301
|
Non-apoptotic roles for death-related molecules: When mitochondria chose cell fate. Exp Cell Res 2012; 318:1309-15. [DOI: 10.1016/j.yexcr.2012.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/28/2012] [Accepted: 01/31/2012] [Indexed: 12/18/2022]
|
302
|
Inao T, Harashima N, Monma H, Okano S, Itakura M, Tanaka T, Tajima Y, Harada M. Antitumor effects of cytoplasmic delivery of an innate adjuvant receptor ligand, poly(I:C), on human breast cancer. Breast Cancer Res Treat 2012; 134:89-100. [PMID: 22203435 DOI: 10.1007/s10549-011-1930-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/17/2011] [Indexed: 11/26/2022]
Abstract
Innate adjuvant receptors are expressed in immune cells and some types of cancers. If antitumor therapies targeting these receptors are established, it is likely that they will be therapeutically beneficial because antitumor effects and immune-cell activation can be induced simultaneously. In this study, we tested this possibility of using an innate adjuvant receptor ligand, polyinosinic-polycytidylic acid [poly(I:C)], to treat human breast cancer cell lines. Three breast cancer cell lines (MCF-7, MDA-MB-231, and BT-549) were used in this study. Poly(I:C) was transfected into these cancer cells to stimulate melanoma differentiation-associated gene (MDA) 5, which is a cytoplasmic adjuvant receptor. Poly(I:C) transfection significantly reduced the viability of all cell lines in a manner partially dependent on MDA5. Flow cytometeric analyses and immunoblot assays revealed that the antitumor effect depended on both caspase-dependent apoptosis and c-Myc- and cyclinD1-dependent growth arrest. Interestingly, poly(I:C) transfection was accompanied by autophagy, which is thought to protect cancer cells from apoptosis after poly(I:C) transfection. In a xenograft mouse model, local transfection of poly(I:C) significantly inhibited the growth of xenografted MDA-MB-231 cells. Our findings indicate that cytoplasmic delivery of poly(I:C) can induce apoptosis and growth arrest of human breast cancer cells, and that therapy-associated autophagy prevents apoptosis. The results of this study suggest that the innate adjuvant receptors are promising targets and that their ligands could serve as antitumor reagents, which have the potential to simultaneously induce antitumor effects and activate immune cells.
Collapse
Affiliation(s)
- Touko Inao
- Department of Immunology, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
303
|
Abstract
PURPOSE To review the cellular mechanisms of hormetic effects induced by low dose and low dose rate ionising radiation in model systems, and to call attention to the possible role of autophagy in some hormetic effects. RESULTS AND CONCLUSIONS Very low radiation doses stimulate cell proliferation by changing the equilibrium between the phosphorylated and dephosphorylated forms of growth factor receptors. Radioadaptation is induced by various weak stress stimuli and depends on signalling events that ultimately decrease the molecular damage expression at the cellular level upon subsequent exposure to a moderate radiation dose. Ageing and cancer result from oxidative damage under oxidative stress conditions; nevertheless, ROS are also prominent inducers of autophagy, a cellular process that has been shown to be related both to ageing retardation and cancer prevention. A balance between the signalling functions and damaging effects of ROS seems to be the most important factor that decides the fate of the mammalian cell when under oxidative stress conditions, after exposure to ionising radiation. Not enough is yet known on the pre-requirements for maintaining such a balance. Given the present stage of investigation into radiation hormesis, the application of the conclusions from experiments on model systems to the radiation protection regulations would not be justified.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland.
| |
Collapse
|
304
|
ER stress and autophagy: new discoveries in the mechanism of action and drug resistance of the cyclin-dependent kinase inhibitor flavopiridol. Blood 2012; 120:1262-73. [PMID: 22740450 DOI: 10.1182/blood-2011-12-400184] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cyclin dependent kinase (CDK) inhibitors, such as flavopiridol, demonstrate significant single-agent activity in chronic lymphocytic leukemia (CLL), but the mechanism of action in these nonproliferating cells is unclear. Here we demonstrate that CLL cells undergo autophagy after treatment with therapeutic agents, including fludarabine, CAL-101, and flavopiridol as well as the endoplasmic reticulum (ER) stress-inducing agent thapsigargin. The addition of chloroquine or siRNA against autophagy components enhanced the cytotoxic effects of flavopiridol and thapsigargin, but not the other agents. Similar to thapsigargin, flavopiridol robustly induces a distinct pattern of ER stress in CLL cells that contributes to cell death through IRE1-mediated activation of ASK1 and possibly downstream caspases. Both autophagy and ER stress were documented in tumor cells from CLL patients receiving flavopiridol. Thus, CLL cells undergo autophagy after multiple stimuli, including therapeutic agents, but only with ER stress mediators and CDK inhibitors is autophagy a mechanism of resistance to cell death. These findings collectively demonstrate, for the first time, a novel mechanism of action (ER stress) and drug resistance (autophagy) for CDK inhibitors, such as flavopiridol in CLL, and provide avenues for new therapeutic combination approaches in this disease.
Collapse
|
305
|
Calvo E, Luu-The V, Belleau P, Martel C, Labrie F. Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland. Breast Cancer Res Treat 2012; 134:625-47. [PMID: 22678160 DOI: 10.1007/s10549-012-2104-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/16/2012] [Indexed: 02/01/2023]
Abstract
Novel agents for the endocrine therapy of breast cancer are needed, especially in order to take advantage of the multiple consecutive responses observed in metastatic progressing breast cancer following previous hormone therapy, thus delaying the use of cytotoxic chemotherapy with its frequent poor tolerance and serious side effects. Acolbifene (ACOL) is a novel and unique antiestrogen which represents a unique opportunity to achieve the most potent and specific blockade of estrogen action in the mammary gland and uterus while exerting estrogen-like beneficial effects in other tissues, especially the bones. To better understand the specificity of action of ACOL, we have used Affymetrix GeneChips containing 45,000 probe sets to analyze 34,000 genes to determine the specificity of this compound compared to the pure antiestrogen fulvestrant, as well as to the mixed antagonists/agonists tamoxifen and raloxifene to block the effect of estradiol (E(2)) and to induce effects of their own on the genomic profile in the mouse mammary gland. The genes modulated by E(2) were those identified in two separate experiments and validated by quantitative real-time PCR (qPCR). Three hours after the single subcutaneous injection of E(2) (0.05 μg), the simultaneous administration of ACOL, fulvestrant, tamoxifen, and raloxifene blocked by 98, 61, 43, and 92 % the number of E(2)-upregulated genes, respectively. On the other hand, 70, 10, 25, and 55 % of the genes down-regulated by E(2) were blocked by the same compounds. Of the 128 genes modulated by E(2), 49 are associated with tumorigenesis while 22 are known to be associated with breast cancer. When used alone, ACOL modulated the smallest number of genes also influenced by E(2), namely 4 %, thus possibly explaining potential utilities of this compound in breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Ezequiel Calvo
- Molecular Endocrinology, Oncology and Human Genomics Research Center, Laval University and Laval University Hospital Research Center, 2705 Laurier Blvd, Quebec, QC, G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
306
|
Botta G, Passaro C, Libertini S, Abagnale A, Barbato S, Maione AS, Hallden G, Beguinot F, Formisano P, Portella G. Inhibition of autophagy enhances the effects of E1A-defective oncolytic adenovirus dl922-947 against glioma cells in vitro and in vivo. Hum Gene Ther 2012; 23:623-34. [PMID: 22475378 DOI: 10.1089/hum.2011.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oncolytic viruses represent a novel therapeutic approach for aggressive tumors, such as glioblastoma multiforme, which are resistant to available treatments. Autophagy has been observed in cells infected with oncolytic viruses; however, its role in cell death/survival is unclear. To elucidate the potential therapeutic use of autophagy modulators in association with viral therapy, we analyzed autophagy induction in human glioma cell lines U373MG and U87MG infected with the oncolytic adenovirus dl922-947. dl922-947 infection triggered an autophagic cellular response, as shown by the development of acidic vesicular organelles, LC3-I→LC3-II conversion, and reduction of p62 levels. However, on infection, the Akt/mTOR/p70s6k pathway, which negatively regulates autophagy, was activated, whereas the ERK1/2 pathway, a positive regulator of autophagy, was inhibited. Accordingly, MEK inhibition by PD98059 sensitized glioma cells to dl922-947 effects, whereas autophagy induction by rapamycin protected cells from dl922-947-induced death. Treatment with two inhibitors of autophagy, chloroquine and 3-methyladenine, increased the cytotoxic effects of dl922-947 in vitro. In vivo, the growth of U87MG-induced xenografts was further reduced by adding chloroquine to the dl922-947 treatment. In conclusion, autophagy acts as a survival response in glioma cells infected with dl922-947, thus suggesting autophagy inhibitors as adjuvant/neoadjuvant drugs in oncolytic virus-based treatments.
