301
|
Phylodynamic analysis of the emergence and epidemiological impact of transmissible defective dengue viruses. PLoS Pathog 2013; 9:e1003193. [PMID: 23468631 PMCID: PMC3585136 DOI: 10.1371/journal.ppat.1003193] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/28/2012] [Indexed: 12/11/2022] Open
Abstract
Intra-host sequence data from RNA viruses have revealed the ubiquity of defective viruses in natural viral populations, sometimes at surprisingly high frequency. Although defective viruses have long been known to laboratory virologists, their relevance in clinical and epidemiological settings has not been established. The discovery of long-term transmission of a defective lineage of dengue virus type 1 (DENV-1) in Myanmar, first seen in 2001, raised important questions about the emergence of transmissible defective viruses and their role in viral epidemiology. By combining phylogenetic analyses and dynamical modeling, we investigate how evolutionary and ecological processes at the intra-host and inter-host scales shaped the emergence and spread of the defective DENV-1 lineage. We show that this lineage of defective viruses emerged between June 1998 and February 2001, and that the defective virus was transmitted primarily through co-transmission with the functional virus to uninfected individuals. We provide evidence that, surprisingly, this co-transmission route has a higher transmission potential than transmission of functional dengue viruses alone. Consequently, we predict that the defective lineage should increase overall incidence of dengue infection, which could account for the historically high dengue incidence reported in Myanmar in 2001–2002. Our results show the unappreciated potential for defective viruses to impact the epidemiology of human pathogens, possibly by modifying the virulence-transmissibility trade-off, or to emerge as circulating infections in their own right. They also demonstrate that interactions between viral variants, such as complementation, can open new pathways to viral emergence. Defective viruses are viral particles with genetic mutations or deletions that eliminate essential functions, so that they cannot complete their life cycles independently. They can reproduce only by co-infecting host cells with functional viruses and ‘borrowing’ their functional elements. Defective viruses have been observed for many human pathogens, but they have not been thought to impact epidemiological outcomes. Recently it was reported that a lineage of defective dengue virus spread through humans and mosquitoes in Myanmar for at least 18 months in 2001–2002. In this study, we investigate the emergence and epidemiological impact of this defective lineage by combining genetic sequence analyses with mathematical models. We show that the defective lineage emerged from circulating dengue viruses between June 1998 and February 2001, and that it spreads because—surprisingly—its presence causes functional dengue viruses to transmit more efficiently. Our model shows that this would cause a substantial rise in total dengue infections, consistent with historically high levels of dengue cases reported in Myanmar during 2001 and 2002. Our study yields new insights into the biology of dengue virus, and demonstrates a previously unappreciated potential for defective viruses to impact the epidemiology of infectious diseases.
Collapse
|
302
|
Qi F, Du F. Trajectory data analyses for pedestrian space-time activity study. J Vis Exp 2013:e50130. [PMID: 23462533 DOI: 10.3791/50130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission(1-3). An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data(4). Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an automatic module. Trajectory segmentation(5) involves the identification of indoor and outdoor parts from pre-processed space-time tracks. Again, both interactive visual segmentation and automatic segmentation are supported. Segmented space-time tracks are then analyzed to derive characteristics of one's activity space such as activity radius etc. Density estimation and visualization are used to examine large amount of trajectory data to model hot spots and interactions. We demonstrate both density surface mapping(6) and density volume rendering(7). We also include a couple of other exploratory data analyses (EDA) and visualizations tools, such as Google Earth animation support and connection analysis. The suite of analytical as well as visual methods presented in this paper may be applied to any trajectory data for space-time activity studies.
Collapse
Affiliation(s)
- Feng Qi
- School of Environmental and Life Sciences, Kean University, NJ, USA
| | | |
Collapse
|
303
|
Tompkins AM, Ermert V. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malar J 2013; 12:65. [PMID: 23419192 PMCID: PMC3656787 DOI: 10.1186/1475-2875-12-65] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. METHODS A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. RESULTS Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. CONCLUSIONS A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.
Collapse
Affiliation(s)
- Adrian M Tompkins
- Earth System Physics, Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste, Italy.
| | | |
Collapse
|
304
|
Reiner RC, Perkins TA, Barker CM, Niu T, Chaves LF, Ellis AM, George DB, Le Menach A, Pulliam JRC, Bisanzio D, Buckee C, Chiyaka C, Cummings DAT, Garcia AJ, Gatton ML, Gething PW, Hartley DM, Johnston G, Klein EY, Michael E, Lindsay SW, Lloyd AL, Pigott DM, Reisen WK, Ruktanonchai N, Singh BK, Tatem AJ, Kitron U, Hay SI, Scott TW, Smith DL. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010. J R Soc Interface 2013; 10:20120921. [PMID: 23407571 PMCID: PMC3627099 DOI: 10.1098/rsif.2012.0921] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.
Collapse
Affiliation(s)
- Robert C Reiner
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread. Int J Antimicrob Agents 2013; 41:311-7. [PMID: 23394809 DOI: 10.1016/j.ijantimicag.2012.12.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/21/2022]
Abstract
The emergence of resistance to former first-line antimalarial drugs has been an unmitigated disaster. In recent years, artemisinin class drugs have become standard and they are considered an essential tool for helping to eradicate the disease. However, their ability to reduce morbidity and mortality and to slow transmission requires the maintenance of effectiveness. Recently, an artemisinin delayed-clearance phenotype was described. This is believed to be the precursor to resistance and threatens local elimination and global eradication plans. Understanding how resistance emerges and spreads is important for developing strategies to contain its spread. Resistance is the result of two processes: (i) drug selection of resistant parasites; and (ii) the spread of resistance. In this review, we examine the factors that lead to both drug selection and the spread of resistance. We then examine strategies for controlling the spread of resistance, pointing out the complexities and deficiencies in predicting how resistance will spread.
Collapse
|
306
|
Qi F, Du F. Tracking and visualization of space-time activities for a micro-scale flu transmission study. Int J Health Geogr 2013; 12:6. [PMID: 23388060 PMCID: PMC3579692 DOI: 10.1186/1476-072x-12-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/04/2013] [Indexed: 01/23/2023] Open
Abstract
Background Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Methods Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. Results When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. Conclusions This study proved that tracking technology an effective technique for obtaining data for micro-scale influenza transmission research. The findings revealed micro-scale transmission hotspots on a university campus and provided insights for local control and prevention strategies.
Collapse
Affiliation(s)
- Feng Qi
- School of Environmental and Life Sciences, Kean University, 1000 Morris Ave,, Union, NJ 07083, USA.
| | | |
Collapse
|
307
|
Yukich JO, Taylor C, Eisele TP, Reithinger R, Nauhassenay H, Berhane Y, Keating J. Travel history and malaria infection risk in a low-transmission setting in Ethiopia: a case control study. Malar J 2013; 12:33. [PMID: 23347703 PMCID: PMC3570338 DOI: 10.1186/1475-2875-12-33] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background Malaria remains the leading communicable disease in Ethiopia, with around one million clinical cases of malaria reported annually. The country currently has plans for elimination for specific geographic areas of the country. Human movement may lead to the maintenance of reservoirs of infection, complicating attempts to eliminate malaria. Methods An unmatched case–control study was conducted with 560 adult patients at a Health Centre in central Ethiopia. Patients who received a malaria test were interviewed regarding their recent travel histories. Bivariate and multivariate analyses were conducted to determine if reported travel outside of the home village within the last month was related to malaria infection status. Results After adjusting for several known confounding factors, travel away from the home village in the last 30 days was a statistically significant risk factor for infection with Plasmodium falciparum (AOR 1.76; p=0.03) but not for infection with Plasmodium vivax (AOR 1.17; p=0.62). Male sex was strongly associated with any malaria infection (AOR 2.00; p=0.001). Conclusions Given the importance of identifying reservoir infections, consideration of human movement patterns should factor into decisions regarding elimination and disease prevention, especially when targeted areas are limited to regions within a country.
Collapse
Affiliation(s)
- Joshua O Yukich
- Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St, New Orleans, LA, USA.
| | | | | | | | | | | | | |
Collapse
|
308
|
Rabaa MA, Klungthong C, Yoon IK, Holmes EC, Chinnawirotpisan P, Thaisomboonsuk B, Srikiatkhachorn A, Rothman AL, Tannitisupawong D, Aldstadt J, Nisalak A, Mammen MP, Gibbons RV, Endy TP, Fansiri T, Scott TW, Jarman RG. Frequent in-migration and highly focal transmission of dengue viruses among children in Kamphaeng Phet, Thailand. PLoS Negl Trop Dis 2013; 7:e1990. [PMID: 23350000 PMCID: PMC3547850 DOI: 10.1371/journal.pntd.0001990] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 11/16/2012] [Indexed: 12/15/2022] Open
Abstract
Revealing the patterns and determinants of the spread of dengue virus (DENV) at local scales is central to understanding the epidemiology and evolution of this major human pathogen. We performed a phylogenetic analysis of the envelope (E) genes of DENV-1, -2, -3, and -4 isolates (involving 97, 23, 5, and 74 newly collected sequences, respectively) sampled from school-based cohort and village-based cluster studies in Kamphaeng Phet, Thailand, between 2004 and 2007. With these data, we sought to describe the spatial and temporal patterns of DENV spread within a rural population where a future vaccine efficacy trial is planned. Our analysis revealed considerable genetic diversity within the study population, with multiple lineages within each serotype circulating for various lengths of time during the study period. These results suggest that DENV is frequently introduced into both semi-urban and rural areas in Kamphaeng Phet from other populations. In contrast, the persistence of viral lineages across sampling years was observed less frequently. Analysis of phylogenetic clustering indicated that DENV transmission was highly spatially and temporally focal, and that it occurred in homes rather than at school. Overall, the strength of temporal clustering suggests that seasonal bottlenecks in local DENV populations facilitate the invasion and establishment of viruses from outside of the study area, in turn reducing the extent of lineage persistence.
Collapse
Affiliation(s)
- Maia A. Rabaa
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - In-Kyu Yoon
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Edward C. Holmes
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Anon Srikiatkhachorn
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alan L. Rothman
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Darunee Tannitisupawong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jared Aldstadt
- Department of Geography, University at Buffalo, Buffalo, New York, United States of America
| | - Ananda Nisalak
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mammen P. Mammen
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Robert V. Gibbons
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Timothy P. Endy
- Department of Infectious Diseases, State University of New York at Syracuse, Syracuse, New York, United States of America
| | - Thanyalak Fansiri
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Thomas W. Scott
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Entomology, University of California Davis, Davis, California, United States of America
| | - Richard G. Jarman
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
309
|
Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM, Astete H, Reiner RC, Vilcarromero S, Elder JP, Halsey ES, Kochel TJ, Kitron U, Scott TW. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci U S A 2013; 110:994-9. [PMID: 23277539 PMCID: PMC3549073 DOI: 10.1073/pnas.1213349110] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention.
Collapse
Affiliation(s)
- Steven T Stoddard
- Department of Entomology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Wesolowski A, Buckee CO, Pindolia DK, Eagle N, Smith DL, Garcia AJ, Tatem AJ. The use of census migration data to approximate human movement patterns across temporal scales. PLoS One 2013; 8:e52971. [PMID: 23326367 PMCID: PMC3541275 DOI: 10.1371/journal.pone.0052971] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/26/2012] [Indexed: 11/25/2022] Open
Abstract
Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data.
Collapse
Affiliation(s)
- Amy Wesolowski
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
311
|
Buckee CO, Wesolowski A, Eagle NN, Hansen E, Snow RW. Mobile phones and malaria: modeling human and parasite travel. Travel Med Infect Dis 2013; 11:15-22. [PMID: 23478045 PMCID: PMC3697114 DOI: 10.1016/j.tmaid.2012.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/29/2022]
Abstract
Human mobility plays an important role in the dissemination of malaria parasites between regions of variable transmission intensity. Asymptomatic individuals can unknowingly carry parasites to regions where mosquito vectors are available, for example, undermining control programs and contributing to transmission when they travel. Understanding how parasites are imported between regions in this way is therefore an important goal for elimination planning and the control of transmission, and would enable control programs to target the principal sources of malaria. Measuring human mobility has traditionally been difficult to do on a population scale, but the widespread adoption of mobile phones in low-income settings presents a unique opportunity to directly measure human movements that are relevant to the spread of malaria. Here, we discuss the opportunities for measuring human mobility using data from mobile phones, as well as some of the issues associated with combining mobility estimates with malaria infection risk maps to meaningfully estimate routes of parasite importation.
Collapse
Affiliation(s)
- Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
312
|
Lutambi AM, Penny MA, Smith T, Chitnis N. Mathematical modelling of mosquito dispersal in a heterogeneous environment. Math Biosci 2012; 241:198-216. [PMID: 23246807 DOI: 10.1016/j.mbs.2012.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 11/29/2022]
Abstract
Mosquito dispersal is a key behavioural factor that affects the persistence and resurgence of several vector-borne diseases. Spatial heterogeneity of mosquito resources, such as hosts and breeding sites, affects mosquito dispersal behaviour and consequently affects mosquito population structures, human exposure to vectors, and the ability to control disease transmission. In this paper, we develop and simulate a discrete-space continuous-time mathematical model to investigate the impact of dispersal and heterogeneous distribution of resources on the distribution and dynamics of mosquito populations. We build an ordinary differential equation model of the mosquito life cycle and replicate it across a hexagonal grid (multi-patch system) that represents two-dimensional space. We use the model to estimate mosquito dispersal distances and to evaluate the effect of spatial repellents as a vector control strategy. We find evidence of association between heterogeneity, dispersal, spatial distribution of resources, and mosquito population dynamics. Random distribution of repellents reduces the distance moved by mosquitoes, offering a promising strategy for disease control.
Collapse
Affiliation(s)
- Angelina Mageni Lutambi
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box CH-4002 Basel, Switzerland.
| | | | | | | |
Collapse
|
313
|
Teurlai M, Huy R, Cazelles B, Duboz R, Baehr C, Vong S. Can human movements explain heterogeneous propagation of dengue fever in Cambodia? PLoS Negl Trop Dis 2012; 6:e1957. [PMID: 23236536 PMCID: PMC3516584 DOI: 10.1371/journal.pntd.0001957] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
Background Determining the factors underlying the long-range spatial spread of infectious diseases is a key issue regarding their control. Dengue is the most important arboviral disease worldwide and a major public health problem in tropical areas. However the determinants shaping its dynamics at a national scale remain poorly understood. Here we describe the spatial-temporal pattern of propagation of annual epidemics in Cambodia and discuss the role that human movements play in the observed pattern. Methods and Findings We used wavelet phase analysis to analyse time-series data of 105,598 hospitalized cases reported between 2002 and 2008 in the 135 (/180) most populous districts in Cambodia. We reveal spatial heterogeneity in the propagation of the annual epidemic. Each year, epidemics are highly synchronous over a large geographic area along the busiest national road of the country whereas travelling waves emanate from a few rural areas and move slowly along the Mekong River at a speed of ∼11 km per week (95% confidence interval 3–18 km per week) towards the capital, Phnom Penh. Conclusions We suggest human movements – using roads as a surrogate – play a major role in the spread of dengue fever at a national scale. These findings constitute a new starting point in the understanding of the processes driving dengue spread. Dengue fever is a mosquito borne viral infection. It has become a major public health problem during the past decades: only 9 countries were affected in the 1970s; dengue is now endemic in more than 100 countries. In the absence of any vaccine or specific treatment, control of dengue fever is currently limited to vector control measures, which are difficult to implement and hardly sustainable, especially in low income countries. To implement efficient control measures, it is crucial to understand the dynamics of propagation of the disease and the key factors underlying these dynamics. In this study, data from 8-year national surveillance in Cambodia were analysed. Dengue fever follows a recurrent pattern of propagation at the national scale. The annual epidemics originate from a few rural areas identified in this work. This study also suggests additional evidence for the role of human movement in the spatial dynamics of the disease, which should be accounted for in control measures. These results differ from the current knowledge about dengue dynamics and are therefore of interest for future research.
Collapse
Affiliation(s)
- Magali Teurlai
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- IRD UMR LOCEAN, UMR ESPACE-DEV, New-Caledonia, France
| | - Rekol Huy
- National Dengue Control Program, National Centre for Parasitology, Entomology and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
| | - Bernard Cazelles
- Ecologie & Evolution, UMR 7625, CNRS-UPMC-ENS, Paris, France
- UMMISCO UMI 209 IRD - UPMC, Bondy, France
| | | | - Christophe Baehr
- Météo France, CNRM, Toulouse, France
- CNRS, GAME URA 1357, Toulouse, France
| | - Sirenda Vong
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- * E-mail:
| |
Collapse
|
314
|
Abstract
OBJECTIVE/DESIGN The global spread of HIV-1 main group (group M) has resulted in differential distributions of subtypes and recombinants, with the greatest diversity being found in sub-Saharan Africa. The explanations for the current subtype distribution patterns are likely multifactorial, but the promotion of human migrations and movements through transportation link availability and quality, summarized through 'accessibility', have been consistently cited as strong drivers. We sought to address the question of whether accessibility has been a significant factor in HIV-1 spread across mainland Africa through spatial analyses of molecular epidemiology, transport network and land cover data. METHODS The distribution of HIV-1 subtypes and recombinants in sub-Saharan Africa for the period 1998-2008 was mapped using molecular epidemiology data at a finer level of detail than ever before. Moreover, hypotheses on the role of distance, road network structure and accessibility in explaining the patterns seen were tested using spatial datasets representing African transport infrastructure, land cover and an accessibility model of landscape travel speed. RESULTS Coherent spatial patterns in HIV-1 subtype distributions across the continent exist, and a substantial proportion of the variance in the distribution and diversity pattern seen can be explained by variations in regional spatial accessibility. CONCLUSION The study confirms quantitatively the influence of transport infrastructure on HIV-1 spread within Africa, presents an approach for examining potential future impacts of road development projects and, more generally, highlights the importance of accessibility in the spread of communicable diseases.
Collapse
|
315
|
Gonçalves da Silva A, Cunha ICL, Santos WS, Luz SLB, Ribolla PEM, Abad-Franch F. Gene flow networks among American Aedes aegypti populations. Evol Appl 2012; 5:664-76. [PMID: 23144654 PMCID: PMC3492893 DOI: 10.1111/j.1752-4571.2012.00244.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/09/2012] [Indexed: 12/01/2022] Open
Abstract
The mosquito Aedes aegypti, the dengue virus vector, has spread throughout the tropics in historical times. While this suggests man-mediated dispersal, estimating contemporary connectivity among populations has remained elusive. Here, we use a large mtDNA dataset and a Bayesian coalescent framework to test a set of hypotheses about gene flow among American Ae. aegypti populations. We assessed gene flow patterns at the continental and subregional (Amazon basin) scales. For the Americas, our data favor a stepping-stone model in which gene flow is higher among adjacent populations but in which, at the same time, North American and southeastern Brazilian populations are directly connected, likely via sea trade. Within Amazonia, the model with highest support suggests extensive gene flow among major cities; Manaus, located at the center of the subregional transport network, emerges as a potentially important connecting hub. Our results suggest substantial connectivity across Ae. aegypti populations in the Americas. As long-distance active dispersal has not been observed in this species, our data support man-mediated dispersal as a major determinant of the genetic structure of American Ae. aegypti populations. The inferred topology of interpopulation connectivity can inform network models of Ae. aegypti and dengue spread.
Collapse
Affiliation(s)
- Anders Gonçalves da Silva
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Division of Marine and Atmospheric Research Hobart, TAS, Australia
| | | | | | | | | | | |
Collapse
|
316
|
Chao DL, Halstead SB, Halloran ME, Longini IM. Controlling dengue with vaccines in Thailand. PLoS Negl Trop Dis 2012; 6:e1876. [PMID: 23145197 PMCID: PMC3493390 DOI: 10.1371/journal.pntd.0001876] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/07/2012] [Indexed: 11/25/2022] Open
Abstract
Background Dengue is a mosquito-borne infectious disease that constitutes a growing global threat with the habitat expansion of its vectors Aedes aegyti and A. albopictus and increasing urbanization. With no effective treatment and limited success of vector control, dengue vaccines constitute the best control measure for the foreseeable future. With four interacting dengue serotypes, the development of an effective vaccine has been a challenge. Several dengue vaccine candidates are currently being tested in clinical trials. Before the widespread introduction of a new dengue vaccine, one needs to consider how best to use limited supplies of vaccine given the complex dengue transmission dynamics and the immunological interaction among the four dengue serotypes. Methodology/Principal Findings We developed an individual-level (including both humans and mosquitoes), stochastic simulation model for dengue transmission and control in a semi-rural area in Thailand. We calibrated the model to dengue serotype-specific infection, illness and hospitalization data from Thailand. Our simulations show that a realistic roll-out plan, starting with young children then covering progressively older individuals in following seasons, could reduce local transmission of dengue to low levels. Simulations indicate that this strategy could avert about 7,700 uncomplicated dengue fever cases and 220 dengue hospitalizations per 100,000 people at risk over a ten-year period. Conclusions/Significance Vaccination will have an important role in controlling dengue. According to our modeling results, children should be prioritized to receive vaccine, but adults will also need to be vaccinated if one wants to reduce community-wide dengue transmission to low levels. An estimated 40% of the world's population is at risk of infection with dengue, a mosquito-borne disease that can lead to hospitalization or death. Dengue vaccines are currently being tested in clinical trials and at least one product will likely be available within a couple of years. Before widespread deployment, one should plan how best to use limited supplies of vaccine. We developed a mathematical model of dengue transmission in semi-rural Thailand to help evaluate different vaccination strategies. Our modeling results indicate that children should be prioritized to receive vaccine to reduce dengue-related morbidity, but adults will also need to be vaccinated if one wants to eliminate local dengue transmission. Dengue is a challenging disease to study because of its four interacting serotypes, seasonality of its transmission, and pre-existing immunity in a population. Models such as this one are useful coherent framework for synthesizing these complex issues and evaluating potential public health interventions such as mass vaccination.
Collapse
Affiliation(s)
- Dennis L. Chao
- Center for Statistics and Quantitative Infectious Diseases, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - M. Elizabeth Halloran
- Center for Statistics and Quantitative Infectious Diseases, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Ira M. Longini
- Department of Biostatistics, College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
317
|
Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee CO. Quantifying the impact of human mobility on malaria. Science 2012; 338:267-70. [PMID: 23066082 PMCID: PMC3675794 DOI: 10.1126/science.1223467] [Citation(s) in RCA: 473] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here, we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies importation routes that contribute to malaria epidemiology on regional spatial scales.
Collapse
Affiliation(s)
- Amy Wesolowski
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nathan Eagle
- Department of Epidemiology, Harvard School of Public Health, Boston, USA
| | - Andrew J. Tatem
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
- Department of Geography, University of Florida, Gainesville, FL, USA
| | - David L. Smith
- Department of Geography, University of Florida, Gainesville, FL, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Abdisalan M. Noor
- Malaria Public Health & Epidemiology Group, Centre of Geographic Medicine, KEMRI-Wellcome Trust-University of Oxford Collaborative Programme, Nairobi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Robert W. Snow
- Malaria Public Health & Epidemiology Group, Centre of Geographic Medicine, KEMRI-Wellcome Trust-University of Oxford Collaborative Programme, Nairobi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Caroline O. Buckee
- Department of Epidemiology, Harvard School of Public Health, Boston, USA
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
318
|
Ecologic and sociodemographic risk determinants for dengue transmission in urban areas in Thailand. Interdiscip Perspect Infect Dis 2012; 2012:907494. [PMID: 23056042 PMCID: PMC3463950 DOI: 10.1155/2012/907494] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/15/2012] [Indexed: 11/18/2022] Open
Abstract
This study analyzed the association between household-level ecologic and individual-level sociodemographic determinants and dengue transmission in urban areas of Chachoengsao province, Thailand. The ecologic and sociodemographic variables were examined by univariate analysis and multivariate logistic regression. In the ecologic model, dengue risk was related to households situated in the ecotope of residential mixed with commercial and densely populated urban residential areas (RCDENPURA) (aOR = 2.23, P = 0.009), high historical dengue risk area (aOR = 2.06, P < 0.001), and presence of household window screens (aOR = 1.62, P = 0.023). In the sociodemographic model, the dengue risk was related to householders aged >45 years (aOR = 3.24, P = 0.003), secondary and higher educational degrees (aOR = 2.33, P = 0.013), household members >4 persons (aOR = 2.01, P = 0.02), and community effort in environmental management by clean-up campaign (aOR = 1.91, P = 0.035). It is possible that the preventive measures were positively correlated with dengue risk because these activities were generally carried out in particular households or communities following dengue experiences or dengue outbreaks. Interestingly, the ecotope of RCDENPURA and high historical dengue risk area appeared to be very good predictors of dengue incidences.
Collapse
|
319
|
Wen TH, Lin MH, Fang CT. Population Movement and Vector-Borne Disease Transmission: Differentiating Spatial–Temporal Diffusion Patterns of Commuting and Noncommuting Dengue Cases. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/00045608.2012.671130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
320
|
Hausermann H, Tschakert P, Smithwick EAH, Ferring D, Amankwah R, Klutse E, Hagarty J, Kromel L. Contours of risk: spatializing human behaviors to understand disease dynamics in changing landscapes. ECOHEALTH 2012; 9:251-255. [PMID: 22805769 DOI: 10.1007/s10393-012-0780-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
We echo viewpoints presented in recent publications from EcoHealth and other journals arguing for the need to understand linkages between human health, disease ecology, and landscape change. We underscore the importance of incorporating spatialities of human behaviors and perceptions in such analyses to further understandings of socio-ecological interactions mediating human health. We use Buruli ulcer, an emerging necrotizing skin infection and serious health concern in central Ghana, to illustrate our argument.
Collapse
Affiliation(s)
- Heidi Hausermann
- Department of Human Ecology, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
321
|
Loha E, Lindtjørn B. Predictors of Plasmodium falciparum malaria incidence in Chano Mille, South Ethiopia: a longitudinal study. Am J Trop Med Hyg 2012; 87:450-459. [PMID: 22826493 PMCID: PMC3435347 DOI: 10.4269/ajtmh.2012.12-0155] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/12/2012] [Indexed: 11/12/2022] Open
Abstract
We assessed potential effects of local meteorological and environmental conditions, indoor residual spraying with insecticides, insecticide-treated nets (ITNs) use at individual and community levels, and individual factors on Plasmodium falciparum malaria incidence in a village in south Ethiopia. A cohort of 8,121 people was followed for 101 weeks with active and passive surveillance. Among 317 microscopically confirmed P. falciparum malaria episodes, 29.3% occurred among temporary residents. The incidence density was 3.6/10,000 person-weeks of observation. We observed higher malaria incidence among males, children 5-14 years of age, ITNs non-users, the poor, and people who lived closer to vector breeding places. Rainfall increased and indoor residual spraying with Deltamethrin reduced falciparum incidence. Although ITNs prevented falciparum malaria for the users, we did not find that free mass ITNs distribution reduced falciparum malaria on a village level.
Collapse
Affiliation(s)
- Eskindir Loha
- School of Public and Environmental Health, Hawassa University, Ethiopia; Centre for International Health, University of Bergen, Norway
| | | |
Collapse
|
322
|
Padmanabha H, Durham D, Correa F, Diuk-Wasser M, Galvani A. The interactive roles of Aedes aegypti super-production and human density in dengue transmission. PLoS Negl Trop Dis 2012; 6:e1799. [PMID: 22953017 PMCID: PMC3429384 DOI: 10.1371/journal.pntd.0001799] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/16/2012] [Indexed: 11/29/2022] Open
Abstract
Background A. aegypti production and human density may vary considerably in dengue endemic areas. Understanding how interactions between these factors influence the risk of transmission could improve the effectiveness of the allocation of vector control resources. To evaluate the combined impacts of variation in A. aegypti production and human density we integrated field data with simulation modeling. Methodology/Principal Findings Using data from seven censuses of A. aegypti pupae (2007–2009) and from demographic surveys, we developed an agent-based transmission model of the dengue transmission cycle across houses in 16 dengue-endemic urban ‘patches’ (1–3 city blocks each) of Armenia, Colombia. Our field data showed that 92% of pupae concentrated in only 5% of houses, defined as super-producers. Average secondary infections (R0) depended on infrequent, but highly explosive transmission events. These super-spreading events occurred almost exclusively when the introduced infectious person infected mosquitoes that were produced in super-productive containers. Increased human density favored R0, and when the likelihood of human introduction of virus was incorporated into risk, a strong interaction arose between vector production and human density. Simulated intervention of super-productive containers was substantially more effective in reducing dengue risk at higher human densities. Significance/Conclusions These results show significant interactions between human population density and the natural regulatory pattern of A. aegypti in the dynamics of dengue transmission. The large epidemiological significance of super-productive containers suggests that they have the potential to influence dengue viral adaptation to mosquitoes. Human population density plays a major role in dengue transmission, due to its potential impact on human-A. aegypti contact, both within a person's home and when visiting others. The large variation in population density within typical dengue endemic cities suggests that it should be a major consideration in dengue control policy. In the urban dengue system the life history of the mosquito vector, Aedes aegypti, transpires mainly inside and around human residences. In this study we integrated field data from an endemic city of Colombia into a simulation model to assess how natural variation in A. aegypti production and household human density influence dengue transmission. Contrary to traditional models, we show that the basic reproductive rate of dengue (Ro) is more likely to be positively correlated with human density. Moreover, the natural regulatory pattern of A. aegypti production, where a few super-productive houses dominate vector recruitment, caused a "super-spreading" pattern, whereby the large majority of viral introductions did not generate secondary infections, and Ro depended on sporadic, highly explosive transmission events. These events were dependent on the introduced infectious human infecting mosquitoes produced in super-productive vessels. When the likelihood of human introduction was incorporated into our risk indicator, a significant interaction emerged between human density and A. aegypti super production, such that removal of these containers had a much larger impact on reducing dengue in areas of higher human density. These results show that knowledge of interactions between human population density, social interactions and the natural regulatory pattern of A. aegypti can improve the design of dengue control efforts.
Collapse
Affiliation(s)
- Harish Padmanabha
- Yale School of Public Health, New Haven, Connecticut, United States of America.
| | | | | | | | | |
Collapse
|
323
|
Kuan MM, Chang FY. Airport sentinel surveillance and entry quarantine for dengue infections following a fever screening program in Taiwan. BMC Infect Dis 2012; 12:182. [PMID: 22867003 PMCID: PMC3462143 DOI: 10.1186/1471-2334-12-182] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 07/24/2012] [Indexed: 12/02/2022] Open
Abstract
Background Dengue has not reached an endemic status in Taiwan; nevertheless, we have implemented a fever screening program at airports for the early detection of febrile passengers with a dengue infection. This study is intended to assess the performance of the airport screening procedures for dengue infection. Methods We analyzed data from the national surveillance system of the Taiwan Centers for Disease Control. We included the imported dengue cases reported by sentinel airports and clinics as well as the domestic cases from 2007–2010. Results Approximately 44.9% (95%CI: 35.73-54.13%) of the confirmed imported dengue cases with an apparent symptom (febrile) in the viremic stage were detected via the airport fever screening program, with an estimated positive predictive value of 2.36% (95% CI: 0.96- 3.75%) and a negative predictive value > 99.99%. Fluctuations in the number of the symptomatic imported dengue cases identified in the airports (X) were associated with the total number of imported dengue cases (Y) based on a regression analysis of a biweekly surveillance (i.e., n = 104, R2X:Y = 0.61, P < 0.005). Additionally, the fluctuating patterns in the cumulative numbers of the imported dengue cases (X) with a 1–2 month lead time (t) was in parallel with that of the domestic dengue cases (Y) based on a consecutive 4-year surveillance (i.e., n = 48, R2X(t-1):Y = 0.22, R2X(t-2):Y = 0.31, P < 0.001) from 2007–2010. Conclusions A moderate sensitivity of detecting dengue at the airports examined in this study indicated some limitations of the fever screening program for the prevention of importation. The screening program could assist in the rapid triage for self-quarantine of some symptomatic dengue cases that were in the viremic stage at the borders and contribute to active sentinel surveillance; however, the blocking of viral transmission to susceptible populations (neighbors or family) from all of the viremic travelers, including those with or without symptoms, is critical to prevent dengue epidemics. Therefore, the reinforcement of mosquito bite prevention and household vector control in dengue-endemic or dengue-competent hotspots during an epidemic season is essential and highly recommended.
Collapse
Affiliation(s)
- Mei-Mei Kuan
- Chief-Secretary's Office, Taiwan Centers for Disease Control, Taipei, Taiwan, R.O.C.
| | | |
Collapse
|
324
|
Martins VEP, Alencar CH, Kamimura MT, Kamimura MT, de Carvalho Araújo FM, De Simone SG, Dutra RF, Guedes MIF. Occurrence of natural vertical transmission of dengue-2 and dengue-3 viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil. PLoS One 2012; 7:e41386. [PMID: 22848479 PMCID: PMC3405123 DOI: 10.1371/journal.pone.0041386] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/20/2012] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Aedes aegypti and Aedes albopictus perform an important role in the transmission of the dengue virus to human populations, particularly in the tropical and subtropical regions of the world. Despite a lack of understanding in relation to the maintenance of the dengue virus in nature during interepidemic periods, the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus appears to be of significance in relation to the urban scenario of Fortaleza. METHODS From March 2007 to July 2009 collections of larvae and pupae of Aedes spp were carried out in 40 neighborhoods of Fortaleza. The collections yielded 3,417 (91%) A. aegypti mosquitoes and 336 (9%) A. albopictus mosquitoes. Only pools containing females, randomly chosen, were submitted to the following tests indirect immunofluorescence (virus isolation), RT-PCR/nested-PCR and nucleotide sequencing at the C-prM junction of the dengue virus genome. RESULTS The tests on pool 34 (35 A. albopictus mosquitoes) revealed with presence of DENV-3, pool 35 (50 A. aegypti mosquitoes) was found to be infected with DENV-2, while pool 49 (41 A. albopictus mosquitoes) revealed the simultaneous presence of DENV-2 and DENV-3. Based on the results obtained, there was a minimum infection rate of 0.5 for A. aegypti and 9.4 for A. albopictus. The fragments of 192 bp and 152 bp related to DENV-3, obtained from pools 34 and 49, was registered in GenBank with the access codes HM130699 and JF261696, respectively. CONCLUSIONS This study recorded the first natural evidence of the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus collected in Fortaleza, Ceará State, Brazil, opening a discuss on the epidemiological significance of this mechanism of viral transmission in the local scenario, particularly with respect to the maintenance of these viruses in nature during interepidemic periods.
Collapse
|
325
|
Water level flux in household containers in Vietnam--a key determinant of Aedes aegypti population dynamics. PLoS One 2012; 7:e39067. [PMID: 22911683 PMCID: PMC3404066 DOI: 10.1371/journal.pone.0039067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/18/2012] [Indexed: 11/29/2022] Open
Abstract
We examined changes in the abundance of immature Aedes aegypti at the household and water storage container level during the dry-season (June-July, 2008) in Tri Nguyen village, central Vietnam. We conducted quantitative immature mosquito surveys of 171 containers in the same 41 households, with replacement of samples, every two days during a 29-day period. We developed multi-level mixed effects regression models to investigate container and household variability in pupal abundance. The percentage of houses that were positive for I/II instars, III/IV instars and pupae during any one survey ranged from 19.5–43.9%, 48.8–75.6% and 17.1–53.7%, respectively. The mean numbers of Ae. aegypti pupae per house ranged between 1.9–12.6 over the study period. Estimates of absolute pupal abundance were highly variable over the 29-day period despite relatively stable weather conditions. Most variability in pupal abundance occurred at the container rather than the household level. A key determinant of Ae. aegypti production was the frequent filling of the containers with water, which caused asynchronous hatching of Ae. aegypti eggs and development of cohorts of immatures. We calculated the probability of the water volume of a large container (>500L) increasing or decreasing by ≥20% to be 0.05 and 0.07 per day, respectively, and for small containers (<500L) to be 0.11 and 0.13 per day, respectively. These human water-management behaviors are important determinants of Ae. aegypti production during the dry season. This has implications for choosing a suitable Wolbachia strain for release as it appears that prolonged egg desiccation does not occur in this village.
Collapse
|
326
|
Aldstadt J, Yoon IK, Tannitisupawong D, Jarman RG, Thomas SJ, Gibbons RV, Uppapong A, Iamsirithaworn S, Rothman AL, Scott TW, Endy T. Space-time analysis of hospitalised dengue patients in rural Thailand reveals important temporal intervals in the pattern of dengue virus transmission. Trop Med Int Health 2012; 17:1076-85. [PMID: 22808917 DOI: 10.1111/j.1365-3156.2012.03040.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine the temporal intervals at which spatial clustering of dengue hospitalisations occurs. METHODS Space-time analysis of 262 people hospitalised and serologically confirmed with dengue virus infections in Kamphaeng Phet, Thailand was performed. The cases were observed between 1 January 2009 and 6 May 2011. Spatial coordinates of each patient's home were captured using the Global Positioning System. A novel method based on the Knox test was used to determine the temporal intervals between cases at which spatial clustering occurred. These intervals are indicative of the length of time between successive illnesses in the chain of dengue virus transmission. RESULTS The strongest spatial clustering occurred at the 15-17-day interval. There was also significant spatial clustering over short intervals (2-5 days). The highest excess risk was observed within 200 m of a previous hospitalised case and significantly elevated risk persisted within this distance for 32-34 days. CONCLUSIONS Fifteen to seventeen days are the most likely serial interval between successive dengue illnesses. This novel method relies only on passively detected, hospitalised case data with household locations and provides a useful tool for understanding region-specific and outbreak-specific dengue virus transmission dynamics.
Collapse
Affiliation(s)
- Jared Aldstadt
- Department of Geography, University at Buffalo, Buffalo, NY 14260, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Yoon IK, Getis A, Aldstadt J, Rothman AL, Tannitisupawong D, Koenraadt CJM, Fansiri T, Jones JW, Morrison AC, Jarman RG, Nisalak A, Mammen MP, Thammapalo S, Srikiatkhachorn A, Green S, Libraty DH, Gibbons RV, Endy T, Pimgate C, Scott TW. Fine scale spatiotemporal clustering of dengue virus transmission in children and Aedes aegypti in rural Thai villages. PLoS Negl Trop Dis 2012; 6:e1730. [PMID: 22816001 PMCID: PMC3398976 DOI: 10.1371/journal.pntd.0001730] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/31/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Based on spatiotemporal clustering of human dengue virus (DENV) infections, transmission is thought to occur at fine spatiotemporal scales by horizontal transfer of virus between humans and mosquito vectors. To define the dimensions of local transmission and quantify the factors that support it, we examined relationships between infected humans and Aedes aegypti in Thai villages. METHODOLOGY/PRINCIPAL FINDINGS Geographic cluster investigations of 100-meter radius were conducted around DENV-positive and DENV-negative febrile "index" cases (positive and negative clusters, respectively) from a longitudinal cohort study in rural Thailand. Child contacts and Ae. aegypti from cluster houses were assessed for DENV infection. Spatiotemporal, demographic, and entomological parameters were evaluated. In positive clusters, the DENV infection rate among child contacts was 35.3% in index houses, 29.9% in houses within 20 meters, and decreased with distance from the index house to 6.2% in houses 80-100 meters away (p<0.001). Significantly more Ae. aegypti were DENV-infectious (i.e., DENV-positive in head/thorax) in positive clusters (23/1755; 1.3%) than negative clusters (1/1548; 0.1%). In positive clusters, 8.2% of mosquitoes were DENV-infectious in index houses, 4.2% in other houses with DENV-infected children, and 0.4% in houses without infected children (p<0.001). The DENV infection rate in contacts was 47.4% in houses with infectious mosquitoes, 28.7% in other houses in the same cluster, and 10.8% in positive clusters without infectious mosquitoes (p<0.001). Ae. aegypti pupae and adult females were more numerous only in houses containing infectious mosquitoes. CONCLUSIONS/SIGNIFICANCE Human and mosquito infections are positively associated at the level of individual houses and neighboring residences. Certain houses with high transmission risk contribute disproportionately to DENV spread to neighboring houses. Small groups of houses with elevated transmission risk are consistent with over-dispersion of transmission (i.e., at a given point in time, people/mosquitoes from a small portion of houses are responsible for the majority of transmission).
Collapse
Affiliation(s)
- In-Kyu Yoon
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Pindolia DK, Garcia AJ, Wesolowski A, Smith DL, Buckee CO, Noor AM, Snow RW, Tatem AJ. Human movement data for malaria control and elimination strategic planning. Malar J 2012; 11:205. [PMID: 22703541 PMCID: PMC3464668 DOI: 10.1186/1475-2875-11-205] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/15/2012] [Indexed: 11/29/2022] Open
Abstract
Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.
Collapse
Affiliation(s)
- Deepa K Pindolia
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
- Department of Geography, University of Florida, Gainesville, USA
- Malaria Public Health & Epidemiology Group, Centre of Geographic Medicine, KEMRI-Wellcome Trust-University of Oxford Collaborative Programme, Nairobi, Kenya
| | - Andres J Garcia
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
- Department of Geography, University of Florida, Gainesville, USA
| | - Amy Wesolowski
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, USA
| | - David L Smith
- Department of Biology, University of Florida, Gainesville, USA
- Center for Disease Dynamics, Economics & policy, Resources for the Future, Washington DC, USA
- Fogarty International Center, National Institutes of Health, Bethesda, USA
| | | | - Abdisalan M Noor
- Malaria Public Health & Epidemiology Group, Centre of Geographic Medicine, KEMRI-Wellcome Trust-University of Oxford Collaborative Programme, Nairobi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Robert W Snow
- Malaria Public Health & Epidemiology Group, Centre of Geographic Medicine, KEMRI-Wellcome Trust-University of Oxford Collaborative Programme, Nairobi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Andrew J Tatem
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
- Department of Geography, University of Florida, Gainesville, USA
- Fogarty International Center, National Institutes of Health, Bethesda, USA
| |
Collapse
|
329
|
Abstract
To deal with the variability of malaria, control programmes need to stratify their malaria problem into a number of smaller units. Such stratification may be based on the epidemiology of malaria or on its determinants such as ecology. An ecotype classification was developed by the World Health Organization (WHO) around 1990, and it is time to assess its usefulness for current malaria control as well as for malaria modelling on the basis of published research. Journal and grey literature was searched for articles on malaria or Anopheles combined with ecology or stratification. It was found that all malaria in the world today could be assigned to one or more of the following ecotypes: savanna, plains and valleys; forest and forest fringe; foothill; mountain fringe and northern and southern fringes; desert fringe; coastal and urban. However, some areas are in transitional or mixed zones; furthermore, the implications of any ecotype depend on the biogeographical region, sometimes subregion, and finally, the knowledge on physiography needs to be supplemented by local information on natural, anthropic and health system processes including malaria control. Ecotyping can therefore not be seen as a shortcut to determine control interventions, but rather as a framework to supplement available epidemiological and entomological data so as to assess malaria situations at the local level, think through the particular risks and opportunities and reinforce intersectoral action. With these caveats, it does however emerge that several ecotypic distinctions are well defined and have relatively constant implications for control within certain biogeographic regions. Forest environments in the Indo-malay and the Neotropics are, with a few exceptions, associated with much higher malaria risk than in adjacent areas; the vectors are difficult to control, and the anthropic factors also often converge to impose constraints. Urban malaria in Africa is associated with lower risk than savanna malaria; larval control may be considered though its role is not so far well established. In contrast, urban malaria in the Indian subcontinent is associated with higher risks than most adjacent rural areas, and larval control has a definite, though not exclusive, role. Simulation modelling of cost-effectiveness of malaria control strategies in different scenarios should prioritize ecotypes where malaria control encounters serious technical problems. Further field research on malaria and ecology should be interdisciplinary, especially with geography, and pay more attention to juxtapositions and to anthropic elements, especially migration.
Collapse
Affiliation(s)
- Allan Schapira
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | |
Collapse
|
330
|
Seyoum A, Sikaala CH, Chanda J, Chinula D, Ntamatungiro AJ, Hawela M, Miller JM, Russell TL, Briët OJT, Killeen GF. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, South-east Zambia. Parasit Vectors 2012; 5:101. [PMID: 22647493 PMCID: PMC3432592 DOI: 10.1186/1756-3305-5-101] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 05/23/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Current front line malaria vector control methods such as indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs), rely upon the preference of many primary vectors to feed and/or rest inside human habitations where they can be targeted with domestically-applied insecticidal products. We studied the human biting behaviour of the malaria vector Anopheles funestus Giles and the potential malaria vector Anopheles quadriannulatus Theobald in Luangwa valley, south-east Zambia. METHODS Mosquitoes were collected by human landing catch in blocks of houses with either combined use of deltamethrin-based IRS and LLINs or LLINs alone. Human behaviour data were collected to estimate how much exposure to mosquito bites indoors and outdoors occurred at various times of the night for LLIN users and non-users. RESULTS Anopheles funestus and An. quadriannulatus did not show preference to bite either indoors or outdoors: the proportions [95% confidence interval] caught indoors were 0.586 [0.303, 0.821] and 0.624 [0.324, 0.852], respectively. However, the overwhelming majority of both species were caught at times when most people are indoors. The proportion of mosquitoes caught at a time when most people are indoors were 0.981 [0.881, 0.997] and 0.897 [0.731, 0.965], respectively, so the proportion of human exposure to both species occuring indoors was high for individuals lacking LLINs (An. funestus: 0.983 and An. quadriannulatus: 0.970, respectively). While LLIN users were better protected, more than half of their exposure was nevertheless estimated to occur indoors (An. funestus: 0.570 and An. quadriannulatus: 0.584). CONCLUSIONS The proportion of human exposure to both An. funestus and An. quadriannulatus occuring indoors was high in the area and hence both species might be responsive to further peri-domestic measures if these mosquitoes are susceptible to insecticidal products.
Collapse
Affiliation(s)
- Aklilu Seyoum
- Liverpool School of Tropical Medicine, Vector Group, Pembroke Place, Liverpool, L3 5QA, UK
| | - Chadwick H Sikaala
- Liverpool School of Tropical Medicine, Vector Group, Pembroke Place, Liverpool, L3 5QA, UK
- National Malaria Control Centre, PO Box 32509, Lusaka, Zambia
| | - Javan Chanda
- National Malaria Control Centre, PO Box 32509, Lusaka, Zambia
| | - Dingani Chinula
- National Malaria Control Centre, PO Box 32509, Lusaka, Zambia
| | - Alex J Ntamatungiro
- Ifakara Health Institute, Biomedical and Environmental Thematic Group, Kiko Avenue, PO Box 78373, Dar es Salaam, Tanzania
| | - Moonga Hawela
- National Malaria Control Centre, PO Box 32509, Lusaka, Zambia
| | - John M Miller
- PATH Malaria Control and Evaluation Partnership in Africa (MACEPA), National Malaria Control Centre, Lusaka, Zambia
| | - Tanya L Russell
- Liverpool School of Tropical Medicine, Vector Group, Pembroke Place, Liverpool, L3 5QA, UK
- Ifakara Health Institute, Biomedical and Environmental Thematic Group, Kiko Avenue, PO Box 78373, Dar es Salaam, Tanzania
- James Cook University, Faculty of Medicine, Health and Molecular Sciences, Cairns, Australia
| | - Olivier J T Briët
- Swiss Tropical and Public Health Institute, Department of Public Health and Epidemiology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gerry F Killeen
- Liverpool School of Tropical Medicine, Vector Group, Pembroke Place, Liverpool, L3 5QA, UK
- Ifakara Health Institute, Biomedical and Environmental Thematic Group, Kiko Avenue, PO Box 78373, Dar es Salaam, Tanzania
| |
Collapse
|
331
|
Yoon IK, Rothman AL, Tannitisupawong D, Srikiatkhachorn A, Jarman RG, Aldstadt J, Nisalak A, Mammen MP, Thammapalo S, Green S, Libraty DH, Gibbons RV, Getis A, Endy T, Jones JW, Koenraadt CJM, Morrison AC, Fansiri T, Pimgate C, Scott TW. Underrecognized mildly symptomatic viremic dengue virus infections in rural Thai schools and villages. J Infect Dis 2012; 206:389-98. [PMID: 22615312 DOI: 10.1093/infdis/jis357] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The understanding of dengue virus (DENV) transmission dynamics and the clinical spectrum of infection are critical to informing surveillance and control measures. Geographic cluster studies can elucidate these features in greater detail than cohort studies alone. METHODS A 4-year longitudinal cohort and geographic cluster study was undertaken in rural Thailand. Cohort children underwent pre-/postseason serology and active school absence-based surveillance to detect inapparent and symptomatic dengue. Cluster investigations were triggered by cohort dengue and non-dengue febrile illnesses (positive and negative clusters, respectively). RESULTS The annual cohort incidence of symptomatic dengue ranged from 1.3% to 4.4%. DENV-4 predominated in the first 2 years, DENV-1 in the second 2 years. The inapparent-to-symptomatic infection ratio ranged from 1.1:1 to 2.9:1. Positive clusters had a 16.0% infection rate, negative clusters 1.1%. Of 119 infections in positive clusters, 59.7% were febrile, 20.2% were afebrile with other symptoms, and 20.2% were asymptomatic. Of 16 febrile children detected during cluster investigations who continued to attend school, 9 had detectable viremia. CONCLUSIONS Dengue transmission risk was high near viremic children in both high- and low-incidence years. Inapparent infections in the cohort overestimated the rate of asymptomatic infections. Ambulatory children with mild febrile viremic infections could represent an important component of dengue transmission.
Collapse
Affiliation(s)
- In-Kyu Yoon
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Emergence and prevalence of human vector-borne diseases in sink vector populations. PLoS One 2012; 7:e36858. [PMID: 22629337 PMCID: PMC3356347 DOI: 10.1371/journal.pone.0036858] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/16/2012] [Indexed: 01/04/2023] Open
Abstract
Vector-borne diseases represent a major public health concern in most tropical and subtropical areas, and an emerging threat for more developed countries. Our understanding of the ecology, evolution and control of these diseases relies predominantly on theory and data on pathogen transmission in large self-sustaining ‘source’ populations of vectors representative of highly endemic areas. However, there are numerous places where environmental conditions are less favourable to vector populations, but where immigration allows them to persist. We built an epidemiological model to investigate the dynamics of six major human vector borne-diseases in such non self-sustaining ‘sink’ vector populations. The model was parameterized through a review of the literature, and we performed extensive sensitivity analysis to look at the emergence and prevalence of the pathogen that could be encountered in these populations. Despite the low vector abundance in typical sink populations, all six human diseases were able to spread in 15–55% of cases after accidental introduction. The rate of spread was much more strongly influenced by vector longevity, immigration and feeding rates, than by transmission and virulence of the pathogen. Prevalence in humans remained lower than 5% for dengue, leishmaniasis and Japanese encephalitis, but substantially higher for diseases with longer duration of infection; malaria and the American and African trypanosomiasis. Vector-related parameters were again the key factors, although their influence was lower than on pathogen emergence. Our results emphasize the need for ecology and evolution to be thought in the context of metapopulations made of a mosaic of sink and source habitats, and to design vector control program not only targeting areas of high vector density, but working at a larger spatial scale.
Collapse
|
333
|
Tatem AJ, Adamo S, Bharti N, Burgert CR, Castro M, Dorelien A, Fink G, Linard C, John M, Montana L, Montgomery MR, Nelson A, Noor AM, Pindolia D, Yetman G, Balk D. Mapping populations at risk: improving spatial demographic data for infectious disease modeling and metric derivation. Popul Health Metr 2012; 10:8. [PMID: 22591595 PMCID: PMC3487779 DOI: 10.1186/1478-7954-10-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/27/2012] [Indexed: 11/10/2022] Open
Abstract
The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models.Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites.In this paper we discuss the deficiencies of existing spatial population datasets and their limitations on epidemiological analyses. We review sources of detailed, contemporary, freely available and relevant spatial demographic data focusing on low income regions where such data are often sparse and highlight the value of incorporating these through a set of examples of their application in disease studies. Moreover, the importance of acknowledging, measuring, and accounting for uncertainty in spatial demographic datasets is outlined. Finally, a strategy for building an open-access database of spatial demographic data that is tailored to epidemiological applications is put forward.
Collapse
Affiliation(s)
- Andrew J Tatem
- Department of Geography, University of Florida, Gainesville, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Martínez-Vega RA, Danis-Lozano R, Velasco-Hernández J, Díaz-Quijano FA, González-Fernández M, Santos R, Román S, Argáez-Sosa J, Nakamura M, Ramos-Castañeda J. A prospective cohort study to evaluate peridomestic infection as a determinant of dengue transmission: protocol. BMC Public Health 2012; 12:262. [PMID: 22471857 PMCID: PMC3353184 DOI: 10.1186/1471-2458-12-262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 04/02/2012] [Indexed: 11/24/2022] Open
Abstract
Background Vector control programs, which have focused mainly on the patient house and peridomestic areas around dengue cases, have not produced the expected impact on transmission. This project will evaluate the assumption that the endemic/epidemic transmission of dengue begins around peridomestic vicinities of the primary cases. Its objective is to assess the relationship between symptomatic dengue case exposure and peridomestic infection incidence. Methods/Design A prospective cohort study will be conducted (in Tepalcingo and Axochiapan, in the state of Morelos, Mexico), using the state surveillance system for the detection of incident cases. Paired blood specimens will be collected from both the individuals who live with the incident cases and a sample of subjects residing within a 25-meter radius of such cases (exposed cohort), in order to measure dengue-specific antibodies. Other subjects will be selected from areas which have not presented any incident cases within 200 meters, during the two months preceding the sampling (non-exposed cohort). Symptomatic/asymptomatic incident infection will be considered as the dependent variable, exposure to confirmed dengue cases, as the principal variable, and the socio-demographic, environmental and socio-cultural conditions of the subjects, as additional explanatory variables. Discussion Results indicating a high infection rate among the exposed subjects would justify the application of peridomestic control measures and call for an evaluation of alternate causes for insufficient program impact. On the other hand, a low incidence of peridomestic-infected subjects would support the hypothesis that infection occurs outside the domicile, and would thus explain why the vector control measures applied in the past have exerted such a limited impact on cases incidence rates. The results of the present study may therefore serve to reassess site selection for interventions of this type.
Collapse
Affiliation(s)
- Ruth Aralí Martínez-Vega
- Centro de Investigaciones sobre Enfermedades Infecciosas-CISEI, Instituto Nacional de Salud Pública-INSP, Cuernavaca-62100, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Prosper O, Ruktanonchai N, Martcheva M. Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control. J Theor Biol 2012; 303:1-14. [PMID: 22525434 DOI: 10.1016/j.jtbi.2012.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Mathematical models developed for studying malaria dynamics often focus on a single, homogeneous population. However, human movement connects environments with potentially different malaria transmission characteristics. To address the role of human movement and spatial heterogeneity in malaria transmission and malaria control, we consider a simple malaria metapopulation model incorporating two regions, or patches, connected by human movement, with different degrees of malaria transmission in each patch. Using our two-patch model, we calculate and analyze the basic reproduction number, R(0), an epidemiologically important threshold quantity that indicates whether malaria will persist or go extinct in a population. Although R(0) depends on the rates of human movement, we show that R(0) is always bounded between the two quantities R(01) and R(02)-the reproduction numbers for the two patches if isolated. If without migration, the disease is endemic in one patch but not in the other, then the addition of human migration can cause the disease to persist in both patches. This result indicates that regions with low malaria transmission should have an interest in helping to control or eliminate malaria in regions with higher malaria endemicity if human movement connects them. Performing a sensitivity analysis of R(0) and the endemic equilibrium to various parameters in the two-patch model allowed us to determine, under different parameterizations of the model, which patch will be the better target for control measures, and within that patch, what type of control measure should be implemented. In the analysis of R(0), we found that if the extrinsic incubation period is shorter than the average mosquito lifespan, the control measures should be targeted towards reducing the mosquito biting rate. On the other hand, if the extrinsic incubation period is longer than the average mosquito lifespan, control measures targeting the mosquito death rate will be more effective. Intuitively, one might think that resources for malaria control should be allocated to the region with higher malaria transmission. However, our sensitivity analyses indicated that this is not always the case. In fact, if migration into the lower transmission patch is much faster than migration into the higher transmission patch, the lower transmission patch is potentially the better target for malaria control efforts. While human movement between regions poses challenges to malaria control and elimination, if estimates of relevant parameters in the model are known, including migration rates, our results can help inform which region to target and what type of control measure to implement for the greatest success.
Collapse
Affiliation(s)
- Olivia Prosper
- Department of Mathematics, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
336
|
Liebman KA, Stoddard ST, Morrison AC, Rocha C, Minnick S, Sihuincha M, Russell KL, Olson JG, Blair PJ, Watts DM, Kochel T, Scott TW. Spatial dimensions of dengue virus transmission across interepidemic and epidemic periods in Iquitos, Peru (1999-2003). PLoS Negl Trop Dis 2012; 6:e1472. [PMID: 22363822 PMCID: PMC3283551 DOI: 10.1371/journal.pntd.0001472] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
Background Knowledge of spatial patterns of dengue virus (DENV) infection is important for understanding transmission dynamics and guiding effective disease prevention strategies. Because movement of infected humans and mosquito vectors plays a role in the spread and persistence of virus, spatial dimensions of transmission can range from small household foci to large community clusters. Current understanding is limited because past analyses emphasized clinically apparent illness and did not account for the potentially large proportion of inapparent infections. In this study we analyzed both clinically apparent and overall infections to determine the extent of clustering among human DENV infections. Methodology/Principal Findings We conducted spatial analyses at global and local scales, using acute case and seroconversion data from a prospective longitudinal cohort in Iquitos, Peru, from 1999–2003. Our study began during a period of interepidemic DENV-1 and DENV-2 transmission and transitioned to epidemic DENV-3 transmission. Infection status was determined by seroconversion based on plaque neutralization testing of sequential blood samples taken at approximately six-month intervals, with date of infection assigned as the middate between paired samples. Each year was divided into three distinct seasonal periods of DENV transmission. Spatial heterogeneity was detected in baseline seroprevalence for DENV-1 and DENV-2. Cumulative DENV-3 seroprevalence calculated by trimester from 2001–2003 was spatially similar to preexisting DENV-1 and DENV-2 seroprevalence. Global clustering (case-control Ripley's K statistic) appeared at radii of ∼200–800 m. Local analyses (Kuldorf spatial scan statistic) identified eight DENV-1 and 15 DENV-3 clusters from 1999–2003. The number of seroconversions per cluster ranged from 3–34 with radii from zero (a single household) to 750 m; 65% of clusters had radii >100 m. No clustering was detected among clinically apparent infections. Conclusions/Significance Seroprevalence of previously circulating DENV serotypes can be a predictor of transmission risk for a different invading serotype and, thus, identify targets for strategically placed surveillance and intervention. Seroprevalence of a specific serotype is also important, but does not preclude other contributing factors, such as mosquito density, in determining where transmission of that virus will occur. Regardless of the epidemiological context or virus serotype, human movement appears to be an important factor in defining the spatial dimensions of DENV transmission and, thus, should be considered in the design and evaluation of surveillance and intervention strategies. To target prevention and control strategies for dengue fever, it is essential to understand how the virus travels through the city. We report spatial analyses of dengue infections from a study monitoring school children and adult family members for dengue infection at six-month intervals from 1999–2003, in the Amazonian city of Iquitos, Peru. At the beginning of the study, only DENV serotypes 1 and 2 were circulating. Clusters of infections of these two viruses were concentrated in the northern region of the city, where mosquito indices and previous DENV infection were both high. In 2002, DENV-3 invaded the city, replacing DENV-1 and -2 as the dominant strain. During the invasion process, the virus spread rapidly across the city, at low levels. After this initial phase, clusters of infection appeared first in the northern region of the city, where clusters of DENV-1 and DENV-2 had occurred in prior years. Most of the clusters we identified had radii >100 meters, indicating that targeted or reactive treatment of these high-risk areas might be an effective proactive intervention strategy. Our results also help explain why vector control within 100 m of a dengue case is often not successful for large-scale disease prevention.
Collapse
Affiliation(s)
- Kelly A Liebman
- Department of Entomology, University of California Davis, Davis, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl Trop Dis 2012; 6:e1470. [PMID: 22348154 PMCID: PMC3279338 DOI: 10.1371/journal.pntd.0001470] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/21/2011] [Indexed: 11/19/2022] Open
Abstract
Background Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia), and to provide an early warning system. Methodology/Principal Findings Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March–April) lagged the warmest temperature by 1–2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January–February–March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October–November–December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively. Conclusions/Significance The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was also crucial. An operational model that will enable health authorities to anticipate the outbreak risk was successfully developed. Similar models may be developed to improve dengue management in other countries. Dengue fever is a major public health problem in the tropics and subtropics. Since no vaccine exists, understanding and predicting outbreaks remain of crucial interest. Climate influences the mosquito-vector biology and the viral transmission cycle. Its impact on dengue dynamics is of growing interest. We analyzed the epidemiology of dengue in Noumea (New Caledonia) from 1971 to 2010 and its relationships with local and remote climate conditions using an original approach combining a comparison of epidemic and non epidemic years, bivariate and multivariate analyses. We found that the occurrence of outbreaks in Noumea was strongly influenced by climate during the last forty years. Efficient models were developed to estimate the yearly risk of outbreak as a function of two meteorological variables that were contemporaneous (explicative model) or prior (predictive model) to the outbreak onset. Local threshold values of maximal temperature and relative humidity were identified. Our results provide new insights to understand the link between climate and dengue outbreaks, and have a substantial impact on dengue management in New Caledonia since the health authorities have integrated these models into their decision making process and vector control policies. This raises the possibility to provide similar early warning systems in other countries.
Collapse
|
338
|
Clinical and virological study of dengue cases and the members of their households: the multinational DENFRAME Project. PLoS Negl Trop Dis 2012; 6:e1482. [PMID: 22292098 PMCID: PMC3265457 DOI: 10.1371/journal.pntd.0001482] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 11/30/2011] [Indexed: 11/19/2022] Open
Abstract
Background Dengue has emerged as the most important vector-borne viral disease in tropical areas. Evaluations of the burden and severity of dengue disease have been hindered by the frequent lack of laboratory confirmation and strong selection bias toward more severe cases. Methodology A multinational, prospective clinical study was carried out in South-East Asia (SEA) and Latin America (LA), to ascertain the proportion of inapparent dengue infections in households of febrile dengue cases, and to compare clinical data and biological markers from subjects with various dengue disease patterns. Dengue infection was laboratory-confirmed during the acute phase, by virus isolation and detection of the genome. The four participating reference laboratories used standardized methods. Principal Findings Among 215 febrile dengue subjects—114 in SEA and 101 in LA—28 (13.0%) were diagnosed with severe dengue (from SEA only) using the WHO definition. Household investigations were carried out for 177 febrile subjects. Among household members at the time of the first home visit, 39 acute dengue infections were detected of which 29 were inapparent. A further 62 dengue cases were classified at early convalescent phase. Therefore, 101 dengue infections were found among the 408 household members. Adding these together with the 177 Dengue Index Cases, the overall proportion of dengue infections among the study participants was estimated at 47.5% (278/585; 95% CI 43.5–51.6). Lymphocyte counts and detection of the NS1 antigen differed significantly between inapparent and symptomatic dengue subjects; among inapparent cases lymphocyte counts were normal and only 20% were positive for NS1 antigen. Primary dengue infection and a specific dengue virus serotype were not associated with symptomatic dengue infection. Conclusion Household investigation demonstrated a high proportion of household members positive for dengue infection, including a number of inapparent cases, the frequency of which was higher in SEA than in LA. Dengue is the most important mosquito-borne viral disease in humans. This disease is now endemic in more than 100 countries and threatens more than 2.5 billion people living in tropical countries. It currently affects about 50 to 100 million people each year. It causes a wide range of symptoms, from an inapparent to mild dengue fever, to severe forms, including dengue hemorrhagic fever. Currently no specific vaccine or antiviral drugs are available. We carried out a prospective clinical study in South-East Asia and Latin America, of virologically confirmed dengue-infected patients attending the hospital, and members of their households. Among 215 febrile dengue subjects, 177 agreed to household investigation. Based on our data, we estimated the proportion of dengue-infected household members to be about 45%. At the time of the home visit, almost three quarters of (29/39) presented an inapparent dengue infection. The proportion of inapparent dengue infection was higher in South-East Asia than in Latin America. These findings confirm the complexity of dengue disease in humans and the need to strengthen multidisciplinary research efforts to improve our understanding of virus transmission and host responses to dengue virus in various human populations.
Collapse
|
339
|
Alphey N, Alphey L, Bonsall MB. A model framework to estimate impact and cost of genetics-based sterile insect methods for dengue vector control. PLoS One 2011; 6:e25384. [PMID: 21998654 PMCID: PMC3187769 DOI: 10.1371/journal.pone.0025384] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/02/2011] [Indexed: 02/01/2023] Open
Abstract
Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions.
Collapse
Affiliation(s)
- Nina Alphey
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxitec, Limited, Oxford, United Kingdom
- * E-mail:
| | - Luke Alphey
- Oxitec, Limited, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
340
|
Travel risk, malaria importation and malaria transmission in Zanzibar. Sci Rep 2011; 1:93. [PMID: 22355611 PMCID: PMC3216579 DOI: 10.1038/srep00093] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/30/2011] [Indexed: 11/08/2022] Open
Abstract
The prevalence of Plasmodium falciparum malaria in Zanzibar has reached historic lows. Improving control requires quantifying malaria importation rates, identifying high-risk travelers, and assessing onwards transmission.Estimates of Zanzibar's importation rate were calculated through two independent methodologies. First, mobile phone usage data and ferry traffic between Zanzibar and mainland Tanzania were re-analyzed using a model of heterogeneous travel risk. Second, a dynamic mathematical model of importation and transmission rates was used.Zanzibar residents traveling to malaria endemic regions were estimated to contribute 1-15 times more imported cases than infected visitors. The malaria importation rate was estimated to be 1.6 incoming infections per 1,000 inhabitants per year. Local transmission was estimated too low to sustain transmission in most places.Malaria infections in Zanzibar largely result from imported malaria and subsequent transmission. Plasmodium falciparum malaria elimination appears feasible by implementing control measures based on detecting imported malaria cases and controlling onward transmission.
Collapse
|
341
|
Little E, Barrera R, Seto KC, Diuk-Wasser M. Co-occurrence patterns of the dengue vector Aedes aegypti and Aedes mediovitattus, a dengue competent mosquito in Puerto Rico. ECOHEALTH 2011; 8:365-75. [PMID: 21989642 PMCID: PMC4646052 DOI: 10.1007/s10393-011-0708-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/01/2011] [Accepted: 09/19/2011] [Indexed: 05/12/2023]
Abstract
Aedes aegypti is implicated in dengue transmission in tropical and subtropical urban areas around the world. Ae. aegypti populations are controlled through integrative vector management. However, the efficacy of vector control may be undermined by the presence of alternative, competent species. In Puerto Rico, a native mosquito, Ae. mediovittatus, is a competent dengue vector in laboratory settings and spatially overlaps with Ae. aegypti. It has been proposed that Ae. mediovittatus may act as a dengue reservoir during inter-epidemic periods, perpetuating endemic dengue transmission in rural Puerto Rico. Dengue transmission dynamics may therefore be influenced by the spatial overlap of Ae. mediovittatus, Ae. aegypti, dengue viruses, and humans. We take a landscape epidemiology approach to examine the association between landscape composition and configuration and the distribution of each of these Aedes species and their co-occurrence. We used remotely sensed imagery from a newly launched satellite to map landscape features at very high spatial resolution. We found that the distribution of Ae. aegypti is positively predicted by urban density and by the number of tree patches, Ae. mediovittatus is positively predicted by the number of tree patches, but negatively predicted by large contiguous urban areas, and both species are predicted by urban density and the number of tree patches. This analysis provides evidence that landscape composition and configuration is a surrogate for mosquito community composition, and suggests that mapping landscape structure can be used to inform vector control efforts as well as to inform urban planning.
Collapse
Affiliation(s)
- Eliza Little
- Yale School of Public Health and Yale School of Forestry and Environmental Studies, New Haven, CT, USA.
| | | | | | | |
Collapse
|
342
|
|
343
|
Thai KTD, Anders KL. The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp Biol Med (Maywood) 2011; 236:944-54. [PMID: 21737578 DOI: 10.1258/ebm.2011.010402] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mounting evidence for anthropogenic changes in global climate raises many pressing questions about the potential effects on biological systems, and in particular the transmission of infectious diseases. Vector-borne diseases, such as dengue, may be particularly sensitive to both periodic fluctuations and sustained changes in global and local climates, because vector biology and viral replication are temperature- and moisture-dependent. This paper reviews the current state of knowledge on the associations between climate variability, climate change and dengue transmission, and the tools being used to quantify these associations. The underlying causes of dengue's recent global expansion are multifactorial and poorly understood, but climatic factors should be considered within the context of the sociodemographic, economic and immunological determinants that have contributed to dengue's spread. These factors may mediate the direct effects of climate on dengue and many may operate at a very local level. Translating theoretical models of dengue transmission based on historical data into predictive models that can inform public health interventions is a critical next step and efforts should be focused on developing and refining models at smaller spatial scales to characterize the relationships between both climatic and non-climatic factors and dengue risk.
Collapse
Affiliation(s)
- Khoa T D Thai
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam.
| | | |
Collapse
|
344
|
Barmak DH, Dorso CO, Otero M, Solari HG. Dengue epidemics and human mobility. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011901. [PMID: 21867207 DOI: 10.1103/physreve.84.011901] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/02/2011] [Indexed: 05/31/2023]
Abstract
In this work we explore the effects of human mobility on the dispersion of a vector borne disease. We combine an already presented stochastic model for dengue with a simple representation of the daily motion of humans on a schematic city of 20 × 20 blocks with 100 inhabitants in each block. The pattern of motion of the individuals is described in terms of complex networks in which links connect different blocks and the link length distribution is in accordance with recent findings on human mobility. It is shown that human mobility can turn out to be the main driving force of the disease dispersal.
Collapse
Affiliation(s)
- D H Barmak
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Pabellón I, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
345
|
Chowell G, Cazelles B, Broutin H, Munayco CV. The influence of geographic and climate factors on the timing of dengue epidemics in Perú, 1994-2008. BMC Infect Dis 2011; 11:164. [PMID: 21651779 PMCID: PMC3121613 DOI: 10.1186/1471-2334-11-164] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/08/2011] [Indexed: 11/11/2022] Open
Abstract
Background Dengue fever is a mosquito-borne disease that affects between 50 and 100 million people each year. Increasing our understanding of the heterogeneous transmission patterns of dengue at different spatial scales could have considerable public health value by guiding intervention strategies. Methods Based on the weekly number of dengue cases in Perú by province, we investigated the association between dengue incidence during the period 1994-2008 and demographic and climate factors across geographic regions of the country. Results Our findings support the presence of significant differences in the timing of dengue epidemics between jungle and coastal regions, with differences significantly associated with the timing of the seasonal cycle of mean temperature. Conclusions Dengue is highly persistent in jungle areas of Perú where epidemics peak most frequently around March when rainfall is abundant. Differences in the timing of dengue epidemics in jungle and coastal regions are significantly associated with the seasonal temperature cycle. Our results suggest that dengue is frequently imported into coastal regions through infective sparks from endemic jungle areas and/or cities of other neighboring endemic countries, where propitious environmental conditions promote year-round mosquito breeding sites. If jungle endemic areas are responsible for multiple dengue introductions into coastal areas, our findings suggest that curtailing the transmission of dengue in these most persistent areas could lead to significant reductions in dengue incidence in coastal areas where dengue incidence typically reaches low levels during the dry season.
Collapse
Affiliation(s)
- Gerardo Chowell
- Mathematical and Computational Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
| | | | | | | |
Collapse
|
346
|
Barreto ML, Teixeira MG, Bastos FI, Ximenes RAA, Barata RB, Rodrigues LC. Successes and failures in the control of infectious diseases in Brazil: social and environmental context, policies, interventions, and research needs. Lancet 2011; 377:1877-89. [PMID: 21561657 DOI: 10.1016/s0140-6736(11)60202-x] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite pronounced reductions in the number of deaths due to infectious diseases over the past six decades, infectious diseases are still a public health problem in Brazil. In this report, we discuss the major successes and failures in the control of infectious diseases in Brazil, and identify research needs and policies to further improve control or interrupt transmission. Control of diseases such as cholera, Chagas disease, and those preventable by vaccination has been successful through efficient public policies and concerted efforts from different levels of government and civil society. For these diseases, policies dealt with key determinants (eg, the quality of water and basic sanitation, vector control), provided access to preventive resources (such as vaccines), and successfully integrated health policies with broader social policies. Diseases for which control has failed (such as dengue fever and visceral leishmaniasis) are vector-borne diseases with changing epidemiological profiles and major difficulties in treatment (in the case of dengue fever, no treatment is available). Diseases for which control has been partly successful have complex transmission patterns related to adverse environmental, social, economic, or unknown determinants; are sometimes transmitted by insect vectors that are difficult to control; and are mostly chronic diseases with long infectious periods that require lengthy periods of treatment.
Collapse
Affiliation(s)
- Mauricio L Barreto
- Instituto de Saúde Coletiva, Federal University of Bahia, Salvador, Brazil.
| | | | | | | | | | | |
Collapse
|
347
|
Li D, Lott WB, Lowry K, Jones A, Thu HM, Aaskov J. Defective interfering viral particles in acute dengue infections. PLoS One 2011; 6:e19447. [PMID: 21559384 PMCID: PMC3084866 DOI: 10.1371/journal.pone.0019447] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/29/2011] [Indexed: 01/18/2023] Open
Abstract
While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3′ and 5′ ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6–36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.
Collapse
Affiliation(s)
- Dongsheng Li
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - William B. Lott
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kym Lowry
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anita Jones
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Hlaing Myat Thu
- Virology Research Division, Department of Medical Research, Yangon, Myanmar
| | - John Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
348
|
Kloos H, Correa-Oliveira R, dos Reis DC, Rodrigues EW, Monteiro LAS, Gazzinelli A. The role of population movement in the epidemiology and control of schistosomiasis in Brazil: a preliminary typology of population movement. Mem Inst Oswaldo Cruz 2011; 105:578-86. [PMID: 20721511 DOI: 10.1590/s0074-02762010000400038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 12/18/2009] [Indexed: 11/21/2022] Open
Abstract
This paper examines recent developments in migration studies. It reviews literature related to the potential role of internal population movement in the occurrence of schistosomiasis in Brazil and modifies Prothero's typology of population movement for use in Brazil. This modified classification system may contribute to a better understanding of schistosome transmission as well as improved research and control programs. The results of this study indicate that population movement in Brazil primarily involves economically-motivated rural-urban and interregional movement. However, several movement patterns have become increasingly important in recent years as a result of changing socioeconomic and urbanisation dynamics. These patterns include urban-urban, intracity and urban-rural movement as well as the movement of environmental refugees and tourists. Little is known about the epidemiological significance of these patterns. This paper also highlights the role of social networks in the decision to migrate and to settle. Prothero's classic population movement typology categorises movement as either one-way migrations or circulations and examines them along spatial and temporal scales. However, the typology must be modified as epidemiological information about new patterns becomes available. This paper identifies areas that require further research and offers recommendations that can improve the measurement and spatial analysis of the relationship between population movement and schistosomiasis.
Collapse
Affiliation(s)
- Helmut Kloos
- Department of Epidemiology and Biostatistics, University of California Medical Center, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
349
|
de Castro Medeiros LC, Castilho CAR, Braga C, de Souza WV, Regis L, Monteiro AMV. Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLoS Negl Trop Dis 2011; 5:e942. [PMID: 21264356 PMCID: PMC3019115 DOI: 10.1371/journal.pntd.0000942] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/09/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Dengue is a disease of great complexity, due to interactions between humans, mosquitoes and various virus serotypes as well as efficient vector survival strategies. Thus, understanding the factors influencing the persistence of the disease has been a challenge for scientists and policy makers. The aim of this study is to investigate the influence of various factors related to humans and vectors in the maintenance of viral transmission during extended periods. METHODOLOGY/PRINCIPAL FINDINGS We developed a stochastic cellular automata model to simulate the spread of dengue fever in a dense community. Each cell can correspond to a built area, and human and mosquito populations are individually monitored during the simulations. Human mobility and renewal, as well as vector infestation, are taken into consideration. To investigate the factors influencing the maintenance of viral circulation, two sets of simulations were performed: (1(st)) varying human renewal rates and human population sizes and (2(nd)) varying the house index (fraction of infested buildings) and vector per human ratio. We found that viral transmission is inhibited with the combination of small human populations with low renewal rates. It is also shown that maintenance of viral circulation for extended periods is possible at low values of house index. Based on the results of the model and on a study conducted in the city of Recife, Brazil, which associates vector infestation with Aedes aegytpi egg counts, we question the current methodology used in calculating the house index, based on larval survey. CONCLUSIONS/SIGNIFICANCE This study contributed to a better understanding of the dynamics of dengue subsistence. Using basic concepts of metapopulations, we concluded that low infestation rates in a few neighborhoods ensure the persistence of dengue in large cities and suggested that better strategies should be implemented to obtain measures of house index values, in order to improve the dengue monitoring and control system.
Collapse
|
350
|
Vazquez-Prokopec GM, Kitron U, Montgomery B, Horne P, Ritchie SA. Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment. PLoS Negl Trop Dis 2010; 4:e920. [PMID: 21200419 PMCID: PMC3006131 DOI: 10.1371/journal.pntd.0000920] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 11/18/2010] [Indexed: 12/20/2022] Open
Abstract
Background Dengue infection spread in naive populations occurs in an explosive and widespread fashion primarily due to the absence of population herd immunity, the population dynamics and dispersal of Ae. aegypti, and the movement of individuals within the urban space. Knowledge on the relative contribution of such factors to the spatial dimension of dengue virus spread has been limited. In the present study we analyzed the spatio-temporal pattern of a large dengue virus-2 (DENV-2) outbreak that affected the Australian city of Cairns (north Queensland) in 2003, quantified the relationship between dengue transmission and distance to the epidemic's index case (IC), evaluated the effects of indoor residual spraying (IRS) on the odds of dengue infection, and generated recommendations for city-wide dengue surveillance and control. Methods and Findings We retrospectively analyzed data from 383 DENV-2 confirmed cases and 1,163 IRS applications performed during the 25-week epidemic period. Spatial (local k-function, angular wavelets) and space-time (Knox test) analyses quantified the intensity and directionality of clustering of dengue cases, whereas a semi-parametric Bayesian space-time regression assessed the impact of IRS and spatial autocorrelation in the odds of weekly dengue infection. About 63% of the cases clustered up to 800 m around the IC's house. Most cases were distributed in the NW-SE axis as a consequence of the spatial arrangement of blocks within the city and, possibly, the prevailing winds. Space-time analysis showed that DENV-2 infection spread rapidly, generating 18 clusters (comprising 65% of all cases), and that these clusters varied in extent as a function of their distance to the IC's residence. IRS applications had a significant protective effect in the further occurrence of dengue cases, but only when they reached coverage of 60% or more of the neighboring premises of a house. Conclusion By applying sound statistical analysis to a very detailed dataset from one of the largest outbreaks that affected the city of Cairns in recent times, we not only described the spread of dengue virus with high detail but also quantified the spatio-temporal dimension of dengue virus transmission within this complex urban environment. In areas susceptible to non-periodic dengue epidemics, effective disease prevention and control would depend on the prompt response to introduced cases. We foresee that some of the results and recommendations derived from our study may also be applicable to other areas currently affected or potentially subject to dengue epidemics. Global trends in population growth and human redistribution and movement have reshaped the map of dengue transmission risk, exposing a significant proportion of the world's population to the threat of dengue epidemics. Knowledge on the relative contribution of vector and human movement to the widespread and explosive nature of dengue epidemic spread within an urban environment is limited. By analyzing a very detailed dataset of a dengue epidemic that affected the Australian city of Cairns we performed a comprehensive quantification of the spatio-temporal dimensions of dengue virus epidemic transmission and propagation within a complex urban environment. Space and space-time analysis and models allowed derivation of detailed information on the pattern of introduction and epidemic spread of dengue infection within the urban space. We foresee that some of the results and recommendations derived from our study may also be applicable to many other areas currently affected or potentially subject to dengue epidemics.
Collapse
|