xu
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211100, Jiangsu, China
| |
Collapse
|
335
|
Song H, Ding N, Li S, Liao J, Xie A, Yu Y, Zhang C, Ni C. Identification of Hub Genes Associated With Hepatocellular Carcinoma Using Robust Rank Aggregation Combined With Weighted Gene Co-expression Network Analysis. Front Genet 2020; 11:895. [PMID: 33133125 PMCID: PMC7561391 DOI: 10.3389/fgene.2020.00895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background Bioinformatics provides a valuable tool to explore the molecular mechanisms underlying pathogenesis of hepatocellular carcinoma (HCC). To improve prognosis of patients, identification of robust biomarkers associated with the pathogenic pathways of HCC remains an urgent research priority. Methods We employed the Robust Rank Aggregation method to integrate nine qualified HCC datasets from the Gene Expression Omnibus. A robust set of differentially expressed genes (DEGs) between tumor and normal tissue samples were screened. Weighted gene co-expression network analysis was applied to cluster DEGs and the key modules related to clinical traits identified. Based on network topology analysis, novel risk genes derived from key modules were mined and biological verification performed. The potential functions of these risk genes were further explored with the aid of miRNA–mRNA regulatory networks. Finally, the prognostic ability of these genes was assessed by constructing a clinical prediction model. Results Two key modules showed significant association with clinical traits. In combination with protein–protein interaction analysis, 29 hub genes were identified. Among these genes, 19 from one module showed a pattern of upregulation in HCC and were associated with the tumor node metastasis stage, and 10 from the other module displayed the opposite trend. Survival analyses indicated that all these genes were significantly related to patient prognosis. Based on the miRNA-mRNA regulatory network, 29 genes strongly linked to tumor activity were identified. Notably, five of the novel risk genes, ABAT, DAO, PCK2, SLC27A2, and HAO1, have rarely been reported in previous studies. Gene set enrichment analysis for each gene revealed regulatory roles in proliferation and prognosis of HCC. Least absolute shrinkage and selection operator regression analysis further validated DAO, PCK2, and HAO1 as prognostic factors in an external HCC dataset. Conclusion Analysis of multiple datasets combined with global network information presents a successful approach to uncover the complex biological mechanisms of HCC. More importantly, this novel integrated strategy facilitates identification of risk hub genes as candidate biomarkers for HCC, which could effectively guide clinical treatments.
Collapse
Affiliation(s)
- Hao Song
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Na Ding
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shang Li
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianlong Liao
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Aimin Xie
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Youtao Yu
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Chunlong Zhang
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
336
|
Qi Z, Yan F, Chen D, Xing W, Li Q, Zeng W, Bi B, Xie J. Identification of prognostic biomarkers and correlations with immune infiltrates among cGAS-STING in hepatocellular carcinoma. Biosci Rep 2020; 40:BSR20202603. [PMID: 33006365 PMCID: PMC7569205 DOI: 10.1042/bsr20202603] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway induces innate immunity by activating the production of inflammatory cytokines and type I interferons. Recently, studies revealed that self-DNA from by-products of chromosome instability and tumors could activate the cGAS-STING pathway, and subsequently promote or inhibit tumor development. However, the prognostic value and correlations with immune infiltrates of the cGAS-STING pathway in hepatocellular carcinoma (HCC) have not been clarified. In the present study, we used the Molecular Signatures Database, Oncomine, UALCAN, Human Protein Atlas, Kaplan-Meier plotter, LinkedOmics, and Tumor Immune Estimation Resource databases. Overexpression of XRCC5, IRF3, TRIM21, STAT6, DDX41, TBK1, XRCC6, TREX1, PRKDC, and TMEM173 was markedly correlated with clinical stages and pathological grades in HCC. Moreover, higher mRNA expression of XRCC5, XRCC6, and PRKDC was significantly related with shorter overall survival. However, higher mRNA expression of IFI16, STAT6, NLRC3, and TMEM173 was associated with favorable overall survival. Our results suggested that the kinase targets of the cGAS-STING pathway included the SRC family of tyrosine kinases (LCK and LYN), phosphoinositide 3-kinase-related protein kinase (PIKK) family kinases (ATM and ATR), and mitogen-activated protein kinase 1 (MAPK1). Furthermore, we identified significant correlations among the expression of cGAS-STING pathway and infiltration of B cells, CD4+T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells in HCC. The expression of the cGAS-STING pathway also exhibited strong relationships with diverse immune marker sets in HCC. These findings suggest that cGAS-STING pathway members may be used as prognostic biomarkers and immunotherapeutic targets HCC patients.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Datasets as Topic