Collapse
Affiliation(s)
- Ginevra Botta
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Ma D, Collins J, Hudlicky T, Pandey S. Enhancement of apoptotic and autophagic induction by a novel synthetic C-1 analogue of 7-deoxypancratistatin in human breast adenocarcinoma and neuroblastoma cells with tamoxifen. J Vis Exp 2012:3586. [PMID: 22688195 DOI: 10.3791/3586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Collapse
Affiliation(s)
- Dennis Ma
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| | | | | | | |
Collapse
|
308
|
Terés S, Lladó V, Higuera M, Barceló-Coblijn G, Martin ML, Noguera-Salvà MA, Marcilla-Etxenike A, García-Verdugo JM, Soriano-Navarro M, Saus C, Gómez-Pinedo U, Busquets X, Escribá PV. 2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy. Proc Natl Acad Sci U S A 2012; 109:8489-94. [PMID: 22586083 PMCID: PMC3365159 DOI: 10.1073/pnas.1118349109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite recent advances in the development of new cancer therapies, the treatment options for glioma remain limited, and the survival rate of patients has changed little over the past three decades. Here, we show that 2-hydroxyoleic acid (2OHOA) induces differentiation and autophagy of human glioma cells. Compared to the current reference drug for this condition, temozolomide (TMZ), 2OHOA combated glioma more efficiently and, unlike TMZ, tumor relapse was not observed following 2OHOA treatment. The novel mechanism of action of 2OHOA is associated with important changes in membrane-lipid composition, primarily a recovery of sphingomyelin (SM) levels, which is markedly low in glioma cells before treatment. Parallel to membrane-lipid regulation, treatment with 2OHOA induced a dramatic translocation of Ras from the membrane to the cytoplasm, which inhibited the MAP kinase pathway, reduced activity of the PI3K/Akt pathway, and downregulated Cyclin D-CDK4/6 proteins followed by hypophosphorylation of the retinoblastoma protein (RB). These regulatory effects were associated with induction of glioma cell differentiation into mature glial cells followed by autophagic cell death. Given its high efficacy, low toxicity, ease of oral administration, and good distribution to the brain, 2OHOA constitutes a new and potentially valuable therapeutic tool for glioma patients.
Collapse
Affiliation(s)
- Silvia Terés
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Victoria Lladó
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Mónica Higuera
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Gwendolyn Barceló-Coblijn
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Maria Laura Martin
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Maria Antònia Noguera-Salvà
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Amaia Marcilla-Etxenike
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Morfología Celular, Unidad Mixta Centro de Investigación Príncipe Felipe-Universitat de València Estudi General, Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, 46013 Valencia, Spain; and
| | - Mario Soriano-Navarro
- Laboratorio de Morfología Celular, Unidad Mixta Centro de Investigación Príncipe Felipe-Universitat de València Estudi General, Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, 46013 Valencia, Spain; and
| | - Carlos Saus
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Regenerative Medicine, Neuroscience Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Xavier Busquets
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Pablo V. Escribá
- Molecular Cell Biomedicine, Department of Biology-Institut Universitari d’Investigacions en Ciències de la Salut, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| |
Collapse
|
309
|
Orlotti NI, Cimino-Reale G, Borghini E, Pennati M, Sissi C, Perrone F, Palumbo M, Daidone MG, Folini M, Zaffaroni N. Autophagy acts as a safeguard mechanism against G-quadruplex ligand-mediated DNA damage. Autophagy 2012; 8:1185-96. [PMID: 22627293 DOI: 10.4161/auto.20519] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
G-quadruplex ligands have attracted considerable interest as novel anticancer therapeutics due to their capability to interfere with guanosine-rich DNA/RNA sequences, such as telomeres. Elucidation of the structures of telomeric G-quadruplexes has led, in the past few years, to the rational development of effective G-quadruplex-stabilizing small molecules. In the present study, we showed that short-term exposure of melanoma cells to Ant1,5--an anthracene-based ligand able to stabilize telomeric G-quadruplexes--impaired cell growth without inducing cell senescence or apoptosis. Conversely, drug-treated cells were characterized by the occurrence of typical biochemical and morphological features associated with autophagy, such as an increase in the lipidated form of the autophagic marker LC3B and the accumulation of autophagosomes. Such drug-induced autophagy occurred as a consequence of DNA damage induction, at least in part dependent on drug-mediated telomere uncapping, through a pathway converging on the cyclin-dependent kinase inhibitor 1A (CDKN1A/p21). Indeed, melanoma cells depleted for CDKN1A did not show evidence of autophagic markers upon exposure to Ant1,5. The inhibition of autophagy by a pharmacologic inhibitor or through RNAi-mediated depletion of the ATG5 gene enhanced the cytotoxic activity of Ant1,5, as revealed by the marked increase in drug-induced apoptosis. Our data outline a molecular scenario in which G-quadruplex ligand-induced telomeric dysfunctions and DNA damage are translated into an autophagic response and provide the first evidence of autophagy as a safeguard mechanism activated by melanoma cells to counteract G-quadruplex ligand-mediated cellular stress.
Collapse
Affiliation(s)
- Nicola Ivan Orlotti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Mosieniak G, Adamowicz M, Alster O, Jaskowiak H, Szczepankiewicz AA, Wilczynski GM, Ciechomska IA, Sikora E. Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy. Mech Ageing Dev 2012; 133:444-55. [PMID: 22613224 DOI: 10.1016/j.mad.2012.05.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 03/30/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023]
Abstract
Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, is a potent anticancer agent, which restricts tumor cell growth both in vitro and in vivo. Thus far curcumin was shown to induce death of cancer cells. This study reports the induction of cellular senescence of human colon cancer cells HCT116 upon curcumin treatment. The SA-β-galactosidase activation was observed both in p53+/+ and p53-/- cells, however the latter ones were less sensitive to the prosenescent activity of curcumin. Upregulation of p53 and p21 proteins was observed in p53+/+ HCT116, while p53-independent induction of p21 was noticed in p53-/- HCT116. Moreover, the senescence of HCT116 cells was accompanied by autophagy, that was confirmed by electron microscopy observations of autophagosomes in the curcumin-treated cells as well as LC3-II expression, punctue staining of LC3 and increased content of acidic vacuoles. Inhibition of autophagy, due to the diminished expression of ATG5 by RNAi decreased the number of senescent cells induced by curcumin, but did not lead to increased cell death. Altogether, we demonstrated a new antitumor activity of curcumin leading to cancer cell senescence and revealed the presence of a functional link between senescence and autophagy in curcumin-treated cells.
Collapse
Affiliation(s)
- Grazyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
311
|
Macintosh RL, Timpson P, Thorburn J, Anderson KI, Thorburn A, Ryan KM. Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle 2012; 11:2022-9. [PMID: 22580450 PMCID: PMC3359125 DOI: 10.4161/cc.20424] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. It contributes to energy and organelle homeostasis and the preservation of proteome and genome integrity. Although a role in cancer is unquestionable, there are conflicting reports that autophagy can be both oncogenic and tumor suppressive, perhaps indicating that autophagy has different roles at different stages of tumor development. In this report, we address the role of autophagy in a critical stage of cancer progression-tumor cell invasion. Using a glioma cell line containing an inducible shRNA that targets the essential autophagy gene Atg12, we show that autophagy inhibition does not affect cell viability, proliferation or migration but significantly reduces cellular invasion in a 3D organotypic model. These data indicate that autophagy may play a critical role in the benign to malignant transition that is also central to the initiation of metastasis.
