301
|
Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The "baby lung" became an adult. Intensive Care Med 2016; 42:663-673. [DOI: 10.1007/s00134-015-4200-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
|
302
|
Abstract
PURPOSE OF REVIEW Measurements of lung volumes allow evaluating the pathophysiogical severity of acute respiratory distress syndrome (ARDS) in terms of the degree of reduction in aerated lung volume, calculating strain, quantifying recruitment and/or hyperinflation, and gas volume distribution. We summarize the current techniques for lung volume assessment selected according to their possible usage in the ICU and discuss the recent findings obtained with implementation of these techniques in patients with ARDS. RECENT FINDINGS Computed tomography technique remains irreplaceable in terms of quantitative aeration of different lung regions, but the commonly used cut-offs for classification may be questioned with recent findings on nonpathological lungs. Monitoring end expiratory lung volume using nitrogen washout technique enhanced our understanding on lung volume change during positioning, pleural effusion drainage, intra-abdominal hypertension, and recruitment maneuver. Recent studies supported that tidal volume could not surrogate tidal strain, which needs measurement of functional residual capacity and which is correlated with pro-inflammatory lung response. SUMMARY Although lung volume measurements are still limited to research area of ARDS, recent progress in technology provides clinicians more opportunities to evaluate lung volumes noninvasively at the bedside and may facilitate individualization of ventilator settings based on the specific physiological understandings of a given patient.
Collapse
|
303
|
Santos RS, Silva PL, Pelosi P, Rocco PRM. Recruitment maneuvers in acute respiratory distress syndrome: The safe way is the best way. World J Crit Care Med 2015; 4:278-286. [PMID: 26557478 PMCID: PMC4631873 DOI: 10.5492/wjccm.v4.i4.278] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/08/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a serious problem in critically ill patients and is associated with in-hospital mortality rates of 33%-52%. Recruitment maneuvers (RMs) are a simple, low-cost, feasible intervention that can be performed at the bedside in patients with ARDS. RMs are characterized by the application of airway pressure to increase transpulmonary pressure transiently. Once non-aerated lung units are reopened, improvements are observed in respiratory system mechanics, alveolar reaeration on computed tomography, and improvements in gas exchange (functional recruitment). However, the reopening process could lead to vascular compression, which can be associated with overinflation, and gas exchange may not improve as expected (anatomical recruitment). The purpose of this review was to discuss the effects of different RM strategies - sustained inflation, intermittent sighs, and stepwise increases of positive end-expiratory pressure (PEEP) and/or airway inspiratory pressure - on the following parameters: hemodynamics, oxygenation, barotrauma episodes, and lung recruitability through physiological variables and imaging techniques. RMs and PEEP titration are interdependent events for the success of ventilatory management. PEEP should be adjusted on the basis of respiratory system mechanics and oxygenation. Recent systematic reviews and meta-analyses suggest that RMs are associated with lower mortality in patients with ARDS. However, the optimal RM method (i.e., that providing the best balance of benefit and harm) and the effects of RMs on clinical outcome are still under discussion, and further evidence is needed.
Collapse
|
304
|
Rittayamai N, Katsios CM, Beloncle F, Friedrich JO, Mancebo J, Brochard L. Pressure-Controlled vs Volume-Controlled Ventilation in Acute Respiratory Failure: A Physiology-Based Narrative and Systematic Review. Chest 2015; 148:340-355. [PMID: 25927671 DOI: 10.1378/chest.14-3169] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Mechanical ventilation is a cornerstone in the management of acute respiratory failure. Both volume-targeted and pressure-targeted ventilations are used, the latter modes being increasingly used. We provide a narrative review of the physiologic principles of these two types of breath delivery, performed a literature search, and analyzed published comparisons between modes. METHODS We performed a systematic review and meta-analysis to determine whether pressure control-continuous mandatory ventilation (PC-CMV) or pressure control-inverse ratio ventilation (PC-IRV) has demonstrated advantages over volume control-continuous mandatory ventilation (VC-CMV). The Cochrane tool for risk of bias was used for methodologic quality. We also introduced physiologic criteria as quality indicators for selecting the studies. Outcomes included compliance, gas exchange, hemodynamics, work of breathing, and clinical outcomes. Analyses were completed with RevMan5 using random effects models. RESULTS Thirty-four studies met inclusion criteria, many being at high risk of bias. Comparisons of PC-CMV/PC-IRV and VC-CMV did not show any difference for compliance or gas exchange, even when looking at PC-IRV. Calculating the oxygenation index suggested a poorer effect for PC-IRV. There was no difference between modes in terms of hemodynamics, work of breathing, or clinical outcomes. CONCLUSIONS The two modes have different working principles but clinical available data do not suggest any difference in the outcomes. We included all identified trials, enhancing generalizability, and attempted to include only sufficient quality physiologic studies. However, included trials were small and varied considerably in quality. These data should help to open the choice of ventilation of patients with acute respiratory failure.
Collapse
Affiliation(s)
- Nuttapol Rittayamai
- Li Ka Shing Knowledge Institute and Critical Care Department, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Division of Respiratory Diseases and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Christina M Katsios
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - François Beloncle
- Li Ka Shing Knowledge Institute and Critical Care Department, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Medical Intensive Care Unit, Hospital of Angers, Université d'Angers, Angers, France
| | - Jan O Friedrich
- Li Ka Shing Knowledge Institute and Critical Care Department, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Jordi Mancebo
- Servei de Medicina Intensiva, Hospital Sant Pau, Barcelona, Spain
| | - Laurent Brochard
- Li Ka Shing Knowledge Institute and Critical Care Department, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
305
|
Hubmayr RD, Pannu S. Understanding lung protection. Intensive Care Med 2015; 41:2184-6. [DOI: 10.1007/s00134-015-4100-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/28/2022]
|
306
|
Guérin C, Mancebo J. Prone positioning and neuromuscular blocking agents are part of standard care in severe ARDS patients: yes. Intensive Care Med 2015; 41:2195-7. [PMID: 26399890 DOI: 10.1007/s00134-015-3918-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Claude Guérin
- Réanimation Médicale, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Université de Lyon, Lyon, France.,INSERM 955 Eq13, Créteil, France
| | - Jordi Mancebo
- Servei de Medicina Intensiva, Hospital de Sant Pau, C. St Quintí 89, 08041, Barcelona, Spain.
| |
Collapse
|
307
|
Yoshida T, Uchiyama A, Fujino Y. The role of spontaneous effort during mechanical ventilation: normal lung versus injured lung. J Intensive Care 2015; 3:18. [PMID: 27408729 PMCID: PMC4940771 DOI: 10.1186/s40560-015-0083-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
The role of preserving spontaneous effort during mechanical ventilation and its interaction with mechanical ventilation have been actively investigated for several decades. Inspiratory muscle activities can lower the pleural components surrounding the lung, leading to an increase in transpulmonary pressure when spontaneous breathing effort is preserved during mechanical ventilation. Thus, increased transpulmonary pressure provides various benefits for gas exchange, ventilation pattern, and lung aeration. However, it is important to note that these beneficial effects of preserved spontaneous effort have been demonstrated only when spontaneous effort is modest and lung injury is less severe. Recent studies have revealed the ‘dark side’ of spontaneous effort during mechanical ventilation, especially in severe lung injury. The ‘dark side’ refers to uncontrollable transpulmonary pressure due to combined high inspiratory pressure with excessive spontaneous effort and the injurious lung inflation pattern of Pendelluft (i.e., the translocation of air from nondependent lung regions to dependent lung regions). Thus, during the early stages of severe ARDS, the strict control of transpulmonary pressure and prevention of Pendelluft should be achieved with the short-term use of muscle paralysis. When there is preserved spontaneous effort in ARDS, spontaneous effort should be maintained at a modest level, as the transpulmonary pressure and the effect size of Pendelluft depend on the intensity of the spontaneous effort.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Intensive Care Unit, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Akinori Uchiyama
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuji Fujino
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
308
|
Goligher EC, Douflé G, Fan E. Update in Mechanical Ventilation, Sedation, and Outcomes 2014. Am J Respir Crit Care Med 2015; 191:1367-73. [DOI: 10.1164/rccm.201502-0346up] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
309
|
Roth CJ, Ehrl A, Becher T, Frerichs I, Schittny JC, Weiler N, Wall WA. Correlation between alveolar ventilation and electrical properties of lung parenchyma. Physiol Meas 2015; 36:1211-26. [DOI: 10.1088/0967-3334/36/6/1211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
310
|
Simonis FD, Binnekade JM, Braber A, Gelissen HP, Heidt J, Horn J, Innemee G, de Jonge E, Juffermans NP, Spronk PE, Steuten LM, Tuinman PR, Vriends M, de Vreede G, de Wilde RB, Serpa Neto A, Gama de Abreu M, Pelosi P, Schultz MJ. PReVENT--protective ventilation in patients without ARDS at start of ventilation: study protocol for a randomized controlled trial. Trials 2015; 16:226. [PMID: 26003545 PMCID: PMC4453265 DOI: 10.1186/s13063-015-0759-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 05/14/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It is uncertain whether lung-protective mechanical ventilation using low tidal volumes should be used in all critically ill patients, irrespective of the presence of the acute respiratory distress syndrome (ARDS). A low tidal volume strategy includes use of higher respiratory rates, which could be associated with increased sedation needs, a higher incidence of delirium, and an increased risk of patient-ventilator asynchrony and ICU-acquired weakness. Another alleged side-effect of low tidal volume ventilation is the risk of atelectasis. All of these could offset the beneficial effects of low tidal volume ventilation as found in patients with ARDS. METHODS/DESIGN PReVENT is a national multicenter randomized controlled trial in invasively ventilated ICU patients without ARDS with an anticipated duration of ventilation of longer than 24 hours in 5 ICUs in The Netherlands. Consecutive patients are randomly assigned to a low tidal volume strategy using tidal volumes from 4 to 6 ml/kg predicted body weight (PBW) or a high tidal volume ventilation strategy using tidal volumes from 8 to 10 ml/kg PBW. The primary endpoint is the number of ventilator-free days and alive at day 28. Secondary endpoints include ICU and hospital length of stay (LOS), ICU and hospital mortality, the incidence of pulmonary complications, including ARDS, pneumonia, atelectasis, and pneumothorax, the cumulative use and duration of sedatives and neuromuscular blocking agents, incidence of ICU delirium, and the need for decreasing of instrumental dead space. DISCUSSION PReVENT is the first randomized controlled trial comparing a low tidal volume strategy with a high tidal volume strategy, in patients without ARDS at onset of ventilation, that recruits a sufficient number of patients to test the hypothesis that a low tidal volume strategy benefits patients without ARDS with regard to a clinically relevant endpoint. TRIAL REGISTRATION The trial is registered at www.clinicaltrials.gov under reference number NCT02153294 on 23 May 2014.
Collapse
Affiliation(s)
- Fabienne D Simonis
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Jan M Binnekade
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Annemarije Braber
- Department of Intensive Care, Gelre Hospitals, Apeldoorn, The Netherlands.
| | - Harry P Gelissen
- Department of Intensive Care & REVIVE Research VUmc Intensive Care, VU Medical Center, Amsterdam, The Netherlands.
| | - Jeroen Heidt
- Department of Intensive Care, Tergooi, Hilversum, The Netherlands.
| | - Janneke Horn
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Gerard Innemee
- Department of Intensive Care, Tergooi, Hilversum, The Netherlands.
| | - Evert de Jonge
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands.
| | - Nicole P Juffermans
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Peter E Spronk
- Department of Intensive Care, Gelre Hospitals, Apeldoorn, The Netherlands.
| | - Lotte M Steuten
- Department of Health Technology and Services Research, Twente University, Enschede, The Netherlands.
| | - Pieter Roel Tuinman
- Department of Intensive Care & REVIVE Research VUmc Intensive Care, VU Medical Center, Amsterdam, The Netherlands.
| | - Marijn Vriends
- Department of Intensive Care, Tergooi, Hilversum, The Netherlands.
| | | | - Rob B de Wilde
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ary Serpa Neto
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS San Martino IST, University of Genoa, Genoa, Italy.
| | - Marcus J Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
311
|
Alzahrany M, Banerjee A. A biomechanical model of pendelluft induced lung injury. J Biomech 2015; 48:1804-10. [PMID: 25997727 DOI: 10.1016/j.jbiomech.2015.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 11/30/2022]
Abstract
Lung ventilation using high frequency oscillatory techniques have been documented to attain adequate gas exchange through various gas transport mechanisms. Among them, the pendelluft flow is considered one of the most crucial mechanisms. In this work, we computationally investigate the induction of abnormal mechanical stresses and a regionally trapped volume of gas due to pendelluft flow. Large eddy simulation was used to model the turbulence in an upper tracheobronchial lung geometry that was derived from CT scans. The pendelluft flow was captured by modeling physiological boundary conditions at the truncated level of the lung model that is sensitive to the coupled resistance and compliance of individual patients. The flow-volume and volume-pressure loops are characterized by irregular shapes and suggest abnormal regional lung ventilation. Incomplete loops were observed indicating gas trapping in these regions signifying a potential for local injury due to incomplete ventilation from a residual volume build-up at the end of the expiration phase. In addition, the gas exchange between units was observed to create a velocity gradient causing a region of high wall shear stress surrounding the carina ridges. The recurrence of the pendelluft flow could cause a rupture to the lung epithelium layer. The trapped gas and wall shear stress were observed to amplify with increasing compliance asymmetry and ventilator operating frequency. In general, despite the significant contribution of the pendelluft flow to the gas exchange augmentation there exists significant risks of localized lung injury, phenomena we describe as pendelluft induced lung injury or PILI.
Collapse
Affiliation(s)
- Mohammed Alzahrany
- Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, 18015 PA, USA
| | - Arindam Banerjee
- Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, 18015 PA, USA.
| |
Collapse
|
312
|
Effects of ultraprotective ventilation, extracorporeal carbon dioxide removal, and spontaneous breathing on lung morphofunction and inflammation in experimental severe acute respiratory distress syndrome. Anesthesiology 2015; 122:631-46. [PMID: 25371037 DOI: 10.1097/aln.0000000000000504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND To investigate the role of ultraprotective mechanical ventilation (UP-MV) and extracorporeal carbon dioxide removal with and without spontaneous breathing (SB) to improve respiratory function and lung protection in experimental severe acute respiratory distress syndrome. METHODS Severe acute respiratory distress syndrome was induced by saline lung lavage and mechanical ventilation (MV) with higher tidal volume (VT) in 28 anesthetized pigs (32.8 to 52.5 kg). Animals (n = 7 per group) were randomly assigned to 6 h of MV (airway pressure release ventilation) with: (1) conventional P-MV with VT ≈6 ml/kg (P-MVcontr); (2) UP-MV with VT ≈3 ml/kg (UP-MVcontr); (3) UP-MV with VT ≈3 ml/kg and SB (UP-MVspont); and (4) UP-MV with VT ≈3 ml/kg and pressure supported SB (UP-MVPS). In UP-MV groups, extracorporeal carbon dioxide removal was used. RESULTS The authors found that: (1) UP-MVcontr reduced diffuse alveolar damage score in dorsal lung zones (median[interquartile]) (12.0 [7.0 to 16.8] vs. 22.5 [13.8 to 40.8]), but worsened oxygenation and intrapulmonary shunt, compared to P-MVcontr; (2) UP-MVspont and UP-MVPS improved oxygenation and intrapulmonary shunt, and redistributed ventilation towards dorsal areas, as compared to UP-MVcontr; (3) compared to P-MVcontr, UP-MVcontr and UP-MVspont, UP-MVPS yielded higher levels of tumor necrosis factor-α (6.9 [6.5 to 10.1] vs. 2.8 [2.2 to 3.0], 3.6 [3.0 to 4.7] and 4.0 [2.8 to 4.4] pg/mg, respectively) and interleukin-8 (216.8 [113.5 to 343.5] vs. 59.8 [45.3 to 66.7], 37.6 [18.8 to 52.0], and 59.5 [36.1 to 79.7] pg/mg, respectively) in dorsal lung zones. CONCLUSIONS In this model of severe acute respiratory distress syndrome, MV with VT ≈3 ml/kg and extracorporeal carbon dioxide removal without SB slightly reduced lung histologic damage, but not inflammation, as compared to MV with VT = 4 to 6 ml/kg. During UP-MV, pressure supported SB increased lung inflammation.
Collapse
|
313
|
|
314
|
Rittayamai N, Brochard L. Recent advances in mechanical ventilation in patients with acute respiratory distress syndrome. Eur Respir Rev 2015; 24:132-40. [DOI: 10.1183/09059180.00012414] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterised by different degrees of severity and different stages. Understanding these differences can help to better adapt the ventilatory settings to protect the lung from ventilator-induced lung injury by reducing hyperinflation or keeping the lung open when it is possible. The same therapies may be useful and beneficial in certain forms of ARDS, and risky or harmful at other stages: this includes high positive end-expiratory pressure, allowance of spontaneous breathing activity or use of noninvasive ventilation. The severity of the disease is the primary indicator to individualise treatment. Monitoring tools such as oesophageal pressure or lung volume measurements may also help to set the ventilator. At an earlier stage, an adequate lung protective strategy may also help to prevent the development of ARDS.
Collapse
|
315
|
Abstract
PURPOSE OF REVIEW This review article summarizes the recent advances in electrical impedance tomography (EIT) related to cardiopulmonary imaging and monitoring on the background of the 30-year development of this technology. RECENT FINDINGS EIT is expected to become a bedside tool for monitoring and guiding ventilator therapy. In this context, several studies applied EIT to determine spatial ventilation distribution during different ventilation modes and settings. EIT was increasingly combined with other signals, such as airway pressure, enabling the assessment of regional respiratory system mechanics. EIT was for the first time used prospectively to define ventilator settings in an experimental and a clinical study. Increased neonatal and paediatric use of EIT was noted. Only few studies focused on cardiac function and lung perfusion. Advanced radiological imaging techniques were applied to assess EIT performance in detecting regional lung ventilation. New approaches to improve the quality of thoracic EIT images were proposed. SUMMARY EIT is not routinely used in a clinical setting, but the interest in EIT is evident. The major task for EIT research is to provide the clinicians with guidelines how to conduct, analyse and interpret EIT examinations and combine them with other medical techniques so as to meaningfully impact the clinical decision-making.
Collapse
|
316
|
|
317
|
|
318
|
Abrams D, Brodie D. Extracorporeal circulatory approaches to treat acute respiratory distress syndrome. Clin Chest Med 2014; 35:765-79. [PMID: 25453424 DOI: 10.1016/j.ccm.2014.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The early history of extracorporeal membrane oxygenation (ECMO) for adult patients with the acute respiratory distress syndrome (ARDS) evolved slowly over decades, a consequence of extracorporeal technology with high risk and unclear benefit. However, advances in component technology, accumulating evidence, and growing experience in recent years have resulted in a resurgence of interest in ECMO. Extracorporeal support, though currently lacking high-level evidence, has the potential to improve outcomes, including survival, in ARDS. In the near future, novel extracorporeal management strategies may, in fact, lead to a new paradigm in the approach to certain patients with ARDS.
Collapse
Affiliation(s)
- Darryl Abrams
- Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons, PH 8E 101, New York, NY 10032, USA
| | - Daniel Brodie
- Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons, PH 8E 101, New York, NY 10032, USA.
| |
Collapse
|
319
|
Guo R, Fan E. Beyond low tidal volumes: ventilating the patient with acute respiratory distress syndrome. Clin Chest Med 2014; 35:729-41. [PMID: 25453421 DOI: 10.1016/j.ccm.2014.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cornerstone of lung protective ventilation in patients with acute respiratory distress syndrome (ARDS) is a pressure- and volume-limited strategy. Other interventions have also been investigated. Although no method for positive end-expiratory pressure (PEEP) titration has proven most advantageous, experimental and clinical data support the use of higher PEEP in patients with moderate/severe ARDS. There is no benefit to the early use of high-frequency oscillatory ventilation (HFOV) in patients with moderate/severe ARDS, although it may be considered as rescue therapy. Further investigations of novel methods of bedside monitoring of mechanical ventilation may help identify the optimal ventilatory strategy.
Collapse
Affiliation(s)
- Ray Guo
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
320
|
Retamal J, Bergamini BC, Carvalho AR, Bozza FA, Borzone G, Borges JB, Larsson A, Hedenstierna G, Bugedo G, Bruhn A. Non-lobar atelectasis generates inflammation and structural alveolar injury in the surrounding healthy tissue during mechanical ventilation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:505. [PMID: 25200702 PMCID: PMC4172813 DOI: 10.1186/s13054-014-0505-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022]
Abstract
Introduction When alveoli collapse the traction forces exerted on their walls by adjacent expanded units may increase and concentrate. These forces may promote its re-expansion at the expense of potentially injurious stresses at the interface between the collapsed and the expanded units. We developed an experimental model to test the hypothesis that a local non-lobar atelectasis can act as a stress concentrator, contributing to inflammation and structural alveolar injury in the surrounding healthy lung tissue during mechanical ventilation. Methods A total of 35 rats were anesthetized, paralyzed and mechanically ventilated. Atelectasis was induced by bronchial blocking: after five minutes of stabilization and pre-oxygenation with FIO2 = 1.0, a silicon cylinder blocker was wedged in the terminal bronchial tree. Afterwards, the animals were randomized between two groups: 1) Tidal volume (VT) = 10 ml/kg and positive end-expiratory pressure (PEEP) = 3 cmH2O (VT10/PEEP3); and 2) VT = 20 ml/kg and PEEP = 0 cmH2O (VT20/zero end-expiratory pressure (ZEEP)). The animals were then ventilated during 180 minutes. Three series of experiments were performed: histological (n = 12); tissue cytokines (n = 12); and micro-computed tomography (microCT; n = 2). An additional six, non-ventilated, healthy animals were used as controls. Results Atelectasis was successfully induced in the basal region of the lung of 26 out of 29 animals. The microCT of two animals revealed that the volume of the atelectasis was 0.12 and 0.21 cm3. There were more alveolar disruption and neutrophilic infiltration in the peri-atelectasis region than the corresponding contralateral lung (control) in both groups. Edema was higher in the peri-atelectasis region than the corresponding contralateral lung (control) in the VT20/ZEEP than VT10/PEEP3 group. The volume-to-surface ratio was higher in the peri-atelectasis region than the corresponding contralateral lung (control) in both groups. We did not find statistical difference in tissue interleukin-1β and cytokine-induced neutrophil chemoattractant-1 between regions. Conclusions The present findings suggest that a local non-lobar atelectasis acts as a stress concentrator, generating structural alveolar injury and inflammation in the surrounding lung tissue.
Collapse
|
321
|
Greenblatt EE, Butler JP, Venegas JG, Winkler T. Pendelluft in the bronchial tree. J Appl Physiol (1985) 2014; 117:979-88. [PMID: 25170072 DOI: 10.1152/japplphysiol.00466.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhomogeneous inflation or deflation of the lungs can cause dynamic pressure differences between regions and lead to interregional airflows known as pendelluft. This work first uses analytical tools to clarify the theoretical limits of pendelluft at a single bifurcation. It then explores the global and regional pendelluft that may occur throughout the bronchial tree in a realistic example using an in silico model of bronchoconstriction. The theoretical limits of pendelluft volume exchanged at a local bifurcation driven by sinusoidal breathing range from 15.5% to 41.4% depending on the relative stiffness of the subtended regions. When nonsinusoidal flows are considered, pendelluft can be as high as 200% inlet tidal volume (Vin). At frequencies greater than 10 Hz, the inertia of the air in the airways becomes important, and the maximal local pendelluft is theoretically unbounded, even with sinusoidal breathing. In a single illustrative numerical simulation of bronchoconstriction with homogenous compliances, the overall magnitude of global pendelluft volume was <2% of the tidal volume. Despite the small overall magnitude, pendelluft volume exchange was concentrated in poorly ventilated regions of the lung, including local pendelluft at bifurcations of up to 13% Vin. This example suggests that pendelluft may be an important phenomena contributing to regional gas exchange, irreversible mixing, and aerosol deposition patterns inside poorly ventilated regions of the lung. The analytical results support the concept that pendelluft may be more prominent in diseases with significant heterogeneity in both resistance and compliance.
Collapse
Affiliation(s)
- Elliot E Greenblatt
- Massachusetts Institute of Technology, Cambridge, Massachusetts; Massachusetts General Hospital and Harvard Medical School, Department of Anesthesia and Critical Care, Boston, Massachusetts
| | - James P Butler
- Molecular and Integrative Physiological Science Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; Division of Sleep Medicine, Departments of Medicine and Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Jose G Venegas
- Massachusetts General Hospital and Harvard Medical School, Department of Anesthesia and Critical Care, Boston, Massachusetts
| | - Tilo Winkler
- Massachusetts General Hospital and Harvard Medical School, Department of Anesthesia and Critical Care, Boston, Massachusetts
| |
Collapse
|
322
|
Beloncle F, Lorente JA, Esteban A, Brochard L. Update in acute lung injury and mechanical ventilation 2013. Am J Respir Crit Care Med 2014; 189:1187-93. [PMID: 24832743 DOI: 10.1164/rccm.201402-0262up] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- François Beloncle
- 1 Critical Care Department and Keenan Research Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
323
|
When to promote spontaneous respiratory activity in acute respiratory distress patients? Anesthesiology 2014; 120:1313-5. [PMID: 24722176 DOI: 10.1097/aln.0000000000000260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
324
|
Bläser D, Pulletz S, Becher T, Schädler D, Elke G, Weiler N, Frerichs I. Unilateral empyema impacts the assessment of regional lung ventilation by electrical impedance tomography. Physiol Meas 2014; 35:975-83. [DOI: 10.1088/0967-3334/35/6/975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
325
|
Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, Pelosi P, Talmor D, Grasso S, Chiumello D, Guérin C, Patroniti N, Ranieri VM, Gattinoni L, Nava S, Terragni PP, Pesenti A, Tobin M, Mancebo J, Brochard L. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 2014; 189:520-31. [PMID: 24467647 DOI: 10.1164/rccm.201312-2193ci] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This report summarizes current physiological and technical knowledge on esophageal pressure (Pes) measurements in patients receiving mechanical ventilation. The respiratory changes in Pes are representative of changes in pleural pressure. The difference between airway pressure (Paw) and Pes is a valid estimate of transpulmonary pressure. Pes helps determine what fraction of Paw is applied to overcome lung and chest wall elastance. Pes is usually measured via a catheter with an air-filled thin-walled latex balloon inserted nasally or orally. To validate Pes measurement, a dynamic occlusion test measures the ratio of change in Pes to change in Paw during inspiratory efforts against a closed airway. A ratio close to unity indicates that the system provides a valid measurement. Provided transpulmonary pressure is the lung-distending pressure, and that chest wall elastance may vary among individuals, a physiologically based ventilator strategy should take the transpulmonary pressure into account. For monitoring purposes, clinicians rely mostly on Paw and flow waveforms. However, these measurements may mask profound patient-ventilator asynchrony and do not allow respiratory muscle effort assessment. Pes also permits the measurement of transmural vascular pressures during both passive and active breathing. Pes measurements have enhanced our understanding of the pathophysiology of acute lung injury, patient-ventilator interaction, and weaning failure. The use of Pes for positive end-expiratory pressure titration may help improve oxygenation and compliance. Pes measurements make it feasible to individualize the level of muscle effort during mechanical ventilation and weaning. The time is now right to apply the knowledge obtained with Pes to improve the management of critically ill and ventilator-dependent patients.
Collapse
Affiliation(s)
- Evangelia Akoumianaki
- 1 Department of Intensive Care Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
|
327
|
Affiliation(s)
- Rolf D Hubmayr
- 1 Pulmonary and Critical Care Medicine Mayo Clinic Rochester, Minnesota
| |
Collapse
|