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Kaplan-Meier Estimate
- Liver/immunology
- Liver/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Membrane Proteins/metabolism
- Nucleotidyltransferases/metabolism
- Oligonucleotide Array Sequence Analysis
- Prognosis
- RNA-Seq
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Zhenhua Qi
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Fang Yan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Wei Xing
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Qiang Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Bingtian Bi
- Department of Clinical Trial Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| |
Collapse
|
337
|
Zeng L, Fan X, Wang X, Deng H, Zhang X, Zhang K, He S, Li N, Han Q, Liu Z. Involvement of NEK2 and its interaction with NDC80 and CEP250 in hepatocellular carcinoma. BMC Med Genomics 2020; 13:158. [PMID: 33109182 PMCID: PMC7590453 DOI: 10.1186/s12920-020-00812-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND NEK2 has an established involvement in hepatocellular carcinoma (HCC) but the roles of NEK2 and its interacting proteins in HCC have not been systematically explored. METHODS This study examined NEK2 and its interacting proteins in HCC based on multiple databases. RESULTS NEK2 mRNA was highly expressed in HCC tissues compared with normal liver tissues. The survival of HCC patients with high NEK2 mRNA expression was shorter than those with low expression. MAD1L1, CEP250, MAPK1, NDC80, PPP1CA, PPP1R2 and NEK11 were the interacting proteins of NEK2. Among them, NDC80 and CEP250 were the key interacting proteins of NEK2. Mitotic prometaphase may be the key pathway that NEK2 and its interacting proteins contributed to HCC pathogenesis. NEK2, NDC80 and CEP250 mRNAs were highly expressed in HCC tissues compared with normal liver tissues. The mRNA levels of NEK2 were positively correlated with those of NDC80 or CEP250. Univariate regression showed that NEK2, NDC80 and CEP250 mRNA expressions were significantly associated with HCC patients' survival. Multivariate regression showed that NDC80 mRNA expression was an independent predictor for HCC patients' survival. Methylations and genetic alterations of NEK2, NDC80 and CEP250 were observed in HCC samples. The alterations of NEK2, NDC80 and CEP250 genes were co-occurrence. Patients with high mRNA expression and genetic alterations of NEK2, NDC80 and CEP250 had poor prognosis. CONCLUSIONS NEK2 and its interacting proteins NDC80 and CEP250 play important roles in HCC development and progression and thus may be potentially used as biomarkers and therapeutic targets of HCC.
Collapse
Affiliation(s)
- Lu Zeng
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
- Xi’an Medical University, Xi’an, 710021 Shaanxi Province People’s Republic of China
| | - Xiude Fan
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Xiaoyun Wang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Huan Deng
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Xiaoge Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Kun Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Shan He
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
- Xi’an Medical University, Xi’an, 710021 Shaanxi Province People’s Republic of China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| |
Collapse
|
338
|
Marquard S, Thomann S, Weiler SME, Bissinger M, Lutz T, Sticht C, Tóth M, de la Torre C, Gretz N, Straub BK, Marquardt J, Schirmacher P, Breuhahn K. Yes-associated protein (YAP) induces a secretome phenotype and transcriptionally regulates plasminogen activator Inhibitor-1 (PAI-1) expression in hepatocarcinogenesis. Cell Commun Signal 2020; 18:166. [PMID: 33097058 PMCID: PMC7583285 DOI: 10.1186/s12964-020-00634-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Background Overexpression and nuclear enrichment of the oncogene yes-associated protein (YAP) cause tumor initiation and support tumor progression in human hepatocellular carcinoma (HCC) via cell autonomous mechanisms. However, how YAP expression in tumor cells affects intercellular communication within the tumor microenvironment is not well understood. Methods To investigate how tumor cell-derived YAP is changing the paracrine communication network between tumor cells and non-neoplastic cells in hepatocarcinogenesis, the expression and secretion of cytokines, growth factors and chemokines were analyzed in transgenic mice with liver-specific and inducible expression of constitutively active YAP (YAPS127A). Transcriptomic and proteomic analyses were performed using primary isolated hepatocytes and blood plasma. In vitro, RNAinterference (RNAi), expression profiling, functional analyses and chromatin immunoprecipitation (ChIP) analyses of YAP and the transcription factor TEA domain transcription factor 4 (TEAD4) were performed using immortalized cell lines. Findings were confirmed in cohorts of HCC patients at the transcript and protein levels. Results YAP overexpression induced the expression and secretion of many paracrine-acting factors with potential impact on tumorous or non-neoplastic cells (e.g. plasminogen activator inhibitor-1 (PAI-1), C-X-C motif chemokine ligand 13 (CXCL13), CXCL16). Expression analyses of human HCC patients showed an overexpression of PAI-1 in human HCC tissues and a correlation with poor overall survival as well as early cancer recurrence. PAI-1 statistically correlated with genes typically induced by YAP, such as connective tissue growth factor (CTGF) and cysteine rich angiogenic inducer 61 (CYR61) or YAP-dependent gene signatures (CIN4/25). In vitro, YAP inhibition diminished the expression and secretion of PAI-1 in murine and human liver cancer cell lines. PAI-1 affected the expression of genes involved in cellular senescence and oncogene-induced senescence was confirmed in YAPS127A transgenic mice. Silencing of TEAD4 as well as treatment with the YAP/TEAD interfering substance Verteporfin reduced PAI-1 expression. ChIP analyses confirmed the binding of YAP and TEAD4 to the gene promoter of PAI-1 (SERPINE1). Conclusions These results demonstrate that the oncogene YAP changes the secretome response of hepatocytes and hepatocyte-derived tumor cells. In this context, the secreted protein PAI-1 is transcriptionally regulated by YAP in hepatocarcinogenesis. Perturbation of these YAP-dependent communication hubs including PAI-1 may represent a promising pharmacological approach in tumors with YAP overexpression. Video abstract
Supplementary information Supplementary information accompanies this paper at 10.1186/s12964-020-00634-6.
Collapse
Affiliation(s)
- Simone Marquard
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Thomann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Teresa Lutz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Present address: Department of Medicine II, LMU Munich, Munich, Germany
| | - Carsten Sticht
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolina de la Torre
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Beate K Straub
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | - Jens Marquardt
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany.,Present address: Department of Medicine I, University Hospital Lübeck, Lübeck, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
339
|
Thomann S, Weiler SME, Marquard S, Rose F, Ball CR, Tóth M, Wei T, Sticht C, Fritzsche S, Roessler S, De La Torre C, Ryschich E, Ermakova O, Mogler C, Kazdal D, Gretz N, Glimm H, Rempel E, Schirmacher P, Breuhahn K. YAP Orchestrates Heterotypic Endothelial Cell Communication via HGF/c-MET Signaling in Liver Tumorigenesis. Cancer Res 2020; 80:5502-5514. [PMID: 33087321 DOI: 10.1158/0008-5472.can-20-0242] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
The oncogene yes-associated protein (YAP) controls liver tumor initiation and progression via cell extrinsic functions by creating a tumor-supporting environment in conjunction with cell autonomous mechanisms. However, how YAP controls organization of the microenvironment and in particular the vascular niche, which contributes to liver disease and hepatocarcinogenesis, is poorly understood. To investigate heterotypic cell communication, we dissected murine and human liver endothelial cell (EC) populations into liver sinusoidal endothelial cells (LSEC) and continuous endothelial cells (CEC) through histomorphological and molecular characterization. In YAPS127A-induced tumorigenesis, a gradual replacement of LSECs by CECs was associated with dynamic changes in the expression of genes involved in paracrine communication. The formation of new communication hubs connecting CECs and LSECs included the hepatocyte growth factor (Hgf)/c-Met signaling pathway. In hepatocytes and tumor cells, YAP/TEA domain transcription factor 4 (TEAD4)-dependent transcriptional induction of osteopontin (Opn) stimulated c-Met expression in EC with CEC phenotype, which sensitized these cells to the promigratory effects of LSEC-derived Hgf. In human hepatocellular carcinoma, the presence of a migration-associated tip-cell signature correlated with poor clinical outcome and the loss of LSEC marker gene expression. The occurrence of c-MET-expressing CECs in human liver cancer samples was confirmed at the single-cell level. In summary, YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between LSECs and CECs via the HGF/c-MET axis. SIGNIFICANCE: YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between EC subpopulations. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5502/F1.large.jpg.
Collapse
Affiliation(s)
- Stefan Thomann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Marquard
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Teng Wei
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, University of Heidelberg, Heidelberg, Germany
| | - Sarah Fritzsche
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Eduard Ryschich
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Olga Ermakova
- Center for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg, Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Personalized Oncology, University Hospital Carl Gustav Carus TU Dresden, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Eugen Rempel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
340
|
Yang W, Niu L, Zhao X, Duan L, Li Y, Wang X, Zhang Y, Zhou W, Liu J, Zhao Q, Han Y, Fan D, Hong L. Development and validation of a survival model based on autophagy-associated genes for predicting prognosis of hepatocellular carcinoma. Am J Transl Res 2020; 12:6705-6722. [PMID: 33194067 PMCID: PMC7653605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE This study aimed to identify the novel prognostic gene signature based on autophagy-associated genes (ARGs) in hepatocellular carcinoma (HCC). METHODS The RNA sequencing data and clinical information of HCC and normal tissues were obtained from The Cancer Genome Atlas (TCGA) database. The differentially expressed ARGs were screened by the Wilcoxon signed-rank test. Cox regression analysis and Lasso regression analysis were performed to screen the ARGs and establish the prognostic prediction model. Kaplan-Meier and receiver operating characteristic (ROC) curves were both used to evaluate the accuracy of the model. GSE14520 dataset (testing cohort) was used to validate the prognostic risk model in TCGA. A clinical nomogram was established to predict the survival rate of HCC patients. RESULTS Totally 27 differentially expressed ARGs were identified. Three OS-related ARGs (SQSTM1, HSPB8, and BIRC5) were identified via the Cox regression and Lasso regression analyses. Based on these three ARGs, a prognostic prediction model was constructed. HCC patients with high risk score present poorer prognosis than those with low risk score both in TCGA cohort (P=4.478e-04) and testing cohort (P=1.274e-03). Moreover, the risk score curve shows a well feasibility in predicting the patients' survival both in TCGA and GEO cohort with the area under the ROC curve (AUC) of 0.756 and 0.672, respectively. Besides, the calibration curves and C-index indicated that the clinical nomogram performs well to predict survival rate in HCC patients. CONCLUSIONS The survival model based on the ARGs may be a promising tool to predict the prognosis in HCC patients.
Collapse
Affiliation(s)
- Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Xinhui Zhao
- Department of Thyroid and Breast Surgery, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest UniversityXi’an 710018, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, China
| |
Collapse
|
341
|
Das P, Taube JH. Regulating Methylation at H3K27: A Trick or Treat for Cancer Cell Plasticity. Cancers (Basel) 2020; 12:E2792. [PMID: 33003334 PMCID: PMC7600873 DOI: 10.3390/cancers12102792] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Properly timed addition and removal of histone 3 lysine 27 tri-methylation (H3K27me3) is critical for enabling proper differentiation throughout all stages of development and, likewise, can guide carcinoma cells into altered differentiation states which correspond to poor prognoses and treatment evasion. In early embryonic stages, H3K27me3 is invoked to silence genes and restrict cell fate. Not surprisingly, mutation or altered functionality in the enzymes that regulate this pathway results in aberrant methylation or demethylation that can lead to malignancy. Likewise, changes in expression or activity of these enzymes impact cellular plasticity, metastasis, and treatment evasion. This review focuses on current knowledge regarding methylation and de-methylation of H3K27 in cancer initiation and cancer cell plasticity.
Collapse
Affiliation(s)
| | - Joseph H. Taube
- Department of Biology, Baylor University, Waco, TX 76706, USA;
| |
Collapse
|
342
|
CPEB3-mediated MTDH mRNA translational suppression restrains hepatocellular carcinoma progression. Cell Death Dis 2020; 11:792. [PMID: 32968053 PMCID: PMC7511356 DOI: 10.1038/s41419-020-02984-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein. We had reported that CPEB3 is involved in hepatocellular carcinoma (HCC) progression. However, the underlying mechanisms of CPEB3 in HCC remain unclear. In this study, we firstly performed RNA immunoprecipitation to uncover the transcriptome-wide CPEB3-bound mRNAs (CPEB3 binder) in HCC. Bioinformatic analysis indicates that CPEB3 binders are closely related to cancer progression, especially HCC metastasis. Further studies confirmed that metadherin (MTDH) is a direct target of CPEB3. CPEB3 can suppress the translation of MTDH mRNA in vivo and in vitro. Besides, luciferase assay demonstrated that CPEB3 interacted with 3'-untranslated region of MTDH mRNA and inhibited its translation. Subsequently, CPEB3 inhibited the epithelial-mesenchymal transition and metastasis of HCC cells through post-transcriptional regulation of MTDH. In addition, cpeb3 knockout mice are more susceptible to carcinogen-induced hepatocarcinogenesis and subsequent lung metastasis. Our results also indicated that CPEB3 was a good prognosis marker, which is downregulated in HCC tissue. In conclusion, our results demonstrated that CPEB3 played an important role in HCC progression and targeting CPEB3-mediated mRNA translation might be a favorable therapeutic approach.
Collapse
|
343
|
Zhao Y, Xue C, Xie Z, Ouyang X, Li L. Comprehensive analysis of ubiquitin-specific protease 1 reveals its importance in hepatocellular carcinoma. Cell Prolif 2020; 53:e12908. [PMID: 32951278 PMCID: PMC7574869 DOI: 10.1111/cpr.12908] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives In this study, we comprehensively analysed the role of ubiquitin‐specific protease 1(USP1) in hepatocellular carcinoma (HCC) using data from a set of public databases. Materials and Methods We analysed the mRNA expression of USP1 in HCC and subgroups of HCC using Oncomine and UALCAN. Survival analysis of USP1 in HCC was conducted with the Kaplan‐Meier Plotter database. The mutations of USP1 in HCC were analysed using cBioPortal and the Catalogue of Somatic Mutations in Cancer database. Differential genes correlated with USP1 and WD repeat domain 48 (WDR48) were obtained using LinkedOmics. USP1 was knocked down with small interfering RNA (siRNA) or pharmacologically inhibited by ML‐323 in MHCC97H or SK‐Hep‐1 cell lines for function analysis. Results High USP1 expression predicted unfavourable overall survival in HCC patients. USP1 showed positive correlations with the abundances of macrophages and neutrophils. We identified 98 differential genes that were positively correlated with both USP1 and WDR48. These genes were mainly involved in the cell cycle, aldosterone synthesis and secretion and oestrogen signalling pathways. Interactions between USP1 and WDR 48 were confirmed using co‐immunoprecipitation. USP1 knockdown or ML‐323 treatment reduced the expression of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E1. Conclusions Overall, USP1 is a promising target for HCC treatment with good prognostic value. USP1 and WDR48 function together in regulating cancer cell proliferation via the cell cycle.
Collapse
Affiliation(s)
- Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
344
|
Zhang L, Qiao Y, Huang J, Wan D, Zhou L, Lin S, Zheng S. Expression Pattern and Prognostic Value of Key Regulators for m6A RNA Modification in Hepatocellular Carcinoma. Front Med (Lausanne) 2020; 7:556. [PMID: 33072775 PMCID: PMC7534531 DOI: 10.3389/fmed.2020.00556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 01/12/2023] Open
Abstract
As the most prevalent type of mRNA modification in mammals, N6-methyladenosine (m6A) is involved in various biological processes. Accumulating studies have indicated that the deregulation of m6A RNA modification is linked to cancer and other diseases. However, its implications in hepatocellular carcinoma (HCC) remain poorly characterized. Herein, we sought to investigate the expression pattern of 13 key regulators for m6A RNA modification and to evaluate their prognostic value in HCC. First, we systematically analyzed data from The Cancer Genome Atlas (TCGA) database pertaining to patient clinical information and mRNA gene expression data. We found that 11 out of 13 key regulators for m6A RNA modification showed significantly higher expression levels in HCC. Subsequently, we identified two subgroups (clusters 1 and 2) via consensus clustering based on the expression of 13 m6A RNA methylation regulators. Cluster 2 had a worse prognosis and was also significantly correlated with higher histological grade and pathological stage when compared with cluster 1. Moreover, cluster 2 was remarkedly enriched for cancer-related pathways. We further constructed a robust risk signature of five regulators for m6A RNA modification. Further analysis indicated that this risk signature could be an independent prognostic factor for HCC, and the prognostic relevance of this five-gene risk signature was successfully validated using the Gene Expression Omnibus (GEO) dataset. Finally, we established a novel prognostic nomogram on the basis of age, gender, histological grade, pathological stage, and risk score to precisely predict the prognosis of patients with HCC. In summary, we herein uncovered the vital role of regulators for m6A RNA modification in HCC and developed a risk signature as a promising prognostic marker in HCC patients.
Collapse
Affiliation(s)
- Lele Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Yiting Qiao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Jiacheng Huang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Dalong Wan
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China
| | - Lin Zhou
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, China.,Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Shusen Zheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China.,Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| |
Collapse
|
345
|
Liu W, Xu W, Chen Y, Gu L, Sun X, Qu Y, Zhang H, Liu X, Huang H. Elevated double-strand break repair protein RAD50 predicts poor prognosis in hepatitis B virus-related hepatocellular carcinoma: A study based on Chinese high-risk cohorts. J Cancer 2020; 11:5941-5952. [PMID: 32922536 PMCID: PMC7477405 DOI: 10.7150/jca.46703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Increasing evidence indicates that RAD50, which is involved in the repair process of DNA double-strand break (DSB), is also involved in cancer outcomes. However, its role in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remains unclear. This study was designed to investigate the expression of RAD50 and its prognostic value in HBV-related HCC patients. Methods: 107 and 100 patients with HBV-related HCC from the Affiliated Hospital of Youjiang Medical University of Nationalities (AHYMUN) and the Affiliated Hospital of Nantong University (AHNU), respectively, were enrolled in the study. The distribution of the categorical clinical-pathological data and the levels of RAD50 expression were compared with a χ2 test. Immunohistochemistry (IHC) staining of RAD50 was performed. A partial likelihood test based on univariate and multivariate Cox regression analysis was developed to address the influence of independent factors on disease-free survival (DFS) and overall survival (OS). The Oncomine online database was used to analyse and validate the differential expression of RAD50. The Kaplan-Meier method and a log-rank test were performed to assess the influence of RAD50 on survival at different levels. Results: RAD50 was highly expressed in HCC tissues compared to normal tissues and was significantly correlated with OS in the Cancer Genome Atlas (TCGA) cohort. The validation analysis indicated that significantly increased levels of RAD50 were expressed in HCC tissues in the two independent cohorts. In addition, HCC patients with elevated RAD50 expression levels showed poor OS and DFS in the AHYMUN cohort and decreased OS and DFS in the AHNTU cohort. Conclusion: In conclusion, our study reveals that elevated RAD50 expression is significantly correlated with cancer progression and poor survival in HBV-related HCC patients. These data suggest that RAD50 may act as an oncogene and may serve as a promising target for the therapy of HBV-related HCC patients.
Collapse
Affiliation(s)
- Wangrui Liu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China.,Clinical College of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
| | - Yuyan Chen
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, 226001, China
| | - Liugen Gu
- Gastroenterology Department, Second affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xiaolei Sun
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
| | - Xiaojuan Liu
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| | - Haineng Huang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China.,Clinical College of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| |
Collapse
|
346
|
BRD4/8/9 are prognostic biomarkers and associated with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:17541-17567. [PMID: 32927435 PMCID: PMC7521508 DOI: 10.18632/aging.103768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Bromodomain (BRD)-containing proteins are a class of epigenetic readers with unique recognition for N-acetyl-lysine in histones and functions of gene transcription and chromatin modification, known to be critical in various cancers. However, little is known about the roles of distinct BRD-containing protein genes in hepatocellular carcinoma (HCC). Most recently, we investigated the transcriptional and survival data of BRD1, BRD2, BRD3, BRD4, BRD7, BRD8, BRD9 in HCC patients through ONCOMINE, UALCAN, Human Protein Atlas, GEPIA, cBioPortal, STRING, TIMER databases. BRD1/2/3/4/7/8/9 were over-expressed in HCC and were significantly associated with clinical cancer stages and pathological tumor grades. High mRNA expressions of BRD4/8/9 were promising candidate biomarkers in HCC patients. The rate of sequence alternations in BRD1/2/3/4/7/8/9 was relatively high (52%) in HCC patients, and the genetic alternations were correlated with shorter overall survival and disease-free survival in HCC patients. Additionally, the mRNA expression levels of individual BRD genes were significantly positively associated with the immune infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. And the associations between BRD1/2/3/4/7/8/9 and diverse immune marker sets showed a significance. Overall, these results indicated that BRD4/8/9 could be potential prognostic markers and druggable epigenetic targets in HCC patients.
Collapse
|
347
|
Liang YC, Wang JL, Wang HT, Liu H, Zhang HL, Liang YX. ADRM1 as a therapeutic target in hepatocellular carcinoma. Kaohsiung J Med Sci 2020; 37:47-54. [PMID: 32916039 DOI: 10.1002/kjm2.12298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/02/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), a primary liver tumor, is the third leading cause of cancer-related mortality worldwide. The proteasome system is overactivated in the majority of tumors, including HCC. However, targeting the proteasome system in HCC is not as effective as in other types of cancer. Therefore, a new target of HCC therapy needs to be identified, and the potential mechanism must be studied. Using the The Cancer Gene Genome Atlas and GEO datasets, the present investigation demonstrated for the first time that ADRM1 is overexpressed in HCC, and the high level of its expression predicts poor overall survival in HCC patients. The high expression of ADRM1 in HCC was verified using tumor tissue arrays. By comparing paired tumor and nontumor tissues, it was shown that the majority of HCC patients (76.25%) exhibited higher ADRM1 expression in the tumor than in normal tissues. in vitro experiments demonstrated that targeting ADRM1 with shRNAs significantly suppressed the proliferation of HCC cells. RA190, a specific inhibitor of ADRM1, suppressed cell proliferation and colony formation by HCC cells in a concentration-dependent manner. The study of the mechanism of the effects of RA190 revealed that targeting ADRM1 blocked the G2/M transition in the cell cycle and induced apoptosis of HCC cells. Together, the obtained results indicate that ADRM1 is a promising target for HCC therapy and suggest that ADRM1 inhibitors, such as RA190, have the potential for clinical application in the treatment of HCC.
Collapse
Affiliation(s)
- Yu-Cen Liang
- Department of Hepatobiliary Surgery, Wuwei People's Hospital, Wuwei, China
| | - Ji-Lin Wang
- Department of Nursing, Wuwei Occupational College, Wuwei, China
| | - Hong-Tao Wang
- Department of Hepatobiliary Surgery, Wuwei People's Hospital, Wuwei, China
| | - Hu Liu
- Department of Hepatobiliary Surgery, Wuwei People's Hospital, Wuwei, China
| | - Hong-Long Zhang
- Department of Hepatobiliary Surgery, Wuwei People's Hospital, Wuwei, China
| | - Yu-Xia Liang
- Department of Nursing, Wuwei Occupational College, Wuwei, China
| |
Collapse
|
348
|
Cao T, Yi SJ, Wang LX, Zhao JX, Xiao J, Xie N, Zeng Z, Han Q, Tang HO, Li YK, Zou J, Wu Q. Identification of the DNA Replication Regulator MCM Complex Expression and Prognostic Significance in Hepatic Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3574261. [PMID: 32964028 PMCID: PMC7499325 DOI: 10.1155/2020/3574261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The microliposome maintenance (MCM) complex, MCM2-7, is revealed to be involved in multiple cellular processes and plays a key role in the development and progression of human cancers. However, the MCM complex remains poorly elaborated in hepatic carcinoma (HCC). METHODS In the study, we found the mRNA and protein level by bioinformatics. We also explored the prognostic value, genetic alteration, interaction network, and functional enrichment of MCM2-7. The MCM expression and correlation among these MCMs in HCC cell lines were identified by western blot. RESULTS MCM2-7 was significantly increased in HCC tissues compared to normal liver tissues. The high level of MCM2-7 had a positive correlation with poor prognosis. However, MCM2-7 alterations were not correlated with poor OS. MCMs were both increased in HCC cell lines compared to the normal hepatocyte cell line. Furthermore, the positive correlation was found among MCMs in HCC cell lines. CONCLUSIONS The MCM complex was increased in HCC tissues and cell lines and negatively correlated with prognosis, which might be important biomarkers for HCC.
Collapse
Affiliation(s)
- Ting Cao
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Shi-jie Yi
- Department of Gastrointestinal Surgery, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Li-xin Wang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd., Shanghai 201203, China
| | - Juan-xia Zhao
- Department of Pathology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Ni Xie
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Zhi Zeng
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437000, China
| | - Qi Han
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437000, China
| | - Hai-ou Tang
- Jishou University College of Medicine, Jishou 416000, China
| | - Yu-kun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Juan Zou
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| |
Collapse
|
349
|
Hong R, Gu J, Niu G, Hu Z, Zhang X, Song T, Han S, Hong L, Ke C. PRELP has prognostic value and regulates cell proliferation and migration in hepatocellular carcinoma. J Cancer 2020; 11:6376-6389. [PMID: 33033521 PMCID: PMC7532499 DOI: 10.7150/jca.46309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: Hepatocellular carcinoma (HCC) is an aggressive and prevalent tumor threatening human health. A previous study suggested low PRELP (proline/arginine-rich end leucine-rich repeat protein) expression was associated with poor patient survival in pancreatic ductal adenocarcinoma (PDAC). However, the role of PRELP in HCC has not yet been illuminated. Methods: PRELP expression analyses were carried out using transcriptomic datasets from the Integrative Molecular Database of Hepatocellular Carcinoma (HCCDB). The correlations between PRELP expression and clinicopathological features, and prognostic analyses were performed with a tissue microarray (TMA) and immunohistochemistry (IHC). The endogenous expression and in vitro roles of PRELP were investigated in cultured HCC cell lines. The potential mechanisms were characterized by a Gene Set Enrichment Analysis (GSEA) and gene-gene correlation analyses. Results: We found that PRELP mRNA expression was dramatically decreased in HCCs in comparison with that in adjacent normal tissues (NTs) or hepatic cirrhosis. IHC staining showed that PRELP was down-regulated in HCCs, which mainly located in cytoplasm, and was also found in nuclei. The correlation analyses revealed that PRELP expression was relevant to later p-stages (p= 0.028) and tumor size (p= 0.001). The overall survival (OS) and relapse free survival (RFS) time was shorter in HCC patients with lower PRELP expression levels than that with higher PRELP expression levels. Overexpression of PRELP inhibited, while knockdown of PRELP promoted proliferation and migration of HCC cells. For potential mechanisms, PRELP may inhibit progression of HCCs by interacting with integrin family members and the extracellular microenvironment. Conclusion: Our findings demonstrated that overexpression of PRELP correlates with better patient survival and inhibits both cell proliferation and migration in HCC. Therefore, PRELP can serve as a potential prognostic biomarker and therapeutic target which deserves further investigation.
Collapse
Affiliation(s)
- Runqi Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Jiawei Gu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Gengming Niu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Zhiqing Hu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Xiaotian Zhang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Tao Song
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Shanliang Han
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Liang Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Chongwei Ke
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| |
Collapse
|
350
|
Wang L, Candia J, Ma L, Zhao Y, Imberti L, Sottini A, Dobbs K, NIAID-NCI COVID Consortium, Lisco A, Sereti I, Su HC, Notarangelo LD, Wang XW. Serological Responses to Human Virome Define Clinical Outcomes of Italian Patients Infected with SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.09.04.20187088. [PMID: 32908997 PMCID: PMC7480049 DOI: 10.1101/2020.09.04.20187088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic respiratory infectious disease COVID-19. However, clinical manifestations and outcomes differ significantly among COVID-19 patients, ranging from asymptomatic to extremely severe, and it remains unclear what drives these disparities. Here, we studied 159 hospitalized Italian patients with pneumonia from the NIAID-NCI COVID-19 Consortium using a phage-display method to characterize circulating antibodies binding to 93,904 viral peptides encoded by 1,276 strains of human viruses. SARS-CoV-2 infection was associated with a marked increase in individual's immune memory antibody repertoires linked to trajectories of disease severity from the longitudinal analysis also including anti-spike protein antibodies. By applying a machine-learning-based strategy, we developed a viral exposure signature predictive of COVID-19-related disease severity linked to patient survival. These results provide a basis for understanding the roles of memory B-cell repertoires in COVID-19-related symptoms as well as a predictive tool for monitoring its clinical severity.
Collapse
Affiliation(s)
- Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
- These authors contributed equally
| | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
- These authors contributed equally
| | - Lichun Ma
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
- These authors contributed equally
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21701
- These authors contributed equally
| | - Luisa Imberti
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
- Lead Contact
| |
Collapse
|