Collapse
Affiliation(s)
| | - Paul Timpson
- Beatson Institute for Cancer Research; Glasgow, UK
| | - Jacqueline Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | | | - Andrew Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | | |
Collapse
|
312
|
Kim JY, Cho TJ, Woo BH, Choi KU, Lee CH, Ryu MH, Park HR. Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells. Arch Oral Biol 2012; 57:1018-25. [PMID: 22554995 DOI: 10.1016/j.archoralbio.2012.04.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/30/2012] [Accepted: 04/03/2012] [Indexed: 01/02/2023]
Abstract
Curcumin, a major active component of turmeric Curcuma longa, has been shown to have inhibitory effects on cancers. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying the anticancer effects of curcumin is unclear. Recently, it has been suggested that autophagy may play an important role in cancer therapy. However, little data are available regarding the role of autophagy in oral cancers. In this study, we have shown that curcumin has anticancer activity against oral squamous cell carcinoma (OSCC). Induction of autophagy, marked by autophagic vacuoles formation, was detected by acridine orange staining and monodansylcadaverine (MDC) dye after exposure to curcumin. Conversion of LC3-I to LC3-II, a marker of active autophagosome formation, was also detectable by Western blot following curcumin treatment. We have also observed that curcumin induced reactive oxygen species (ROS) production and autophagic vacuoles formation by curcumin was almost completely blocked in the presence of N-acetylcystein (NAC), an antioxidant. Rescue experiments using an autophagy inhibitor suppressed curcumin-induced cell death in OSCC, confirming that autophagy acts as a pro-death signal. Furthermore, curcumin shows anticancer activity against OSCC via both autophagy and apoptosis. These findings suggest that curcumin may potentially contribute to oral cancer treatment and provide useful information for the development of a new therapeutic agent.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Oral Pathology, School of Dentistry, Pusan National University, South Korea
| | | | | | | | | | | | | |
Collapse
|
313
|
Nair U, Yen WL, Mari M, Cao Y, Xie Z, Baba M, Reggiori F, Klionsky DJ. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 2012; 8:780-93. [PMID: 22622160 DOI: 10.4161/auto.19385] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Formation of the autophagosome is likely the most complex step of macroautophagy, and indeed it is the morphological and functional hallmark of this process; accordingly, it is critical to understand the corresponding molecular mechanism. Atg8 is the only known autophagy-related (Atg) protein required for autophagosome formation that remains associated with the completed sequestering vesicle. Approximately one-fourth of all of the characterized Atg proteins that participate in autophagosome biogenesis affect Atg8, regulating its conjugation to phosphatidylethanolamine (PE), localization to the phagophore assembly site and/or subsequent deconjugation. An unanswered question in the field regards the physiological role of the deconjugation of Atg8-PE. Using an Atg8 mutant that bypasses the initial Atg4-dependent processing, we demonstrate that Atg8 deconjugation is an important step required to facilitate multiple events during macroautophagy. The inability to deconjugate Atg8-PE results in the mislocalization of this protein to the vacuolar membrane. We also show that the deconjugation of Atg8-PE is required for efficient autophagosome biogenesis, the assembly of Atg9-containing tubulovesicular clusters into phagophores/autophagosomes, and for the disassembly of PAS-associated Atg components.
Collapse
Affiliation(s)
- Usha Nair
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
314
|
Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Lett 2012; 323:115-27. [PMID: 22542808 DOI: 10.1016/j.canlet.2012.02.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 12/13/2022]
Abstract
Autophagy is an evolutionarily conserved mechanism for intracellular substance degradation, responsible for the recycling of metabolic substances and the maintenance of intracellular stability. It has early been demonstrated to play a significant role in tumorigenesis, but whether it acts as a promoter or a suppressor during tumorigenesis seems to be context-specific. Moreover, autophagy is also implicated in promoting chemoresistance of cancer cells so as to attenuate therapeutic efficacy of chemotherapy. On the contrary, other reports highlight a tumor-killing role of autophagy during cancer treatment. Herein, this review aims to revisit the key features of autophagy, summarize the seemingly contradictory roles of autophagy during both tumorigenesis and cancer chemotherapy, and evaluate the feasibility of altering the level of cellular autophagy as part of cancer adjuvant treatment.
Collapse
|
315
|
Hui B, Shi YH, Ding ZB, Zhou J, Gu CY, Peng YF, Yang H, Liu WR, Shi GM, Fan J. Proteasome inhibitor interacts synergistically with autophagy inhibitor to suppress proliferation and induce apoptosis in hepatocellular carcinoma. Cancer 2012; 118:5560-71. [DOI: 10.1002/cncr.27586] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/15/2012] [Accepted: 03/02/2012] [Indexed: 02/06/2023]
|
316
|
Cheng Y, Sk UH, Zhang Y, Ren X, Zhang L, Huber-Keener KJ, Sun YW, Liao J, Amin S, Sharma AK, Yang JM. Rational incorporation of selenium into temozolomide elicits superior antitumor activity associated with both apoptotic and autophagic cell death. PLoS One 2012; 7:e35104. [PMID: 22496897 PMCID: PMC3320619 DOI: 10.1371/journal.pone.0035104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/08/2012] [Indexed: 01/23/2023] Open
Abstract
Background The DNA alkylating agent temozolomide (TMZ) is widely used in the treatment of human malignancies such as glioma and melanoma. On the basis of previous structure-activity studies, we recently synthesized a new TMZ selenium analog by rationally introducing an N-ethylselenocyanate extension to the amide functionality in TMZ structure. Principal Findings This TMZ-Se analog showed a superior cytotoxicity to TMZ in human glioma and melanoma cells and a more potent tumor-inhibiting activity than TMZ in mouse glioma and melanoma xenograft model. TMZ-Se was also effective against a TMZ-resistant glioma cell line. To explore the mechanism underlying the superior antitumor activity of TMZ-Se, we compared the effects of TMZ and TMZ-Se on apoptosis and autophagy. Apoptosis was significantly increased in tumor cells treated with TMZ-Se in comparison to those treated with TMZ. TMZ-Se also triggered greater autophagic response, as compared with TMZ, and suppressing autophagy partly rescued cell death induced by TMZ-Se, indicating that TMZ-Se-triggered autophagy contributed to cell death. Although mRNA level of the key autophagy gene, Beclin 1, was increased, Beclin 1 protein was down-regulated in the cells treated with TMZ-Se. The decrease in Beclin 1 following TMZ-Se treatment were rescued by the calpain inhibitors and the calpain-mediated degradation of Beclin1 had no effect on autophagy but promoted apoptosis in cells treated with TMZ-Se. Conclusions Our study indicates that incorporation of Se into TMZ can render greater potency to this chemotherapeutic drug.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci 2012; 69:1125-36. [PMID: 22080117 PMCID: PMC11114512 DOI: 10.1007/s00018-011-0865-5] [Citation(s) in RCA: 515] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/29/2011] [Accepted: 10/14/2011] [Indexed: 12/14/2022]
Abstract
Microautophagy, the non-selective lysosomal degradative process, involves direct engulfment of cytoplasmic cargo at a boundary membrane by autophagic tubes, which mediate both invagination and vesicle scission into the lumen. With its constitutive characteristics, microautophagy of soluble substrates can be induced by nitrogen starvation or rapamycin via regulatory signaling complex pathways. The maintenance of organellar size, membrane homeostasis, and cell survival under nitrogen restriction are the main functions of microautophagy. In addition, microautophagy is coordinated with and complements macroautophagy, chaperone-mediated autophagy, and other self-eating pathways. Three forms of selective microautophagy, including micropexophagy, piecemeal microautophagy of the nucleus, and micromitophagy, share common ground with microautophagy to some degree. As the accumulation of experimental data, the precise mechanisms that govern microautophagy are becoming more appreciated. Here, we review the microautophagic molecular machinery, its physiological functions, and relevance to human diseases, especially in diseases involving multivesicular bodies and multivesicular lysosomes.
Collapse
Affiliation(s)
- Wen-wen Li
- School of Life Sciences, Sichuan University, Chengdu, China
| | | | | |
Collapse
|
318
|
Goldberg AA, Beach A, Davies GF, Harkness TAA, Leblanc A, Titorenko VI. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2012; 2:761-82. [PMID: 21992775 PMCID: PMC3248158 DOI: 10.18632/oncotarget.338] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is one of the major risk factors of cancer. The onset of cancer can be postponed by pharmacological and dietary anti-aging interventions. We recently found in yeast cellular models of aging that lithocholic acid (LCA) extends longevity. Here we show that, at concentrations that are not cytotoxic to primary cultures of human neurons, LCA kills the neuroblastoma (NB) cell lines BE(2)-m17, SK-n-SH, SK-n-MCIXC and Lan-1. In BE(2)-m17, SK-n-SH and SK-n-MCIXC cells, the LCA anti-tumor effect is due to apoptotic cell death. In contrast, the LCA-triggered death of Lan-1 cells is not caused by apoptosis. While low concentrations of LCA sensitize BE(2)-m17 and SK-n-MCIXC cells to hydrogen peroxide-induced apoptotic cell death controlled by mitochondria, these LCA concentrations make primary cultures of human neurons resistant to such a form of cell death. LCA kills BE(2)-m17 and SK-n-MCIXC cell lines by triggering not only the intrinsic (mitochondrial) apoptotic cell death pathway driven by mitochondrial outer membrane permeabilization and initiator caspase-9 activation, but also the extrinsic (death receptor) pathway of apoptosis involving activation of the initiator caspase-8. Based on these data, we propose a mechanism underlying a potent and selective anti-tumor effect of LCA in cultured human NB cells. Moreover, our finding that LCA kills cultured human breast cancer and rat glioma cells implies that it has a broad anti-tumor effect on cancer cells derived from different tissues and organisms.
Collapse
|
319
|
Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells. PLoS One 2012; 7:e31231. [PMID: 22363587 PMCID: PMC3281932 DOI: 10.1371/journal.pone.0031231] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/04/2012] [Indexed: 01/07/2023] Open
Abstract
Introduction Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn's disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα), both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB), which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells. Methods We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine. Results TNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability. Conclusions Decreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells susceptible to mitochondrial damage and cytotoxicity. Repletion of PHB may represent a therapeutic approach to combat oxidant and cytokine-induced mitochondrial damage in diseases such as inflammatory bowel disease.
Collapse
|
320
|
Efficient induction of extrinsic cell death by dandelion root extract in human chronic myelomonocytic leukemia (CMML) cells. PLoS One 2012; 7:e30604. [PMID: 22363452 PMCID: PMC3281857 DOI: 10.1371/journal.pone.0030604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/25/2011] [Indexed: 11/21/2022] Open
Abstract
Background Chronic Myelomonocytic Leukemia (CMML) is a heterogeneous disease that is not only hard to diagnose and classify, but is also highly resistant to treatment. Available forms of therapy for this disease have not shown significant effects and patients rapidly develop resistance early on in therapy. These factors lead to the very poor prognosis observed with CMML patients, with median survival duration between 12 and 24 months after diagnosis. This study is therefore centered around evaluating the selective efficacy of a natural extract from dandelion roots, in inducing programmed cell death in aggressive and resistant CMML cell lines. Methodology/Principal Findings To confirm the induction of programmed cell death in three human CMML cell lines, nuclear condensation and externalization of the phosphatidylserine, two main characteristics of apoptosis, were detected using Hoechst staining and annexin-V binding assay. The induction of another mode of cell death, autophagy, was determined using a monodansylcadaverine (MDC) stain, to detect the formation of autophagy vacuoles. The results from this study indicate that Dandelion Root Extract (DRE) is able to efficiently and selectively induce apoptosis and autophagy in these cell lines in a dose and time dependent manner, with no significant toxicity on non-cancerous peripheral blood mononuclear cells. More importantly, we observed early activation of initiator caspase-8, which led to mitochondrial destabilization and the induction of autophagy, suggesting that DRE acts through the extrinsic pathway of apoptosis. The inability of DRE to induce apoptosis in dominant-negative FADD cells, confirms the mechanism of action of DRE in in vitro models of CMML. Conclusion The results from this study indicate that natural products, in particular Dandelion Root Extract, have great potential, as non-toxic and effective alternatives to conventional modes of chemotherapy available today.
Collapse
|
321
|
Fu LL, Wen X, Bao JK, Liu B. MicroRNA-modulated autophagic signaling networks in cancer. Int J Biochem Cell Biol 2012; 44:733-6. [PMID: 22342941 DOI: 10.1016/j.biocel.2012.02.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/21/2012] [Accepted: 02/03/2012] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding endogenous RNAs ∼22 nucleotides (nt) in length that may play the essential roles for regulation of programed cell death, referring to apoptosis and autophagy. Of note, autophagy is an evolutionarily conserved, multi-step lysosomal degradation process in which a cell degrades long-lived proteins and damaged organelles. Accumulating evidence has recently revealed that miRNAs can modulate the autophagic pathways in many pathological processes, most notably cancer. In this review, we focus on highlighting the dual functions of miRNAs as either oncogenes (e.g., miRNA-183, miRNA-376b, miRNA-106a, miRNA-221/222, miRNA-31 and miRNA-34c) or tumor suppressors (e.g., miRNA-30a, miRNA-101 and miRNA-9*) via mediating several autophagic signaling pathways in cancer pathogenesis. Taken together, these findings may uncover the regulatory mechanisms of oncogenic and tumor suppressive miRNAs in autophagy, which would provide a better understanding of miRNA-modulated autophagic signaling networks for future cancer therapeutics.
Collapse
Affiliation(s)
- Lei-lei Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, School of Life Sciences, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
322
|
Autophagy Guards Against Cisplatin-Induced Acute Kidney Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:517-25. [DOI: 10.1016/j.ajpath.2011.11.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 09/28/2011] [Accepted: 11/01/2011] [Indexed: 12/19/2022]
|
323
|
Baek KH, Park J, Shin I. Autophagy-regulating small molecules and their therapeutic applications. Chem Soc Rev 2012; 41:3245-63. [PMID: 22293658 DOI: 10.1039/c2cs15328a] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy or self-eating is a complicated cellular process that is involved in protein and organelle digestion occurring via a lysosome-dependent pathway. This process is of great importance in maintaining normal cellular homeostasis. However, disruption of autophagy is closely associated with various human diseases such as cancer, neurodegenerative disorders, heart disease and pathogen infection. Therefore, small molecules that modulate autophagy can be employed to dissect this complex process and ultimately could have high potential for the treatment of a variety of diseases. This critical review discusses general aspects of autophagy, autophagy-associated diseases and autophagy regulators for biological research and therapeutic applications (207 references).
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
324
|
Chen SM, Liu JL, Wang X, Liang C, Ding J, Meng LH. Inhibition of tumor cell growth, proliferation and migration by X-387, a novel active-site inhibitor of mTOR. Biochem Pharmacol 2012; 83:1183-94. [PMID: 22305748 DOI: 10.1016/j.bcp.2012.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/14/2012] [Accepted: 01/17/2012] [Indexed: 12/22/2022]
Abstract
The mammalian target of rapamycin (mTOR), is deregulated in about 50% of human malignancies and exists in two complexes: mTORC1 and mTORC2. Rapalogs partially inhibit mTORC1 through allosteric binding to mTORC1 and their efficacy is modest as a cancer therapy. A few mTOR kinase inhibitors that inhibit both mTORC1 and mTORC2 have been reported to possess potent anticancer activities. Herein, we designed and synthesized a series of pyrazolopyrimidine derivatives targeting mTOR kinase domain and X-387 was identified as a promising lead. X-387 selectively inhibited mTOR in an ATP-competitive manner while sparing a panel of kinases from the PIKK family. X-387 blocked mTORC1 and mTORC2-mediacted signaling pathway in cell lines with activated mTOR signaling and in rapamycin-resistant cells. Specifically, X-387 inhibited phosphorylation of AKT at T308, which is thought to be a target of PDK1 but not mTOR. Such activity was not due to inhibition of PI3K since X-387 did not inhibit translocation of AKT to the cell membrane. X-387 induced autophagy as observed for other mTOR inhibitors, while induced autophagy is pro-survival since concurrent inhibition of autophagy by 3-MA reinforced the antiproliferative activity of mTOR inhibitors. X-387 also inhibited cell motility, which is associated with decrease in activity of small GTPases such as RhoA, Rac1 and Cdc42. Taken together, X-387 is a promising compound lead targeting mTOR and with a wide spectrum anticancer activity among tumor cell lines. The data also underscores the complexity of the mTOR signaling pathways which are far from being understood.
Collapse
Affiliation(s)
- Si-meng Chen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
325
|
Kauntz H, Bousserouel S, Gossé F, Raul F. Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells. Apoptosis 2012; 16:1042-53. [PMID: 21779837 DOI: 10.1007/s10495-011-0631-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Silibinin, a flavonolignan isolated from the milk thistle plant (Silybum marianum), possesses anti-neoplastic properties. In vitro and in vivo studies have recently shown that silibinin inhibits the growth of colorectal cancer (CRC). The present study investigates the mechanisms of silibinin-induced cell death using an in vitro model of human colon cancer progression, consisting of primary tumor cells (SW480) and their derived metastatic cells (SW620) isolated from a metastasis of the same patient. Silibinin induced apoptotic cell death evidenced by DNA fragmentation and activation of caspase-3 in both cell lines. Silibinin enhanced the expression (protein and mRNA) of TNF-related apoptosis-inducing ligand (TRAIL) death receptors (DR4/DR5) at the cell surface in SW480 cells, and induced their expression in TRAIL-resistant SW620 cells normally not expressing DR4/DR5. Caspase-8 and -10 were activated demonstrating the involvement of the extrinsic apoptotic pathway in silibinin-treated SW480 and SW620 cells. The protein Bid was cleaved in SW480 cells indicating a cross-talk between extrinsic and intrinsic apoptotic pathway. We demonstrated that silibinin activated also the intrinsic apoptotic pathway in both cell lines, including the perturbation of the mitochondrial membrane potential, the release of cytochrome c into the cytosol and the activation of caspase-9. Simultaneously to apoptosis, silibinin triggered an autophagic response. The inhibition of autophagy with a specific inhibitor enhanced cell death, suggesting a cytoprotective function for autophagy in silibinin-treated cells. Taken together, our data show that silibinin initiated in SW480 and SW620 cells an autophagic-mediated survival response overwhelmed by the activation of both the extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Henriette Kauntz
- Laboratory of Nutritional Cancer Prevention, University of Strasbourg, Unistra, EA 4438, IRCAD, 1 Place de l'Hôpital, 67091, Strasbourg-Cedex, France
| | | | | | | |
Collapse
|
326
|
Abstract
Autophagy is a lysosomal degradation pathway that degrades damaged or superfluous cell components into basic biomolecules, which are then recycled back into the cytosol. In this respect, autophagy drives a flow of biomolecules in a continuous degradation-regeneration cycle. Autophagy is generally considered a pro-survival mechanism protecting cells under stress or poor nutrient conditions. Current research clearly shows that autophagy fulfills numerous functions in vital biological processes. It is implicated in development, differentiation, innate and adaptive immunity, ageing and cell death. In addition, accumulating evidence demonstrates interesting links between autophagy and several human diseases and tumor development. Therefore, autophagy seems to be an important player in the life and death of cells and organisms. Despite the mounting knowledge about autophagy, the mechanisms through which the autophagic machinery regulates these diverse processes are not entirely understood. In this review, we give a comprehensive overview of the autophagic signaling pathway, its role in general cellular processes and its connection to cell death. In addition, we present a brief overview of the possible contribution of defective autophagic signaling to disease.
Collapse
Affiliation(s)
- Ellen Wirawan
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Tom Vanden Berghe
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Saskia Lippens
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Patrizia Agostinis
- KULeuven, Laboratory for Cell Death and Therapy, Department for Molecular and Cell Biology, O&N I Herestraat 49, B-3000 Leuven, Belgium
| | - Peter Vandenabeele
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
327
|
Ma D, Tremblay P, Mahngar K, Collins J, Hudlicky T, Pandey S. Selective cytotoxicity against human osteosarcoma cells by a novel synthetic C-1 analogue of 7-deoxypancratistatin is potentiated by curcumin. PLoS One 2011; 6:e28780. [PMID: 22205968 PMCID: PMC3244407 DOI: 10.1371/journal.pone.0028780] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022] Open
Abstract
The natural compound pancratistatin (PST) is a non-genotoxic inducer of apoptosis in a variety of cancers. It exhibits cancer selectivity as non-cancerous cells are markedly less sensitive to PST. Nonetheless, PST is not readily synthesized and is present in very low quantities in its natural source to be applied clinically. We have previously synthesized and evaluated several synthetic analogues of 7-deoxypancratistatin, and found that JC-TH-acetate-4 (JCTH-4), a C-1 acetoxymethyl analogue, possessed similar apoptosis inducing activity compared to PST. In this study, notoriously chemoresistant osteosarcoma (OS) cells (Saos-2, U-2 OS) were substantially susceptible to JCTH-4-induced apoptosis through mitochondrial targeting; JCTH-4 induced collapse of mitochondrial membrane potential (MMP), increased reactive oxygen species (ROS) production in isolated mitochondria, and caused release of apoptosis inducing factor (AIF) and endonuclease G (EndoG) from isolated mitochondria. Furthermore, JCTH-4 selectively induced autophagy in OS cells. Additionally, we investigated the combinatory effect of JCTH-4 with the natural compound curcumin (CC), a compound found in turmeric spice, previously shown to possess antiproliferative properties. CC alone had no observable effect on Saos-2 and U-2 OS cells. However, when present with JCTH-4, CC was able to enhance the cytotoxicity of JCTH-4 selectively in OS cells. Such cytotoxicity by JCTH-4 alone and in combination with CC was not observed in normal human osteoblasts (HOb) and normal human fetal fibroblasts (NFF). Therefore, this report illustrates a new window in combination therapy, utilizing a novel synthetic analogue of PST with the natural compound CC, for the treatment of OS.
Collapse
Affiliation(s)
- Dennis Ma
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Phillip Tremblay
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Kevinjeet Mahngar
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Jonathan Collins
- Chemistry Department and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada
| | - Tomas Hudlicky
- Chemistry Department and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
- * E-mail:
| |
Collapse
|
328
|
Zhang X, Tang X, Liu H, Li L, Hou Q, Gao J. Autophagy induced by baicalin involves downregulation of CD147 in SMMC-7721 cells in vitro. Oncol Rep 2011; 27:1128-34. [PMID: 22200845 PMCID: PMC3583557 DOI: 10.3892/or.2011.1599] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/29/2011] [Indexed: 02/07/2023] Open
Abstract
Baicalin has been demonstrated to exert anticancer effects mainly through induction of tumor cell apoptosis and cell cycle arrest. However, the precise mechanisms underlying its anticancer role remain to be elucidated. In the present study, we investigated whether autophagy was involved in the anticancer activity of baicalin in the human hepatocellular carcinoma (HCC) cell line SMMC-7721 and the possible molecular mechanisms. Our data showed that the viability of SMMC-7721 cells was significantly inhibited by baicalin in a dose- and time-dependent manner. Alongside apoptosis, autophagy was also induced by baicalin dose- and time-dependently with the involvement of the autophagy-associated protein Beclin 1. Moreover, we demonstrated that cell death induced by baicalin was significantly inhibited by the apoptosis inhibitor z-DEVD-fmk or the autophagy inhibitor 3-MA, respectively. In addition, we found that CD147, a key molecule related both to apoptosis and autophagy, was markedly downregulated at the protein level in SMMC-7721 cells treated with baicalin. Collectively, this is the first study to suggest that baicalin induces autophagic cell death in SMMC-7721 cells, which involves the downregulation of CD147. Our study reveals a new mechanism for the anticancer effects of baicalin and puts forward a potential crucial role of CD147 in baicalin-induced cancer cell death.
Collapse
Affiliation(s)
- Xianjiao Zhang
- School of Medicine, Xi'an Jiaotong University, Xi'an, PR China.
| | | | | | | | | | | |
Collapse
|
329
|
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7. [PMID: 22174255 DOI: 10.1126/science.1208347] [Citation(s) in RCA: 1037] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the recruitment of immune cells, and restored chemotherapeutic responses but only in immunocompetent hosts. Thus, autophagy is essential for the immunogenic release of ATP from dying cells, and increased extracellular ATP concentrations improve the efficacy of antineoplastic chemotherapies when autophagy is disabled.
Collapse
|
330
|
Morales Quinones M, Winston JT, Stromhaug PE. Propeptide of aminopeptidase 1 protein mediates aggregation and vesicle formation in cytoplasm-to-vacuole targeting pathway. J Biol Chem 2011; 287:10121-10133. [PMID: 22123825 DOI: 10.1074/jbc.m111.311696] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Misfolded protein aggregation causes disease and aging; autophagy counteracts this by eliminating damaged components, enabling cells to survive starvation. The cytoplasm-to-vacuole targeting pathway in yeast encompasses the aggregation of the premature form of aminopeptidase 1 (prApe1) in cytosol and its sequestration by autophagic proteins into a vesicle for vacuolar transport. We show that the propeptide of Ape1 is important for aggregation and vesicle formation and that it is sufficient for binding to prApe1 and Atg19. Defective aggregation disrupts vacuolar transport, suggesting that aggregate shape is important in vesicle formation, whereas Atg19 binding is not sufficient for vacuolar transport. Aggregation involves hydrophobicity, whereas Atg19 binding requires additional electrostatic interactions. Ape1 dodecamerization may cluster propeptides into trimeric structures, with sufficient affinity to form propeptide hexamers by binding to other dodecamers, causing aggregation. We show that Ape1 aggregates bind Atg19 and Atg8 in vitro; this could be used as a scaffold for an in vitro assay of autophagosome formation to elucidate the mechanisms of autophagy.
Collapse
Affiliation(s)
| | - Jared T Winston
- Department of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - Per E Stromhaug
- Department of Biological Sciences, University of Missouri, Columbia, Missouri 65211.
| |
Collapse
|
331
|
Zhang Y, Calderwood SK. Autophagy, protein aggregation and hyperthermia: a mini-review. Int J Hyperthermia 2011; 27:409-14. [PMID: 21756038 DOI: 10.3109/02656736.2011.552087] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE We aim to explore the role of macroautophagy in cellular responses to hyperthermia. Protein damage incurred during hyperthermia can either lead to cell death or may be repaired by polypeptide quality control pathways including: (1) the deterrence of protein unfolding by molecular chaperones and (2) proteolysis of the denatured proteins within the proteasome. A third pathway of protein quality control is triggered by formation of protein aggregates in the heat shocked cell. This is the macroautophagy pathway in which protein aggregates are transported to specialised organelles called autolysosomes capable of degrading the aggregates. The consequences for cell viability of triggering this pathway are complex and may involve cell death, although under many circumstances, including exposure of cells to hyperthermia, autophagy leads to enhanced cell survival. We have discussed mechanisms by which cells detect protein aggregates and recruit them into the macroautophagy pathway as well as the potential role of inhibiting this process in hyperthermia. CONCLUSIONS Directed macroautophagy, with its key role in protein quality control, seems an attractive target for a therapy such as hyperthermia that functions principally through denaturing the proteome. However, much work is needed to decode the mechanisms of thermal stress-mediated macroautophagy and their role in survival/death of cancer cells before recommendations can be made on targeting this pathway in combination with hyperthermia.
Collapse
Affiliation(s)
- Yue Zhang
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School , 99 Brookline Avenue, Boston, MA 02215 , USA
| | | |
Collapse
|
332
|
Esteve JM, Knecht E. Mechanisms of autophagy and apoptosis: Recent developments in breast cancer cells. World J Biol Chem 2011; 2:232-8. [PMID: 22031846 PMCID: PMC3202127 DOI: 10.4331/wjbc.v2.i10.232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/26/2011] [Accepted: 10/03/2011] [Indexed: 02/05/2023] Open
Abstract
Autophagy, the pathway whereby cell components are degraded by lysosomes, is involved in the cell response to environmental stresses, such as nutrient deprivation, hypoxia or exposition to chemotherapeutic agents. Under these conditions, which are reminiscent of certain phases of tumor development, autophagy either promotes cell survival or induces cell death. This strengthens the possibility that autophagy could be an important target in cancer therapy, as has been proposed. Here, we describe the regulation of survival and death by autophagy and apoptosis, especially in cultured breast cancer cells. In particular, we discuss whether autophagy represents an apoptosis-independent process and/or if they share common pathways. We believe that understanding in detail the molecular mechanisms that underlie the relationships between autophagy and apoptosis in breast cancer cells could improve the available treatments for this disease.
Collapse
Affiliation(s)
- Juan M Esteve
- Juan M Esteve, Erwin Knecht, Laboratorio de Biología Celular, Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler 16, 46012-Valencia, Spain and CIBERER, Valencia, Spain
| | | |
Collapse
|
333
|
Cheng Y, Yang JM. Survival and death of endoplasmic-reticulum-stressed cells: Role of autophagy. World J Biol Chem 2011; 2:226-31. [PMID: 22031845 PMCID: PMC3202126 DOI: 10.4331/wjbc.v2.i10.226] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/03/2011] [Accepted: 09/10/2011] [Indexed: 02/05/2023] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) results in ER stress, which subsequently activates the unfolded protein response that induces a transcriptional program to alleviate the stress. Another cellular process that is activated during ER stress is autophagy, a mechanism of enclosing intracellular components in a double-membrane autophagosome, and then delivering it to the lysosome for degradation. Here, we discuss the role of autophagy in cellular response to ER stress, the signaling pathways linking ER stress to autophagy, and the possible implication of modulating autophagy in treatment of diseases such as cancer.
Collapse
Affiliation(s)
- Yan Cheng
- Yan Cheng, Jin-Ming Yang, Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, United States
| | | |
Collapse
|
334
|
Abstract
(Macro)autophagy provides a membrane-dependent mechanism for the sequestration, transport, and lysosomal turnover of subcellular components, including proteins and organelles. In this capacity, autophagy maintains basal cellular homeostasis and healthy organelle populations such as mitochondria. During starvation, autophagy prolongs cell survival by recycling metabolic precursors from intracellular macromolecules. Furthermore, autophagy represents an inducible response to chemical and physical cellular stress. Increasing evidence suggests that autophagy, and its regulatory proteins, may critically influence vital cellular processes such as programmed cell death, cell proliferation, inflammation, and innate immune functions and thereby may play a critical role in the pathogenesis of human disease. The function of autophagy in disease pathogenesis remains unclear and may involve either impaired or accelerated autophagic activity or imbalances in the activation of autophagic proteins. This review examines the roles of autophagy in the pathogenesis of pulmonary diseases, with emphasis on pulmonary vascular disease and acute and chronic lung diseases.
Collapse
Affiliation(s)
- Stefan W Ryter
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
335
|
Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 2011; 32:2-11. [PMID: 22025673 DOI: 10.1128/mcb.06159-11] [Citation(s) in RCA: 1059] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Living cells are adaptive self-sustaining systems. They strictly depend on the sufficient supply of oxygen, energy, and nutrients from the outside in order to sustain their internal organization. However, as autonomous entities they are able to monitor and appropriately adapt to any critical fluctuation in their environment. In the case of insufficient external nutrient supply or augmented energy demands, cells start to extensively digest their own interior. This process, known as macroautophagy, comprises the transport of cytosolic portions and entire organelles to the lysosomal compartment via specific double-membrane vesicles, called autophagosomes. Although extensively upregulated under nutrient restriction, a low level of basal autophagy is likewise crucial in order to sustain the cellular homeostasis. On the other hand, cells have to avoid excessive and enduring self-digestion. The delicate balance between external energy and nutrient supply and internal production and consumption is a demanding task. The complex protein network that senses and precisely reacts to environmental changes is thus mainly regulated by rapid and reversible posttranslational modifications such as phosphorylation. This review focuses on the serine/threonine protein kinases AMP-activated protein kinase, mammalian target of rapamycin (mTOR), and unc-51-like kinase 1/2 (Ulk1/2), three interconnected major junctions within the autophagy regulating signaling network.
Collapse
|
336
|
Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer Lett 2011; 314:232-43. [PMID: 22019047 DOI: 10.1016/j.canlet.2011.09.034] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/30/2011] [Accepted: 09/26/2011] [Indexed: 11/20/2022]
Abstract
The function of autophagy in cisplatin-treated cancer cells is not fully understood. Cisplatin treatment induced degradation of ubiquitinated proteins by autophagy, which reduced apoptosis induced by endoplasmic reticulum (ER) stress and downregulated the mitochondrial pathway of apoptosis. Inhibition of autophagy using 3-methyladenine (3-MA) or chloroquine (CQ) increased the levels of intracellular misfolded proteins, which enhanced cellular apoptosis. We found that tunicamycin, an ER stress inducer, augmented cisplatin cytotoxicity by upregulating ER stress-mediated apoptosis. Our data indicates that autophagy plays an important role in preventing cisplatin-induced apoptosis in HeLa cells, thus inhibition of autophagy may improve cisplatin chemotherapy.
Collapse
|
337
|
Kim H, Bernard M, Flickinger J, Epperly MW, Wang H, Dixon TM, Shields D, Houghton F, Zhang X, Greenberger JS. The autophagy-inducing drug carbamazepine is a radiation protector and mitigator. Int J Radiat Biol 2011; 87:1052-60. [PMID: 21728759 PMCID: PMC3772684 DOI: 10.3109/09553002.2011.587860] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To determine whether Carbamazepine (CBZ) is a radiation protector and/or mitigator. MATERIALS AND METHODS Murine hematopoietic progenitor 32D cl 3 cells were incubated in 1, 10, or 100 μM CBZ 1 h before or immediately after 0-8 Gy irradiation and assayed for clonogenic survival. Autophagy was assayed by immunoblot for microtubule-associated protein light chain 3 (LC3). In vivo radioprotection and mitigation were determined with C57BL/6NTac mice. RESULTS CBZ treatment at 1, 10 or 100 μM for 1 h prior to irradiation increased radioresistance (the dose for 37% survival or D(0)) from control 1.5 ± 0.1 Gy to 2.1 ± 0.2 Gy (P = 0.012), 2.3 ± 0.1 Gy (P = 0.010), and 3.6 ± 0.7 Gy (P = 0.003), respectively; after irradiation increased the extrapolation number (ñ) from 1.5 ± 0.3 to 10.1 ± 4.2 (P = 0.011), 5.5 ± 1.7 (P = 0.019), and 3.6 ± 0.8 (P = 0.014), respectively, and increased autophagy. CBZ treated mice 10 min or 24 h before or 10 min or 12 h after 9.25 Gy total body irradiation (TBI) showed increased survival (P = 0.012, 0.011, 0.0002, and 0.017, respectively). CONCLUSION CBZ may be a useful radiation protector and mitigator.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Mark Bernard
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - John Flickinger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Tracy M. Dixon
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Donna Shields
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Frank Houghton
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Xichen Zhang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| |
Collapse
|
338
|
Li ZY, Yang Y, Ming M, Liu B. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun 2011; 414:5-8. [PMID: 21951851 DOI: 10.1016/j.bbrc.2011.09.046] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/12/2011] [Indexed: 02/05/2023]
Abstract
Mitochondria, the main source of reactive oxygen species (ROS), are required for cell survival; yet also orchestrate programmed cell death (PCD), referring to apoptosis and autophagy. Autophagy is an evolutionarily conserved lysosomal degradation process implicated in a wide range of pathological processes, most notably cancer. Accumulating evidence has recently revealed that mitochondria may generate massive ROS that play the essential role for autophagy regulation, and thus sealing the fate of cancer cell. In this review, we summarize mitochondrial function and ROS generation, and also highlight ROS-modulated core autophagic pathways involved in ATG4-ATG8/LC3, Beclin-1, p53, PTEN, PI3K-Akt-mTOR and MAPK signaling in cancer. Therefore, a better understanding of the intricate relationships between mitochondrial ROS and autophagy may ultimately allow cancer biologists to harness mitochondrial ROS-mediated autophagic pathways for cancer drug discovery.
Collapse
Affiliation(s)
- Zi-yue Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
339
|
Noman MZ, Janji B, Kaminska B, Van Moer K, Pierson S, Przanowski P, Buart S, Berchem G, Romero P, Mami-Chouaib F, Chouaib S. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res 2011; 71:5976-86. [PMID: 21810913 DOI: 10.1158/0008-5472.can-11-1094] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The relationship between hypoxic stress, autophagy, and specific cell-mediated cytotoxicity remains unknown. This study shows that hypoxia-induced resistance of lung tumor to cytolytic T lymphocyte (CTL)-mediated lysis is associated with autophagy induction in target cells. In turn, this correlates with STAT3 phosphorylation on tyrosine 705 residue (pSTAT3) and HIF-1α accumulation. Inhibition of autophagy by siRNA targeting of either beclin1 or Atg5 resulted in impairment of pSTAT3 and restoration of hypoxic tumor cell susceptibility to CTL-mediated lysis. Furthermore, inhibition of pSTAT3 in hypoxic Atg5 or beclin1-targeted tumor cells was found to be associated with the inhibition Src kinase (pSrc). Autophagy-induced pSTAT3 and pSrc regulation seemed to involve the ubiquitin proteasome system and p62/SQSTM1. In vivo experiments using B16-F10 melanoma tumor cells indicated that depletion of beclin1 resulted in an inhibition of B16-F10 tumor growth and increased tumor apoptosis. Moreover, in vivo inhibition of autophagy by hydroxychloroquine in B16-F10 tumor-bearing mice and mice vaccinated with tyrosinase-related protein-2 peptide dramatically increased tumor growth inhibition. Collectively, this study establishes a novel functional link between hypoxia-induced autophagy and the regulation of antigen-specific T-cell lysis and points to a major role of autophagy in the control of in vivo tumor growth.
Collapse
Affiliation(s)
- Muhammad Zaeem Noman
- Unité INSERM U753, Institut de Cancérologie Gustave Roussy, Villejuif Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 2011; 25:1510-27. [PMID: 21764854 DOI: 10.1101/gad.2051011] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved cellular process for bulk degradation of intracellular protein and organelles in lysosomes. In contrast to elegant studies of beclin1 using mouse models and cultured cells demonstrating a tumor suppression function for autophagy, knockout of other essential autophagy proteins such as ATG5, ATG7, or FIP200 (FAK family-interacting protein of 200 kDa) in various tissues did not lead to malignant tumor development in vivo. Here, we report that inhibition of autophagy by FIP200 ablation suppresses mammary tumor initiation and progression in a mouse model of breast cancer driven by the PyMT oncogene. Deletion of FIP200 resulted in multiple autophagy defects including accumulation of ubiquitinated protein aggregates and p62/SQSTM1, deficient LC3 conversion, and increased number of mitochondria with abnormal morphology in tumor cells. FIP200 deletion did not affect apoptosis of mammary tumor cells or Ras-transformed mouse embryonic fibroblasts (MEFs), but significantly reduced their proliferation in both systems. We also observed a reduced glycolysis and cyclin D1 expression in FIP200-null mammary tumor cells and transformed MEFs. In addition, gene profiling studies revealed significantly elevated expression of interferon (IFN)-responsive genes in the early tumors of FIP200 conditional knockout mice, which was accompanied by increased infiltration of effector T cells in the tumor microenvironment triggered by an increased production of chemokines including CXCL10 in FIP200-null tumor cells. Together, these data provide strong evidence for a protumorigenesis role of autophagy in oncogene-induced tumors in vivo and suggest FIP200 as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Huijun Wei
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, USA
| | | | | | | | | | | |
Collapse
|
341
|
Manov I, Pollak Y, Broneshter R, Iancu TC. Inhibition of doxorubicin-induced autophagy in hepatocellular carcinoma Hep3B cells by sorafenib - the role of extracellular signal-regulated kinase counteraction. FEBS J 2011; 278:3494-507. [DOI: 10.1111/j.1742-4658.2011.08271.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
342
|
Lomonaco SL, Finniss S, Xiang C, Lee HK, Jiang W, Lemke N, Rempel SA, Mikkelsen T, Brodie C. Cilengitide induces autophagy-mediated cell death in glioma cells. Neuro Oncol 2011; 13:857-65. [PMID: 21788343 DOI: 10.1093/neuonc/nor073] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We studied the effect of the integrin inhibitor cilengitide in glioma cells. Cilengitide induced cell detachment and decreased cell viability, and induction of autophagy followed by cell apoptosis. In addition, cilengitide decreased the cell renewal of glioma stem-like cells (GSCs). Inhibition of autophagy decreased the cytotoxic effect of cilengitide. Pretreatment of glioma cells and GSCs with cilengitide prior to γ-irradiation resulted in a larger increase in autophagy and a more significant decrease in cell survival. We found that cilengitide induced autophagy collectively in glioma cells, xenografts, and GSCs, which contributed to its cytotoxic effects and sensitized these cells to γ-radiation.
Collapse
Affiliation(s)
- Stephanie L Lomonaco
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Gump JM, Thorburn A. Autophagy and apoptosis: what is the connection? Trends Cell Biol 2011; 21:387-92. [PMID: 21561772 PMCID: PMC3539742 DOI: 10.1016/j.tcb.2011.03.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/09/2011] [Accepted: 03/22/2011] [Indexed: 12/25/2022]
Abstract
The therapeutic potential of autophagy for the treatment cancer and other diseases is beset by paradoxes stemming from the complexity of the interactions between the apoptotic and autophagic machinery. The simplest question of how autophagy acts as both a protector and executioner of cell death remains the subject of substantial controversy. Elucidating the molecular interactions between the processes will help us understand how autophagy can modulate cell death, whether autophagy is truly a cell death mechanism, and how these functions are regulated. We suggest that, despite many connections between autophagy and apoptosis, a strong causal relationship wherein one process controls the other, has not been demonstrated adequately. Knowing when and how to modulate autophagy therapeutically depends on understanding these connections.
Collapse
|
344
|
Zschocke J, Zimmermann N, Berning B, Ganal V, Holsboer F, Rein T. Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons--dissociation from cholesterol homeostasis. Neuropsychopharmacology 2011; 36:1754-68. [PMID: 21508931 PMCID: PMC3138654 DOI: 10.1038/npp.2011.57] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 02/17/2011] [Accepted: 03/22/2011] [Indexed: 01/25/2023]
Abstract
In the search for antidepressants' (ADs') mechanisms of action beyond their influence on monoaminergic neurotransmission, we analyzed the effects of three structurally and pharmacologically different ADs on autophagic processes in rat primary astrocytes and neurons. Autophagy has a significant role in controlling protein turnover and energy supply. Both, the tricyclic AD amitriptyline (AMI) and the selective serotonin re-uptake inhibitor citalopram (CIT) induced autophagy as mirrored by pronounced upregulation and cellular redistribution of the marker LC3B-II. Redistribution was characterized by formation of LC3B-II-positive structures indicative of autophagosomes, which associated with AVs in a time-dependent manner. Deletion of Atg5, representing a central mediator of autophagy in MEFs, led to abrogation of AMI-induced LC3B-I/II conversion. By contrast, VEN, a selective serotonin and noradrenaline reuptake inhibitor, did not promote autophagic processes in either cell type. The stimulatory impact of AMI on autophagy partly involved class-III PI3 kinase-dependent pathways as 3-methyladenine slightly diminished the effects of AMI. Autophagic flux as defined by autophagosome turnover was vastly undisturbed, and degradation of long-lived proteins was augmented upon AMI treatment. Enhanced autophagy was dissociated from drug-induced alterations in cholesterol homeostasis. Subsequent to AMI- and CIT-mediated autophagy induction, neuronal and glial viability decreased, with neurons showing signs of apoptosis. In conclusion, we report that distinct ADs promote autophagy in neural cells, with important implications on energy homeostasis.
Collapse
Affiliation(s)
- Jürgen Zschocke
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nicole Zimmermann
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - Barbara Berning
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Ganal
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - Florian Holsboer
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - Theo Rein
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
345
|
Abstract
Radiotherapy is a well-established treatment for cancer. However, the existence of radioresistant cells is one of the major obstacles in radiotherapy. In order to understand the mechanism of cellular radioresistance and develop more effective radiotherapy, we have established clinically relevant radioresistant (CRR) cell lines, which continue to proliferate under daily exposure to 2 Gray (Gy) of X-rays for >30 days. X-ray irradiation significantly induced autophagic cells in parental cells, which was exiguous in CRR cells, suggesting that autophagic cell death is involved in cellular radiosensitivity. An autophagy inducer, rapamycin sensitized CRR cells to the level of parental cells and suppressed cell growth. An autophagy inhibitor, 3-methyladenine induced radioresistance of parental cells. Furthermore, inhibition of autophagy by knockdown of Beclin-1 made parental cells radioresistant to acute radiation. These suggest that the suppression of autophagic cell death but not apoptosis is mainly involved in cellular radioresistance. Therefore, the enhancement of autophagy may have a considerable impact on the treatment of radioresistant tumor.
Collapse
|
346
|
Han W, Pan H, Chen Y, Sun J, Wang Y, Li J, Ge W, Feng L, Lin X, Wang X, Wang X, Jin H. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One 2011; 6:e18691. [PMID: 21655094 PMCID: PMC3107207 DOI: 10.1371/journal.pone.0018691] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/15/2011] [Indexed: 01/01/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib have been widely used in patients with non-small-cell lung cancer. Unfortunately, the efficacy of EGFR-TKIs is limited because of natural and acquired resistance. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether autophagy can be activated by gefitinib or erlotinib and thereby impair the sensitivity of targeted therapy to lung cancer cells remains unknown. Here, we first report that gefitinib or erlotinib can induce a high level of autophagy, which was accompanied by the inhibition of the PI3K/Akt/mTOR signaling pathway. Moreover, cytotoxicity induced by gefitinib or erlotinib was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting ATG5 and ATG7, the most important components for the formation of autophagosome. Interestingly, EGFR-TKIs can still induce cell autophagy even after EGFR expression was reduced by EGFR specific siRNAs. In conclusion, we found that autophagy can be activated by EGFR-TKIs in lung cancer cells and inhibition of autophagy augmented the growth inhibitory effect of EGFR-TKIs. Autophagy inhibition thus represents a promising approach to improve the efficacy of EGFR-TKIs in the treatment of patients with advanced non-small-cell lung cancer.
Collapse
Affiliation(s)
- Weidong Han
- Department of Medical Oncology, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Chen
- Department of Medical Oncology, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Sun
- Laboratory of Cancer Epigenetics, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanshan Wang
- Zhejiang Cancer Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Li
- Department of Medical Oncology, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiting Ge
- Cancer Institute, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Epigenetics, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoying Lin
- Laboratory of Cancer Epigenetics, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Epigenetics, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
347
|
Wang SY, Yu QJ, Zhang RD, Liu B. Core signaling pathways of survival/death in autophagy-related cancer networks. Int J Biochem Cell Biol 2011; 43:1263-6. [PMID: 21640844 DOI: 10.1016/j.biocel.2011.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 02/05/2023]
Abstract
Autophagy (macroautophagy), an evolutionarily conserved lysosomal degradation process, is implicated in a wide variety of pathological processes including cancer. Autophagy plays the Janus role in regulating several survival or death signaling pathways that may decide the fate of cancer cell. Accumulating evidence has revealed the core molecular machinery of autophagy in tumor initiation and progression; however, the intricate relationships between autophagy and cancer are still in its infancy. In this review, we summarize several key survival/death pathways such as mTOR subnetwork, Beclin 1 interactome, and p53 signaling that may play the crucial roles for the regulation of the autophagy-related cancer networks. Therefore, a better understanding of the relationships between autophagy and cancer may ultimately allow cancer biologists and clinicians to harness core autophagic pathways for the discovery of potential novel drug targets.
Collapse
Affiliation(s)
- Shu-ya Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
348
|
Arsenic trioxide induces autophagy and apoptosis in human glioma cells in vitro and in vivo through downregulation of survivin. J Mol Med (Berl) 2011; 89:927-41. [DOI: 10.1007/s00109-011-0763-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/07/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
|
349
|
Abramczyk O, Tavares CDJ, Devkota AK, Ryazanov AG, Turk BE, Riggs AF, Ozpolat B, Dalby KN. Purification and characterization of tagless recombinant human elongation factor 2 kinase (eEF-2K) expressed in Escherichia coli. Protein Expr Purif 2011; 79:237-44. [PMID: 21605678 DOI: 10.1016/j.pep.2011.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 01/28/2023]
Abstract
The eukaryotic elongation factor 2 kinase (eEF-2K) modulates the rate of protein synthesis by impeding the elongation phase of translation by inactivating the eukaryotic elongation factor 2 (eEF-2) via phosphorylation. eEF-2K is known to be activated by calcium and calmodulin, whereas the mTOR and MAPK pathways are suggested to negatively regulate kinase activity. Despite its pivotal role in translation regulation and potential role in tumor survival, the structure, function, and regulation of eEF-2K have not been described in detail. This deficiency may result from the difficulty of obtaining the recombinant kinase in a form suitable for biochemical analysis. Here we report the purification and characterization of recombinant human eEF-2K expressed in the Escherichia coli strain Rosetta-gami 2(DE3). Successive chromatography steps utilizing Ni-NTA affinity, anion-exchange, and gel filtration columns accomplished purification. