301
|
Wolff JN, White DJ, Woodhams M, White HE, Gemmell NJ. The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates. PLoS One 2011; 6:e20522. [PMID: 21655224 PMCID: PMC3105079 DOI: 10.1371/journal.pone.0020522] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/04/2011] [Indexed: 12/17/2022] Open
Abstract
In most species mitochondrial DNA (mtDNA) is inherited maternally in an apparently clonal fashion, although how this is achieved remains uncertain. Population genetic studies show not only that individuals can harbor more than one type of mtDNA (heteroplasmy) but that heteroplasmy is common and widespread across a diversity of taxa. Females harboring a mixture of mtDNAs may transmit varying proportions of each mtDNA type (haplotype) to their offspring. However, mtDNA variants are also observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte, which suggests a genetic bottleneck acts during mtDNA transmission. Understanding the size and timing of this bottleneck is important for interpreting population genetic relationships and for predicting the inheritance of mtDNA based disease, but despite its importance the underlying mechanisms remain unclear. Empirical studies, restricted to mice, have shown that the mtDNA bottleneck could act either at embryogenesis, oogenesis or both. To investigate whether the size and timing of the mitochondrial bottleneck is conserved between distant vertebrates, we measured the genetic variance in mtDNA heteroplasmy at three developmental stages (female, ova and fry) in chinook salmon and applied a new mathematical model to estimate the number of segregating units (N(e)) of the mitochondrial bottleneck between each stage. Using these data we estimate values for mtDNA Ne of 88.3 for oogenesis, and 80.3 for embryogenesis. Our results confirm the presence of a mitochondrial bottleneck in fish, and show that segregation of mtDNA variation is effectively complete by the end of oogenesis. Considering the extensive differences in reproductive physiology between fish and mammals, our results suggest the mechanism underlying the mtDNA bottleneck is conserved in these distant vertebrates both in terms of it magnitude and timing. This finding may lead to improvements in our understanding of mitochondrial disorders and population interpretations using mtDNA data.
Collapse
Affiliation(s)
- Jonci N. Wolff
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel J. White
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
- Department of Anatomy and Structural Biology, Centre for Reproduction and Genomics, University of Otago, Dunedin, Otago, New Zealand
| | - Michael Woodhams
- School of Information Technology, University of Sydney, Sydney, New South Wales, Australia
| | - Helen E. White
- National Genetics Reference Laboratory (Wessex), Salisbury District Hospital, Salisbury, Wiltshire, United Kingdom
| | - Neil J. Gemmell
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
- Department of Anatomy and Structural Biology, Centre for Reproduction and Genomics, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
302
|
The implications of mitochondrial DNA copy number regulation during embryogenesis. Mitochondrion 2011; 11:686-92. [PMID: 21635974 DOI: 10.1016/j.mito.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/20/2011] [Accepted: 05/18/2011] [Indexed: 11/21/2022]
Abstract
Mutations of mitochondrial DNA (mtDNA) cause a wide array of multisystem disorders, particularly affecting organs with high energy demands. Typically only a proportion of the total mtDNA content is mutated (heteroplasmy), and high percentage levels of mutant mtDNA are associated with a more severe clinical phenotype. MtDNA is inherited maternally and the heteroplasmy level in each one of the offspring is often very different to that found in the mother. The mitochondrial genetic bottleneck hypothesis was first proposed as the explanation for these observations over 20 years ago. Although the precise bottleneck mechanism is still hotly debated, the regulation of cellular mtDNA content is a key issue. Here we review current understanding of the factors regulating the amount of mtDNA within cells and discuss the relevance of these findings to our understanding of the inheritance of mtDNA heteroplasmy.
Collapse
|
303
|
Abstract
The small mammalian mitochondrial DNA (mtDNA) is very gene dense and encodes factors critical for oxidative phosphorylation. Mutations of mtDNA cause a variety of human mitochondrial diseases and are also heavily implicated in age-associated disease and aging. There has been considerable progress in our understanding of the role for mtDNA mutations in human pathology during the last two decades, but important mechanisms in mitochondrial genetics remain to be explained at the molecular level. In addition, mounting evidence suggests that most mtDNA mutations may be generated by replication errors and not by accumulated damage.
Collapse
Affiliation(s)
- Chan Bae Park
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea
| | | |
Collapse
|
304
|
Castellana S, Vicario S, Saccone C. Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein coding genes. Genome Biol Evol 2011; 3:1067-1079. [PMID: 21551352 PMCID: PMC3229188 DOI: 10.1093/gbe/evr040] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The mitochondrial genome is a fundamental component of the eukaryotic domain of life, encoding for several important subunits of the respiratory chain, the main energy production system in cells. The processes by means of which mitochondrial DNA (mtDNA) replicates, expresses itself and evolves have been explored over the years, although various aspects are still debated. In this review, we present several key points in modern research on the role of evolutionary forces in affecting mitochondrial genomes in Metazoa. In particular, we assemble the main data on their evolution, describing the contributions of mutational pressure, purifying, and adaptive selection, and how they are related. We also provide data on the evolutionary fate of the mitochondrial synonymous variation, related to the nonsynonymous variation, in comparison with the pattern detected in the nucleus. Elevated mutational pressure characterizes the evolution of the mitochondrial synonymous variation, whereas purging selection, physiologically due to phenomena such as cell atresia and intracellular mtDNA selection, guarantees coding sequence functionality. This enables mitochondrial adaptive mutations to emerge and fix in the population, promoting mitonuclear coevolution.
Collapse
Affiliation(s)
- S Castellana
- Department of Genetics and Microbiology, University of Bari 'Aldo Moro', Bari, Italy
| | | | | |
Collapse
|
305
|
Stewart JB, Freyer C, Elson JL, Larsson NG. Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nat Rev Genet 2011; 9:657-62. [PMID: 18695671 DOI: 10.1038/nrg2396] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations of mitochondrial DNA (mtDNA) are frequent in humans and are implicated in many different types of pathology. The high substitution rate and the maternal, asexual mode of transmission of mtDNA make it more likely to accumulate deleterious mutations. Here, we discuss recent evidence that mtDNA transmission is subject to strong purifying selection in the mammalian female germ line, limiting the accumulation of such mutations. This process shapes mitochondrial sequence diversity and is therefore probably of fundamental importance for animal evolution and in human mitochondrial disease.
Collapse
Affiliation(s)
- James Bruce Stewart
- Department of Laboratory Medicine, Division of Metabolic Diseases, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
306
|
Pereira L, Soares P, Radivojac P, Li B, Samuels D. Comparing phylogeny and the predicted pathogenicity of protein variations reveals equal purifying selection across the global human mtDNA diversity. Am J Hum Genet 2011; 88:433-9. [PMID: 21457906 DOI: 10.1016/j.ajhg.2011.03.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 02/06/2023] Open
Abstract
We used detailed phylogenetic trees for human mtDNA, combined with pathogenicity predictions for each amino acid change, to evaluate selection on mtDNA-encoded protein variants. Protein variants with high pathogenicity scores were significantly rarer in the older branches of the tree. Variants that have formed and survived multiple times in the human phylogenetics tree had significantly lower pathogenicity scores than those that only appear once in the tree. We compared the distribution of pathogenicity scores observed on the human phylogenetic tree to the distribution of all possible protein variations to define a measure of the effect of selection on these protein variations. The measured effect of selection increased exponentially with increasing pathogenicity score. We found no measurable difference in this measure of purifying selection in mtDNA across the global population, represented by the macrohaplogroups L, M, and N. We provide a list of all possible single amino acid variations for the human mtDNA-encoded proteins with their predicted pathogenicity scores and our measured selection effect as a tool for assessing novel protein variations that are often reported in patients with mitochondrial disease of unknown origin or for assessing somatic mutations acquired through aging or detected in tumors.
Collapse
|
307
|
Maruszak A, Żekanowski C. Mitochondrial dysfunction and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:320-30. [PMID: 20624441 DOI: 10.1016/j.pnpbp.2010.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/31/2010] [Accepted: 07/05/2010] [Indexed: 01/16/2023]
Abstract
To date, one of the most discussed hypotheses for Alzheimer's disease (AD) etiology implicates mitochondrial dysfunction and oxidative stress as one of the primary events in the course of AD. In this review we focus on the role of mitochondria and mitochondrial DNA (mtDNA) variation in AD and discuss the rationale for the involvement of mitochondrial abnormalities in AD pathology. We summarize the current data regarding the proteins involved in mitochondrial function and pathology observed in AD, and discuss the role of somatic mutations and mitochondrial haplogroups in AD development.
Collapse
Affiliation(s)
- Aleksandra Maruszak
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warszawa, Poland.
| | | |
Collapse
|
308
|
Ameur A, Stewart JB, Freyer C, Hagström E, Ingman M, Larsson NG, Gyllensten U. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet 2011; 7:e1002028. [PMID: 21455489 PMCID: PMC3063763 DOI: 10.1371/journal.pgen.1002028] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/01/2011] [Indexed: 01/12/2023] Open
Abstract
Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading–deficient mtDNA polymerase (mtDNA mutator mice) have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life. Mitochondria represent the powerhouses of cells and have their own DNA. Mutations in the mitochondrial genome are associated with a range of human diseases and have also been implicated as a driving force behind the aging process. We have used ultra-deep sequencing to study the genome-wide mutation load in the mitochondrial DNA (mtDNA) of liver from normal inbred mice and mice that express a proof-reading–deficient mtDNA polymerase (mtDNA mutator mice) that cause premature aging. The mtDNA mutator mice show a dramatic increase of point mutations with age and have 10-times-higher point mutation levels than wildtype siblings or normal C57Bl/6N mice. Circular mtDNA molecules with large deletions occur at very low frequencies in mtDNA mutator mice and are therefore unlikely to contribute to the premature aging phenotype. We found no increase in levels of point mutations or deletions in normal mice with increasing age, arguing against the accumulation of mtDNA mutations as contributing to aging. Our results indicate that most somatic mtDNA mutations occur as replication errors during the rapid amplification of mtDNA during embryogenesis and do not result from damage accumulation in adult life.
Collapse
Affiliation(s)
- Adam Ameur
- Department of Immunology, Genetics, and Pathology, SciLifeLab Uppsala, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Erik Hagström
- Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Max Ingman
- Department of Immunology, Genetics, and Pathology, SciLifeLab Uppsala, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Nils-Göran Larsson
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, SciLifeLab Uppsala, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
309
|
Bi R, Li WL, Chen MQ, Zhu Z, Yao YG. Rapid identification of mtDNA somatic mutations in gastric cancer tissues based on the mtDNA phylogeny. Mutat Res 2011; 709-710:15-20. [PMID: 21419139 DOI: 10.1016/j.mrfmmm.2011.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 12/13/2022]
Abstract
Mitochondrial DNA (mtDNA) somatic mutations have been identified in nearly all kinds of cancer during the past decade. Normally one need to determine the complete mtDNA sequences from both cancerous and normal tissues of the same patient to score the somatic mutation in cancer. In this study, we intended to explore a strategy to quickly identify somatic mutations in the entire mtDNA genome based on its phylogeny. The principal assumption for this strategy is that somatic mutations, as recently accumulated in cancerous tissue, have younger age and will be located in the terminal branches of mtDNA phylogenetic tree. In contrast, the haplogroup-specific variants, which appear as germline variants and have ancient age, will be located in the basal or intermediate-node branches of the tree, depending on their relative age. When the complete mtDNA sequence of the cancerous tissue is determined and is classified relative to the available mtDNA phylogeny, we only need to screen the variants that are located in the terminal branch in the paracancerous tissue or other normal tissue from the same patient to identify somatic mutations in cancer. We validated this strategy by using paired gastric cancer tissue and paracancerous tissue or blood from 10 Chinese patients (including one with gastric stromal tumor). A total of seven somatic mutations were identified in the cancerous tissues from four patients. Our result suggests that employing mtDNA phylogenetic knowledge facilitates rapid identification of mitochondrial genome somatic mutations in cancer.
Collapse
Affiliation(s)
- Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 32 Jiaochang Donglu, Kunming, Yunnan 650223, China
| | | | | | | | | |
Collapse
|
310
|
Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A 2011; 108:4135-40. [PMID: 21368114 DOI: 10.1073/pnas.1019581108] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities.
Collapse
|
311
|
HO SIMONYW, SHAPIRO BETH. Skyline‐plot methods for estimating demographic history from nucleotide sequences. Mol Ecol Resour 2011; 11:423-34. [PMID: 21481200 DOI: 10.1111/j.1755-0998.2011.02988.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- SIMON Y. W. HO
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, ACT 0200, Australia
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - BETH SHAPIRO
- Department of Biology, The Pennsylvania State University, University Park, PA 16802–5301, USA
| |
Collapse
|
312
|
Wallace DC. Bioenergetics and the epigenome: interface between the environment and genes in common diseases. ACTA ACUST UNITED AC 2011; 16:114-9. [PMID: 20818725 DOI: 10.1002/ddrr.113] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extensive efforts have been directed at using genome-wide association studies (GWAS) to identify the genes responsible for common metabolic and degenerative diseases, cancer, and aging, but with limited success. While environmental factors have been evoked to explain this conundrum, the nature of these environmental factors remains unexplained. The availability of and demands for energy constitute one of the most important aspects of the environment. The flow of energy through the cell is primarily mediated by the mitochondrion, which oxidizes reducing equivalents from hydrocarbons via acetyl-CoA, NADH + H(+), and FADH(2) to generate ATP through oxidative phosphorylation (OXPHOS). The mitochondrial genome encompasses hundreds of nuclear DNA (nDNA)-encoded genes plus 37 mitochondrial DNA (mtDNA)-encoded genes. Although the mtDNA has a high mutation rate, only milder, potentially adaptive mutations are introduced into the population through female oocytes. In contrast, nDNA-encoded bioenergetic genes have a low mutation rate. However, their expression is modulated by histone phosphorylation and acetylation using mitochondrially-generated ATP and acetyl-CoA, which permits increased gene expression, growth, and reproduction when calories are abundant. Phosphorylation, acetylaton, and cellular redox state also regulate most signal transduction pathways and activities of multiple transcription factors. Thus, mtDNA mutations provide heritable and stable adaptation to regional differences while mitochondrially-mediated changes in the epigenome permit reversible modulation of gene expression in response to fluctuations in the energy environment. The most common genomic changes that interface with the environment and cause complex disease must, therefore, be mitochondrial and epigenomic in origin.
Collapse
Affiliation(s)
- Douglas C Wallace
- The Department of Pathology and Laboratory Medicine, Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, 3501 Civic Center Blvd, Philadelphia, PA 19104-4302, USA.
| |
Collapse
|
313
|
Breen MS, Kondrashov FA. Mitochondrial pathogenic mutations are population-specific. Biol Direct 2010; 5:68. [PMID: 21194457 PMCID: PMC3022564 DOI: 10.1186/1745-6150-5-68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/31/2010] [Indexed: 01/09/2023] Open
Abstract
Background Surveying deleterious variation in human populations is crucial for our understanding, diagnosis and potential treatment of human genetic pathologies. A number of recent genome-wide analyses focused on the prevalence of segregating deleterious alleles in the nuclear genome. However, such studies have not been conducted for the mitochondrial genome. Results We present a systematic survey of polymorphisms in the human mitochondrial genome, including those predicted to be deleterious and those that correspond to known pathogenic mutations. Analyzing 4458 completely sequenced mitochondrial genomes we characterize the genetic diversity of different types of single nucleotide polymorphisms (SNPs) in African (L haplotypes) and non-African (M and N haplotypes) populations. We find that the overall level of polymorphism is higher in the mitochondrial compared to the nuclear genome, although the mitochondrial genome appears to be under stronger selection as indicated by proportionally fewer nonsynonymous than synonymous substitutions. The African mitochondrial genomes show higher heterozygosity, a greater number of polymorphic sites and higher frequencies of polymorphisms for synonymous, benign and damaging polymorphism than non-African genomes. However, African genomes carry significantly fewer SNPs that have been previously characterized as pathogenic compared to non-African genomes. Conclusions Finding SNPs classified as pathogenic to be the only category of polymorphisms that are more abundant in non-African genomes is best explained by a systematic ascertainment bias that favours the discovery of pathogenic polymorphisms segregating in non-African populations. This further suggests that, contrary to the common disease-common variant hypothesis, pathogenic mutations are largely population-specific and different SNPs may be associated with the same disease in different populations. Therefore, to obtain a comprehensive picture of the deleterious variability in the human population, as well as to improve the diagnostics of individuals carrying African mitochondrial haplotypes, it is necessary to survey different populations independently. Reviewers This article was reviewed by Dr Mikhail Gelfand, Dr Vasily Ramensky (nominated by Dr Eugene Koonin) and Dr David Rand (nominated by Dr Laurence Hurst).
Collapse
|
314
|
Abstract
Oxidatively damaged proteins accumulate with age in many species (Stadtman (1992) Science257, 1220-1224). This means that damage must be reset at the time of reproduction. To visualize this resetting in the roundworm Caenorhabditis elegans, a novel immunofluorescence technique that allows the detection of carbonylated proteins in situ was developed. The application of this technique revealed that carbonylated proteins are eliminated during C. elegans reproduction. This purging occurs abruptly within the germline at the time of oocyte maturation. Surprisingly, the germline was markedly more oxidized than the surrounding somatic tissues. Because distinct mechanisms have been proposed to explain damage elimination in yeast and mice (Aguilaniu et al. (2003) Science299, 1751-1753; Hernebring et al. (2006) Proc Natl Acad Sci USA103, 7700-7705), possible common mechanisms between worms and one of these systems were tested. The results show that, unlike in yeast (Aguilaniu et al. (2003) Science299, 1751-1753; Erjavec et al. (2008) Proc Natl Acad Sci USA105, 18764-18769), the elimination of carbonylated proteins in worms does not require the presence of the longevity-ensuring gene, SIR-2.1. However, similar to findings in mice (Hernebring et al. (2006) Proc Natl Acad Sci USA103, 7700-7705), proteasome activity in the germline is required for the resetting of carbonylated proteins during reproduction in C. elegans. Thus, oxidatively damaged proteins are eliminated during reproduction in worms through the proteasome. This finding suggests that the resetting of damaged proteins during reproduction is conserved, therefore validating the use of C. elegans as a model to study the molecular basis of damage elimination.
Collapse
Affiliation(s)
- Jérôme Goudeau
- Ecole Normale Supérieure de Lyon - CNRS - Université de Lyon Claude Bernard, Molecular Biology of the Cell Laboratory/UMR5239, 46, Allée d'Italie, 69364, Lyon Cedex 07, France
| | | |
Collapse
|
315
|
Williams SL, Huang J, Edwards YJK, Ulloa RH, Dillon LM, Prolla TA, Vance JM, Moraes CT, Züchner S. The mtDNA mutation spectrum of the progeroid Polg mutator mouse includes abundant control region multimers. Cell Metab 2010; 12:675-82. [PMID: 21109200 PMCID: PMC3175596 DOI: 10.1016/j.cmet.2010.11.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 09/03/2010] [Accepted: 10/12/2010] [Indexed: 12/18/2022]
Abstract
Polg mtDNA mutator mice are important models for investigating the role of acquired mtDNA mutations in aging. Despite extensive study, there remains little consensus on either the etiology of the progeroid phenotype or the mtDNA mutation spectrum induced by disrupted polymerase-γ function. To investigate the latter, we have developed a novel, pragmatic approach we term "Mito-seq," applying next-generation sequencing to enriched, native mtDNA. Regardless of detection parameters we observed an increase of at least two orders of magnitude in the number of mtDNA single nucleotide variants in Polg mutator mice compared to controls. We found no evidence for the accumulation of canonical mtDNA deletions but multimers of the mtDNA control region were identified in brain and heart. These control region multimers (CRMs) contained heterogeneous breakpoints and formed species that excluded the majority of mtDNA genes. CRMs demonstrate that polymerase-γ 3'-5' exonuclease activity is required for preserving mtDNA integrity.
Collapse
Affiliation(s)
- Siôn L Williams
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
316
|
174th ENMC international workshop: Applying pre-implantation genetic diagnosis to mtDNA diseases: implications of scientific advances 19-21 March 2010, Naarden, The Netherlands. Neuromuscul Disord 2010; 20:559-63. [PMID: 20627569 DOI: 10.1016/j.nmd.2010.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/17/2010] [Indexed: 01/30/2023]
|
317
|
Rinaldi T, Dallabona C, Ferrero I, Frontali L, Bolotin-Fukuhara M. Mitochondrial diseases and the role of the yeast models. FEMS Yeast Res 2010; 10:1006-22. [PMID: 20946356 DOI: 10.1111/j.1567-1364.2010.00685.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nowadays, mitochondrial diseases are recognized and studied with much attention and they cannot be considered anymore as 'rare diseases'. Yeast has been an instrumental organism to understand the genetic and molecular aspects of the many roles of mitochondria within the cells. Thanks to the general conservation of mitochondrial genes and pathways between human and yeast, it can also be used to model some diseases. In this review, we focus on the most recent topics, exemplifying those for which yeast models have been especially valuable.
Collapse
Affiliation(s)
- Teresa Rinaldi
- Department of Cell and Developmental Biology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
318
|
Wei SJ, Shi M, Chen XX, Sharkey MJ, van Achterberg C, Ye GY, He JH. New views on strand asymmetry in insect mitochondrial genomes. PLoS One 2010; 5:e12708. [PMID: 20856815 PMCID: PMC2939890 DOI: 10.1371/journal.pone.0012708] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 08/20/2010] [Indexed: 01/16/2023] Open
Abstract
Strand asymmetry in nucleotide composition is a remarkable feature of animal mitochondrial genomes. Understanding the mutation processes that shape strand asymmetry is essential for comprehensive knowledge of genome evolution, demographical population history and accurate phylogenetic inference. Previous studies found that the relative contributions of different substitution types to strand asymmetry are associated with replication alone or both replication and transcription. However, the relative contributions of replication and transcription to strand asymmetry remain unclear. Here we conducted a broad survey of strand asymmetry across 120 insect mitochondrial genomes, with special reference to the correlation between the signs of skew values and replication orientation/gene direction. The results show that the sign of GC skew on entire mitochondrial genomes is reversed in all species of three distantly related families of insects, Philopteridae (Phthiraptera), Aleyrodidae (Hemiptera) and Braconidae (Hymenoptera); the replication-related elements in the A+T-rich regions of these species are inverted, confirming that reversal of strand asymmetry (GC skew) was caused by inversion of replication origin; and finally, the sign of GC skew value is associated with replication orientation but not with gene direction, while that of AT skew value varies with gene direction, replication and codon positions used in analyses. These findings show that deaminations during replication and other mutations contribute more than selection on amino acid sequences to strand compositions of G and C, and that the replication process has a stronger affect on A and T content than does transcription. Our results may contribute to genome-wide studies of replication and transcription mechanisms.
Collapse
Affiliation(s)
- Shu-Jun Wei
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Min Shi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Xin Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Michael J. Sharkey
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Gong-Yin Ye
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Hua He
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
319
|
Foote AD, Morin PA, Durban JW, Pitman RL, Wade P, Willerslev E, Gilbert MTP, da Fonseca RR. Positive selection on the killer whale mitogenome. Biol Lett 2010; 7:116-8. [PMID: 20810427 DOI: 10.1098/rsbl.2010.0638] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondria produce up to 95 per cent of the eukaryotic cell's energy. The coding genes of the mitochondrial DNA may therefore evolve under selection owing to metabolic requirements. The killer whale, Orcinus orca, is polymorphic, has a global distribution and occupies a range of ecological niches. It is therefore a suitable organism for testing this hypothesis. We compared a global dataset of the complete mitochondrial genomes of 139 individuals for amino acid changes that were associated with radical physico-chemical property changes and were influenced by positive selection. Two such selected non-synonymous amino acid changes were found; one in each of two ecotypes that inhabit the Antarctic pack ice. Both substitutions were associated with changes in local polarity, increased steric constraints and α-helical tendencies that could influence overall metabolic performance, suggesting a functional change.
Collapse
Affiliation(s)
- Andrew D Foote
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Volgade 5-7, 1350 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
320
|
Abstract
In the July 15, 2010, issue of Genes & Development, Yoon and colleagues (pp. 1507-1518) report that, in a siRNA knockdown survey of 6363 genes in mouse C2C12 cells, they discovered 150 genes that regulated mitochondrial biogenesis and bioenergetics. Many of these genes have been studied previously for their importance in regulating transcription, protein and nucleic acid modification, and signal transduction. Some notable examples include Brac1, Brac2, Pax4, Sin3A, Fyn, Fes, Map2k7, Map3k2, calmodulin 3, Camk1, Ube3a, and Wnt. Yoon and colleagues go on to validate their observations by extensively documenting the role of Wnt signaling in the regulation of mitochondrial function.
Collapse
|
321
|
Abstract
Disruption of the most fundamental cellular energy process, the mitochondrial respiratory chain, results in a diverse and variable group of multisystem disorders known collectively as mitochondrial disease. The frequent involvement of the brain, nerves, and muscles, often in the same patient, places neurologists at the forefront of the interesting and challenging process of diagnosing and caring for these patients. Mitochondrial diseases are among the most frequently inherited neurological disorders, and can be caused by mutations in mitochondrial or nuclear DNA. Substantial progress has been made over the past decade in understanding the genetic basis of these disorders, with important implications for the general neurologist in terms of the diagnosis, investigation, and multidisciplinary management of these patients.
Collapse
Affiliation(s)
- Robert McFarland
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
322
|
Abstract
Recent reports of strong selection of mitochondrial DNA (mtDNA) during transmission in animal models of mtDNA disease, and of nuclear transfer in both animal models and humans, have important scientific implications. These are directly applicable to the genetic management of mtDNA disease. The risk that a mitochondrial disorder will be transmitted is difficult to estimate due to heteroplasmy—the existence of normal and mutant mtDNA in the same individual, tissue, or cell. In addition, the mtDNA bottleneck during oogenesis frequently results in dramatic and unpredictable inter-generational fluctuations in the proportions of mutant and wild-type mtDNA. Pre-implantation genetic diagnosis (PGD) for mtDNA disease enables embryos produced by in vitro fertilization (IVF) to be screened for mtDNA mutations. Embryos determined to be at low risk (i.e., those having low mutant mtDNA load) can be preferentially transferred to the uterus with the aim of initiating unaffected pregnancies. New evidence that some types of deleterious mtDNA mutations are eliminated within a few generations suggests that women undergoing PGD have a reasonable chance of generating embryos with a lower mutant load than their own. While nuclear transfer may become an alternative approach in future, there might be more difficulties, ethical as well as technical. This Review outlines the implications of recent advances for genetic management of these potentially devastating disorders.
Collapse
|
323
|
Yarham JW, Elson JL, Blakely EL, McFarland R, Taylor RW. Mitochondrial tRNA mutations and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:304-24. [DOI: 10.1002/wrna.27] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John W. Yarham
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Joanna L. Elson
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma L. Blakely
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W. Taylor
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
324
|
Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 2010; 83:52-62. [PMID: 20130269 PMCID: PMC2888963 DOI: 10.1095/biolreprod.109.080887] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/15/2009] [Accepted: 01/13/2010] [Indexed: 12/31/2022] Open
Abstract
Mammalian mitochondrial DNA (mtDNA) is a small, maternally inherited genome that codes for 13 essential proteins in the respiratory chain. Mature oocytes contain more than 150 000 copies of mtDNA, at least an order of magnitude greater than the number in most somatic cells, but sperm contain only approximately 100 copies. Mitochondrial oxidative phosphorylation has been suggested to be an important determinant of oocyte quality and sperm motility; however, the functional significance of the high mtDNA copy number in oocytes, and of the low copy number in sperm, remains unclear. To investigate the effects of mtDNA copy number on fertility, we genetically manipulated mtDNA copy number in the mouse by deleting one copy of Tfam, an essential component of the mitochondrial nucleoid, at different stages of germline development. We show that males can tolerate at least a threefold reduction in mtDNA copy number in their sperm without impaired fertility, and in fact, they preferentially transmit a deleted Tfam allele. Surprisingly, oocytes with as few as 4000 copies of mtDNA can be fertilized and progress normally through preimplantation development to the blastocyst stage. The mature oocyte, however, has a critical postimplantation developmental threshold of 40 000-50 000 copies of mtDNA in the mature oocyte. These observations suggest that the high mtDNA copy number in the mature oocyte is a genetic device designed to distribute mitochondria and mtDNAs to the cells of the early postimplantation embryo before mitochondrial biogenesis and mtDNA replication resumes, whereas down-regulation of mtDNA copy number is important for normal sperm function.
Collapse
Affiliation(s)
- Timothy Wai
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Asangla Ao
- Departments of Obstetrics and Gynecology and Human Genetics and Division of Experimental Medicine, McGill University Health Center, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Xiaoyun Zhang
- Departments of Obstetrics and Gynecology and Human Genetics and Division of Experimental Medicine, McGill University Health Center, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Daniel Cyr
- INRS-Instiut Armand Frappier, Université du Québec, Laval, Québec, Canada
| | - Daniel Dufort
- Departments of Obstetrics and Gynecology and Human Genetics and Division of Experimental Medicine, McGill University Health Center, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Eric A. Shoubridge
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
325
|
Reassessing evidence for a postnatal mitochondrial genetic bottleneck. Nat Genet 2010; 42:471-2; author reply 472-3. [PMID: 20502486 DOI: 10.1038/ng0610-471] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
326
|
Rotkopf R, Abramsky Z, Ovadia O. Conservation genetics of a rare Gerbil species: a comparison of the population genetic structures and demographic histories of the locally rare Pygmy Gerbil and the common Anderson's Gerbil. BMC Ecol 2010; 10:15. [PMID: 20525191 PMCID: PMC2887812 DOI: 10.1186/1472-6785-10-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 06/02/2010] [Indexed: 11/10/2022] Open
Abstract
Background One of the major challenges in evolutionary biology is identifying rare species and devising management plans to protect them while also sustaining their genetic diversity. However, in attempting a broad understanding of rarity, single-species studies provide limited insights because they do not reveal whether the factors that affect rare species differ from those that affect more common species. To illustrate this important concept and to arrive at a better understanding of the form of rarity characterizing the rare Gerbillus henleyi, we explored its population genetic structure alongside that of the locally common Gerbillus andersoni allenbyi. We trapped gerbils in several locations in Israel's western and inner Negev sand dunes. We then extracted DNA from ear samples, and amplified two mitochondrial sequences: the control region (CR) and the cytochrome oxidase 2 gene (CO2). Results Nucleotide diversity was low for all sequences, especially for the CR of G. a. allenbyi, which showed no diversity. We could not detect any significant population genetic structure in G. henleyi. In contrast, G. a. allenbyi's CO2 sequence showed significant population genetic structure. Pairwise PhiPT comparisons showed low values for G. henleyi but high values for G. a. allenbyi. Analysis of the species' demographic history indicated that G. henleyi's population size has not changed recently, and is under the influence of an ongoing bottleneck. The same analysis for G. a. allenbyi showed that this species has undergone a recent population expansion. Conclusions Comparing the two species, the populations of G. a. allenbyi are more isolated from each other, likely due to the high habitat specificity characterizing this species. The bottleneck pattern found in G. henleyi may be the result of competition with larger gerbil species. This result, together with the broad habitat use and high turnover rate characterizing G. henleyi, may explain the low level of differentiation among its populations. The evidence for a recent population expansion of G. a. allenbyi fits well with known geomorphological data about the formation of the Negev sand dunes and paleontological data about this species' expansion throughout the Levant. In conclusion, we suggest that adopting a comparative approach as presented here can markedly improve our understanding of the causes and effects of rarity, which in turn can allow us to better protect biodiversity patterns.
Collapse
Affiliation(s)
- Ron Rotkopf
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel.
| | | | | |
Collapse
|
327
|
Wallace DC. Mitochondrial DNA mutations in disease and aging. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:440-450. [PMID: 20544884 DOI: 10.1002/em.20586] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The human mitochondrial genome involves over 1,000 genes, dispersed across the maternally inherited mitochondrial DNA (mtDNA) and the biparentally inherited nuclear DNA (nDNA). The mtDNA encodes 13 core proteins that determine the efficiency of the mitochondrial energy-generating system, oxidative phosphorylation (OXPHOS), plus the RNA genes for their translation within the mitochondrion. The mtDNA has a very high mutation rate, which results in three classes of clinically relevant mtDNA mutations: recently deleterious germline line mutations resulting in mitochondrial disease; ancient regional variants, a subset of which permitted humans to adapt to differences in their energetic environments; and somatic mutations that accumulate with age eroding mitochondrial energy production and providing the aging clock. Mutations in nDNA-encoded OXPHOS structural genes can also cause mitochondrial disease, and alterations in nDNA mitochondrial biogenesis genes can destabilize the mtDNA and lead to clinical phenotypes. Finally, when combined, nonpathogenic nDNA and mtDNA protein variants can be functionally incompatible and cause disease. The essential functions of the conserved mtDNA proteins and their high mutation rate raise the question as to why the cumulative mtDNA genetic load does not result in species extinction. Studies of mice harboring deleterious mtDNA mutations have shown that the mammalian ovary selectively eliminates the most deleterious mtDNA mutations. However, milder mtDNA mutations are transmitted through the ovary and the female germline and introduced into the general population. This unique genetic system provides a flexible method for generating genetic variation in cellular and organismal energetics that permits species to adapt to alterations in their regional energetic environment.
Collapse
Affiliation(s)
- Douglas C Wallace
- ORU for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA, USA.
| |
Collapse
|
328
|
Wallace DC. Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man. Proc Natl Acad Sci U S A 2010; 107 Suppl 2:8947-53. [PMID: 20445102 PMCID: PMC3024017 DOI: 10.1073/pnas.0914635107] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex structures are generated and maintained through energy flux. Structures embody information, and biological information is stored in nucleic acids. The progressive increase in biological complexity over geologic time is thus the consequence of the information-generating power of energy flow plus the information-accumulating capacity of DNA, winnowed by natural selection. Consequently, the most important component of the biological environment is energy flow: the availability of calories and their use for growth, survival, and reproduction. Animals can exploit and adapt to available energy resources at three levels. They can evolve different anatomical forms through nuclear DNA (nDNA) mutations permitting exploitation of alternative energy reservoirs, resulting in new species. They can evolve modified bioenergetic physiologies within a species, primarily through the high mutation rate of mitochondrial DNA (mtDNA)-encoded bioenergetic genes, permitting adjustment to regional energetic environments. They can alter the epigenomic regulation of the thousands of dispersed bioenergetic genes via mitochondrially generated high-energy intermediates permitting individual accommodation to short-term environmental energetic fluctuations. Because medicine pertains to a single species, Homo sapiens, functional human variation often involves sequence changes in bioenergetic genes, most commonly mtDNA mutations, plus changes in the expression of bioenergetic genes mediated by the epigenome. Consequently, common nDNA polymorphisms in anatomical genes may represent only a fraction of the genetic variation associated with the common "complex" diseases, and the ascent of man has been the product of 3.5 billion years of information generation by energy flow, accumulated and preserved in DNA and edited by natural selection.
Collapse
Affiliation(s)
- Douglas C Wallace
- Organized Research Unit for Molecular and Mitochondrial Medicine and Genetics and Departments of Ecology and Evolutionary Biology, Biological Chemistry, and Pediatrics, University of California, Irvine, CA 92697-3940, USA
| |
Collapse
|
329
|
Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci U S A 2010; 107:8666-71. [PMID: 20421465 DOI: 10.1073/pnas.0912613107] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.
Collapse
|
330
|
Abstract
The nematode Caenorhabditis elegans ages and dies in a few weeks, but humans can live for 100 years or more. Assuming that the ancestor we share with nematodes aged rapidly, this means that over evolutionary time mutations have increased lifespan more than 2,000-fold. Which genes can extend lifespan? Can we augment their activities and live even longer? After centuries of wistful poetry and wild imagination, we are now getting answers, often unexpected ones, to these fundamental questions.
Collapse
Affiliation(s)
- Cynthia J Kenyon
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA.
| |
Collapse
|
331
|
Older mothers are not at risk of having grandchildren with sporadic mtDNA deletions. Genet Med 2010; 12:313-4. [DOI: 10.1097/gim.0b013e3181da76e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
332
|
Abstract
Mitochondrial dysfunction is heavily implicated in the multifactorial aging process. Aging humans have increased levels of somatic mtDNA mutations that tend to undergo clonal expansion to cause mosaic respiratory chain deficiency in various tissues, such as heart, brain, skeletal muscle, and gut. Genetic mouse models have shown that somatic mtDNA mutations and cell type-specific respiratory chain dysfunction can cause a variety of phenotypes associated with aging and age-related disease. There is thus strong observational and experimental evidence to implicate somatic mtDNA mutations and mosaic respiratory chain dysfunction in the mammalian aging process. The hypothesis that somatic mtDNA mutations are generated by oxidative damage has not been conclusively proven. Emerging data instead suggest that the inherent error rate of mitochondrial DNA (mtDNA) polymerase gamma (Pol gamma) may be responsible for the majority of somatic mtDNA mutations. The roles for mtDNA damage and replication errors in aging need to be further experimentally addressed.
Collapse
|
333
|
Gottlieb RA, Carreira RS. Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol 2010; 299:C203-10. [PMID: 20357180 DOI: 10.1152/ajpcell.00097.2010] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of autophagy has expanded greatly in recent years, largely due to the identification of the many genes involved in the process and to the development of better methods to monitor the process, such as green fluorescent protein-LC3 to visualize autophagosomes in vivo. A number of groups have demonstrated a tight connection between autophagy and mitochondrial turnover. Mitochondrial quality control is the process whereby mitochondria undergo successive rounds of fusion and fission with a dynamic exchange of components to segregate functional and damaged elements. Removal of the mitochondrion that contains damaged components is accomplished via autophagy (mitophagy). Mitophagy also serves to eliminate the subset of mitochondria producing the most reactive oxygen species, and episodic removal of mitochondria will reduce the oxidative burden, thus linking the mitochondrial free radical theory of aging with longevity achieved through caloric restriction. Mitophagy must be balanced by biogenesis to meet tissue energy needs, but the system is tunable and highly dynamic. This process is of greatest importance in long-lived cells such as cardiomyocytes, neurons, and memory T cells. Autophagy is known to decrease with age, and the failure to maintain mitochondrial quality control through mitophagy may explain why the heart, brain, and components of the immune system are most vulnerable to dysfunction as organisms age.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- BioScience Center, San Diego State University, San Diego, California 92182-4650, USA.
| | | |
Collapse
|
334
|
Abstract
The nematode Caenorhabditis elegans ages and dies in a few weeks, but humans can live for 100 years or more. Assuming that the ancestor we share with nematodes aged rapidly, this means that over evolutionary time mutations have increased lifespan more than 2,000-fold. Which genes can extend lifespan? Can we augment their activities and live even longer? After centuries of wistful poetry and wild imagination, we are now getting answers, often unexpected ones, to these fundamental questions.
Collapse
Affiliation(s)
- Cynthia J Kenyon
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA.
| |
Collapse
|
335
|
van Diepeningen AD, Goedbloed DJ, Slakhorst SM, Koopmanschap AB, Maas MFPM, Hoekstra RF, Debets AJM. Mitochondrial recombination increases with age in Podospora anserina. Mech Ageing Dev 2010; 131:315-22. [PMID: 20226205 DOI: 10.1016/j.mad.2010.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 12/15/2022]
Abstract
With uniparental inheritance of mitochondria, there seems little reason for homologous recombination in mitochondria, but the machinery for mitochondrial recombination is quite well-conserved in many eukaryote species. In fungi and yeasts heteroplasmons may be formed when strains fuse and transfer of organelles takes place, making it possible to study mitochondrial recombination when introduced mitochondria contain different markers. A survey of wild-type isolates from a local population of the filamentous fungus Podospora anserina for the presence of seven optional mitochondrial introns indicated that mitochondrial recombination does take place in nature. Moreover the recombination frequency appeared to be correlated with age: the more rapidly ageing fraction of the population had a significantly lower linkage disequilibrium indicating more recombination. Direct confrontation experiments with heterokaryon incompatible strains with different mitochondrial markers at different (relative) age confirmed that mitochondrial recombination increases with age. We propose that with increasing mitochondrial damage over time, mitochondrial recombination - even within a homoplasmic population of mitochondria - is a mechanism that may restore mitochondrial function.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
336
|
Meer MV, Kondrashov AS, Artzy-Randrup Y, Kondrashov FA. Compensatory evolution in mitochondrial tRNAs navigates valleys of low fitness. Nature 2010; 464:279-82. [PMID: 20182427 DOI: 10.1038/nature08691] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/16/2009] [Indexed: 12/25/2022]
Abstract
A long-standing controversy in evolutionary biology is whether or not evolving lineages can cross valleys on the fitness landscape that correspond to low-fitness genotypes, which can eventually enable them to reach isolated fitness peaks. Here we study the fitness landscapes traversed by switches between different AU and GC Watson-Crick nucleotide pairs at complementary sites of mitochondrial transfer RNA stem regions in 83 mammalian species. We find that such Watson-Crick switches occur 30-40 times more slowly than pairs of neutral substitutions, and that alleles corresponding to GU and AC non-Watson-Crick intermediate states segregate within human populations at low frequencies, similar to those of non-synonymous alleles. Substitutions leading to a Watson-Crick switch are strongly correlated, especially in mitochondrial tRNAs encoded on the GT-nucleotide-rich strand of the mitochondrial genome. Using these data we estimate that a typical Watson-Crick switch involves crossing a fitness valley of a depth of about 10(-3) or even about 10(-2), with AC intermediates being slightly more deleterious than GU intermediates. This compensatory evolution must proceed through rare intermediate variants that never reach fixation. The ubiquitous nature of compensatory evolution in mammalian mitochondrial tRNAs and other molecules implies that simultaneous fixation of two alleles that are individually deleterious may be a common phenomenon at the molecular level.
Collapse
Affiliation(s)
- Margarita V Meer
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, C/Dr Aiguader 88, Barcelona Biomedical Research Park Building, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
337
|
Abramov AY, Smulders-Srinivasan TK, Kirby DM, Acin-Perez R, Enriquez JA, Lightowlers RN, Duchen MR, Turnbull DM. Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain 2010; 133:797-807. [PMID: 20157008 PMCID: PMC2842515 DOI: 10.1093/brain/awq015] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations of mitochondrial DNA are associated with a wide spectrum of disorders, primarily affecting the central nervous system and muscle function. The specific consequences of mitochondrial DNA mutations for neuronal pathophysiology are not understood. In order to explore the impact of mitochondrial mutations on neuronal biochemistry and physiology, we have used fluorescence imaging techniques to examine changes in mitochondrial function in neurons differentiated from mouse embryonic stem-cell cybrids containing mitochondrial DNA polymorphic variants or mutations. Surprisingly, in neurons carrying a severe mutation in respiratory complex I (<10% residual complex I activity) the mitochondrial membrane potential was significantly increased, but collapsed in response to oligomycin, suggesting that the mitochondrial membrane potential was maintained by the F1Fo ATPase operating in ‘reverse’ mode. In cells with a mutation in complex IV causing ∼40% residual complex IV activity, the mitochondrial membrane potential was not significantly different from controls. The rate of generation of mitochondrial reactive oxygen species, measured using hydroethidium and signals from the mitochondrially targeted hydroethidine, was increased in neurons with both the complex I and complex IV mutations. Glutathione was depleted, suggesting significant oxidative stress in neurons with a complex I deficiency, but not in those with a complex IV defect. In the neurons with complex I deficiency but not the complex IV defect, neuronal death was increased and was attenuated by reactive oxygen species scavengers. Thus, in neurons with a severe mutation of complex I, the maintenance of a high potential by F1Fo ATPase activity combined with an impaired respiratory chain causes oxidative stress which promotes cell death.
Collapse
Affiliation(s)
- Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
338
|
Holt IJ. Zen and the art of mitochondrial DNA maintenance. Trends Genet 2010; 26:103-9. [PMID: 20117854 DOI: 10.1016/j.tig.2009.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/29/2009] [Accepted: 12/29/2009] [Indexed: 11/17/2022]
Abstract
Because mitochondrial genes encode proteins essential for aerobic ATP production, mitochondrial DNA defects can cause an energy crisis. These defects fall into two broad categories: primary mutations in mitochondrial DNA and mutations in nuclear genes, whose protein products are involved in mitochondrial DNA maintenance. Evidence is accumulating that both types of defects can cause mitochondrial DNA loss. Hence, regulatory factors, which determine whether mitochondrial DNA molecules are maintained or lost, potentially play a more important role in these disorders than hitherto recognised. Candidates include reactive oxygen species (ROS) and the tumour suppressor p53. The cell might not always be the best judge of when to dispense with the services of mitochondrial DNA, and so interventions that favour its retention could potentially limit the adverse effects of pathological mitochondrial DNAs.
Collapse
Affiliation(s)
- Ian J Holt
- MRC Mitochondrial Biology Unit, Wellcome Trust MRC Building Hills Rd, Cambridge, CB2 0XY, UK.
| |
Collapse
|
339
|
Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:1-65. [PMID: 20875628 DOI: 10.1016/s1937-6448(10)84001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Center of Excellence Macromolecular Complexes, Institute for Cell Biology and Neurosciences, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
340
|
Explaining the imperfection of the molecular clock of hominid mitochondria. PLoS One 2009; 4:e8260. [PMID: 20041137 PMCID: PMC2794369 DOI: 10.1371/journal.pone.0008260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 11/16/2009] [Indexed: 11/19/2022] Open
Abstract
The molecular clock of mitochondrial DNA has been extensively used to date various genetic events. However, its substitution rate among humans appears to be higher than rates inferred from human-chimpanzee comparisons, limiting the potential of interspecies clock calibrations for intraspecific dating. It is not well understood how and why the substitution rate accelerates. We have analyzed a phylogenetic tree of 3057 publicly available human mitochondrial DNA coding region sequences for changes in the ratios of mutations belonging to different functional classes. The proportion of non-synonymous and RNA genes substitutions has reduced over hundreds of thousands of years. The highest mutation ratios corresponding to fast acceleration in the apparent substitution rate of the coding sequence have occurred after the end of the Last Ice Age. We recalibrate the molecular clock of human mtDNA as 7990 years per synonymous mutation over the mitochondrial genome. However, the distribution of substitutions at synonymous sites in human data significantly departs from a model assuming a single rate parameter and implies at least 3 different subclasses of sites. Neutral model with 3 synonymous substitution rates can explain most, if not all, of the apparent molecular clock difference between the intra- and interspecies levels. Our findings imply the sluggishness of purifying selection in removing the slightly deleterious mutations from the human as well as the Neandertal and chimpanzee populations. However, for humans, the weakness of purifying selection has been further exacerbated by the population expansions associated with the out-of Africa migration and the end of the Last Ice Age.
Collapse
|
341
|
Howe DK, Baer CF, Denver DR. High rate of large deletions in Caenorhabditis briggsae mitochondrial genome mutation processes. Genome Biol Evol 2009; 2:29-38. [PMID: 20333220 PMCID: PMC2839355 DOI: 10.1093/gbe/evp055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2009] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations underlie a variety of human genetic disorders and are associated with the aging process. mtDNA polymorphisms are widely used in a variety of evolutionary applications. Although mtDNA mutation spectra are known to differ between distantly related model organisms, the extent to which mtDNA mutation processes vary between more closely related species and within species remains enigmatic. We analyzed mtDNA divergence in two sets of 250-generation Caenorhabditis briggsae mutation-accumulation (MA) lines, each derived from a different natural isolate progenitor: strain HK104 from Okayama, Japan, and strain PB800 from Ohio, United States. Both sets of C. briggsae MA lines accumulated numerous large heteroplasmic mtDNA deletions, whereas only one similar event was observed in a previous analysis of Caenorhabditis elegans MA line mtDNA. Homopolymer length change mutations were frequent in both sets of C. briggsae MA lines and occurred in both intergenic and protein-coding gene regions. The spectrum of C. briggsae mtDNA base substitution mutations differed from the spectrum previously observed in C. elegans. In C. briggsae, the HK104 MA lines experienced many different base substitution types, whereas the PB800 lines displayed only C:G --> T:A transitions, although the difference was not significant. Over half of the mtDNA base substitutions detected in the C. briggsae MA lines were in a heteroplasmic state, whereas all those previously characterized in C. elegans MA line mtDNA were fixed changes, indicating a narrower mtDNA bottleneck in C. elegans as compared with C. briggsae. Our results show that C. briggsae mtDNA is highly susceptible to large deletions and that the mitochondrial mutation process varies between Caenorhabditis nematode species.
Collapse
Affiliation(s)
- Dana K Howe
- Department of Zoology and Center for Genome Research and Biocomputing, Oregon State University, USA
| | | | | |
Collapse
|
342
|
The mtDNA mutator mouse: Dissecting mitochondrial involvement in aging. Aging (Albany NY) 2009; 1:1028-32. [PMID: 20157586 PMCID: PMC2815752 DOI: 10.18632/aging.100109] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 12/10/2009] [Indexed: 11/25/2022]
Abstract
The role of mtDNA mutations in aging has been intensely debated because of their low abundance and correlative connection with aging. The creation of mtDNA mutator mice provided the first evidence that somatic mtDNA mutations have the capacity to cause a variety of aging phenotypes in mammals, and they do so without inducing ROS production or increasing oxidative stress. We have recently provided evidence that the accumulation of point mutations in mtDNA leads to the synthesis of respiratory chain subunits with amino acid substitutions that impair complex stability in mtDNA mutator mice. Furthermore, we have demonstrated that the point mutations cause progressive respiratory chain deficiency, which, we propose, leads to premature aging. These results have been challenged by another group working on a similar model, who argues that the point mutations in mtDNA we found at very high levels in mtDNA mutator mice do not cause the phenotype. Instead, they argue that circular mtDNA molecules with large deletions, are the culprit. This intense debate about molecular mechanism of mitochondrial dysfunction that is causing progeroid phenotypes in the mtDNA mutator mice is the main topic of this research perspective.
Collapse
|
343
|
Bogenhagen DF. Does mtDNA nucleoid organization impact aging? Exp Gerontol 2009; 45:473-7. [PMID: 20004238 DOI: 10.1016/j.exger.2009.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/02/2009] [Indexed: 11/24/2022]
Abstract
Somatic cells in tissue culture package several copies of mitochondrial DNA (mtDNA) in aggregates known as nucleoids that appear to be remarkably stable. The clustering of multiple mtDNA genomes in a single nucleoid complex may promote the progressive age-related accumulation of deletion and point mutations in mtDNA in many somatic tissues, particularly in post-mitotic cells. In contrast, oocytes appear to have the ability to select against deleterious mutations in mtDNA, at least in mice. This fundamental difference suggests that oocytes may be better able to detect and remove defective mtDNA genomes than somatic cells, possibly due in part to the simpler organization of the mtDNA in smaller nucleoids. These observations suggest the hypothesis that a complex nucleoid structure containing several mtDNA molecules may impair the ability of the cell to select against deleterious mtDNA mutations, thereby contributing to age-related mitochondrial dysfunction.
Collapse
Affiliation(s)
- Daniel F Bogenhagen
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| |
Collapse
|
344
|
Mitochondria, bioenergetics, and the epigenome in eukaryotic and human evolution. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2009; 74:383-93. [PMID: 19955254 DOI: 10.1101/sqb.2009.74.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studies on the origin of species have focused largely on anatomy, yet animal populations are generally limited by energy. Animals can adapt to available energy resources at three levels: (1) evolution of different anatomical forms between groups of animals through nuclear DNA (nDNA) mutations, permitting exploitation of alternative energy reservoirs and resulting in new species with novel niches, (2) evolution of different physiologies within intraspecific populations through mutations in mitochondrial DNA (mtDNA) and nDNA bioenergetic genes, permitting adjustment to energetic variation within a species' niche, and (3) epigenomic regulation of dispersed bioenergetic genes within an individual via mitochondrially generated high-energy intermediates, permitting individual adjustment to environmental fluctuations. Because medicine focuses on changes within our species, clinically relevant variation is more likely to involve changes in bioenergetics than anatomy. This may explain why mitochondrial diseases and epigenomic diseases frequently have similar phenotypes and why epigenomic diseases are being found to involve mitochondrial dysfunction. Therefore, common complex diseases may be the result of changes in any of a large number of mtDNA and nDNA bioenergetic genes or to altered epigenomic regulation of these bioenergetic genes. All of these changes result in similar bioenergetic failure and consequently related phenotypes.
Collapse
|
345
|
Abstract
In this issue, Lee et al. (2009) present a crystal structure of the human mitochondrial DNA polymerase (POLgamma). The structure of this heterotrimeric enzyme lays a foundation for understanding how POLgamma mutations cause human mitochondrial disease and why some antiviral nucleoside analogs cause cellular toxicity.
Collapse
Affiliation(s)
- Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Göteborg University, SE-405 30 Göteborg, Sweden.
| | | |
Collapse
|
346
|
Endicott P, Ho SY, Metspalu M, Stringer C. Evaluating the mitochondrial timescale of human evolution. Trends Ecol Evol 2009; 24:515-21. [DOI: 10.1016/j.tree.2009.04.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/27/2009] [Accepted: 04/01/2009] [Indexed: 01/28/2023]
|
347
|
Abstract
It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.
Collapse
Affiliation(s)
- Douglas C Wallace
- Organizational Research Unit for Molecular and Mitochondrial Medicine and Genetics, University of California at Irvine, Irvine, California 92697, USA.
| | | |
Collapse
|
348
|
Edgar D, Shabalina I, Camara Y, Wredenberg A, Calvaruso MA, Nijtmans L, Nedergaard J, Cannon B, Larsson NG, Trifunovic A. Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab 2009; 10:131-8. [PMID: 19656491 DOI: 10.1016/j.cmet.2009.06.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/11/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
The mtDNA mutator mice have high levels of point mutations and linear deletions of mtDNA causing a progressive respiratory chain dysfunction and a premature aging phenotype. We have now performed molecular analyses to determine the mechanism whereby these mtDNA mutations impair respiratory chain function. We report that mitochondrial protein synthesis is unimpaired in mtDNA mutator mice consistent with the observed minor alterations of steady-state levels of mitochondrial transcripts. These findings refute recent claims that circular mtDNA molecules with large deletions are driving the premature aging phenotype. We further show that the stability of several respiratory chain complexes is severely impaired despite normal synthesis of the corresponding mtDNA-encoded subunits. Our findings reveal a mechanism for induction of aging phenotypes by demonstrating a causative role for amino acid substitutions in mtDNA-encoded respiratory chain subunits, which, in turn, leads to decreased stability of the respiratory chain complexes and respiratory chain deficiency.
Collapse
Affiliation(s)
- Daniel Edgar
- Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Malena A, Loro E, Di Re M, Holt IJ, Vergani L. Inhibition of mitochondrial fission favours mutant over wild-type mitochondrial DNA. Hum Mol Genet 2009; 18:3407-16. [PMID: 19561330 DOI: 10.1093/hmg/ddp281] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biased segregation of mitochondrial DNA variants has been widely documented, but little was known about its molecular basis. We set out to test the hypothesis that altering the balance between mitochondrial fusion and fission could influence the segregation of mutant and wild-type mtDNA variants, because it would modify the number of organelles per cell. Therefore human cells heteroplasmic for the pathological A3243G mitochondrial DNA mutation were transfected with constructs designed to silence Drp1 or hFis1, whose gene products are required for mitochondrial fission. Drp1 and hFis1 gene silencing were both associated with increased levels of mutant mitochondrial DNA. Thus, the extent of the mitochondrial reticular network appears to be an important factor in determining mutant load. The fact that the level of mutant and wild-type mitochondrial DNA can be manipulated by altering the expression of nuclear encoded factors involved in mitochondrial fission suggests new interventions for mitochondrial DNA disorders.
Collapse
Affiliation(s)
- Adriana Malena
- Neuroscience Department, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
350
|
Baranowska I, Jäderlund KH, Nennesmo I, Holmqvist E, Heidrich N, Larsson NG, Andersson G, Wagner EGH, Hedhammar Å, Wibom R, Andersson L. Sensory ataxic neuropathy in golden retriever dogs is caused by a deletion in the mitochondrial tRNATyr gene. PLoS Genet 2009; 5:e1000499. [PMID: 19492087 PMCID: PMC2683749 DOI: 10.1371/journal.pgen.1000499] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 04/30/2009] [Indexed: 11/18/2022] Open
Abstract
Sensory ataxic neuropathy (SAN) is a recently identified neurological disorder in golden retrievers. Pedigree analysis revealed that all affected dogs belong to one maternal lineage, and a statistical analysis showed that the disorder has a mitochondrial origin. A one base pair deletion in the mitochondrial tRNA(Tyr) gene was identified at position 5304 in affected dogs after re-sequencing the complete mitochondrial genome of seven individuals. The deletion was not found among dogs representing 18 different breeds or in six wolves, ruling out this as a common polymorphism. The mutation could be traced back to a common ancestor of all affected dogs that lived in the 1970s. We used a quantitative oligonucleotide ligation assay to establish the degree of heteroplasmy in blood and tissue samples from affected dogs and controls. Affected dogs and their first to fourth degree relatives had 0-11% wild-type (wt) sequence, while more distant relatives ranged between 5% and 60% wt sequence and all unrelated golden retrievers had 100% wt sequence. Northern blot analysis showed that tRNA(Tyr) had a 10-fold lower steady-state level in affected dogs compared with controls. Four out of five affected dogs showed decreases in mitochondrial ATP production rates and respiratory chain enzyme activities together with morphological alterations in muscle tissue, resembling the changes reported in human mitochondrial pathology. Altogether, these results provide conclusive evidence that the deletion in the mitochondrial tRNA(Tyr) gene is the causative mutation for SAN.
Collapse
Affiliation(s)
- Izabella Baranowska
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Hultin Jäderlund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway
| | - Inger Nennesmo
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nadja Heidrich
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nils-Göran Larsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rolf Wibom
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leif Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|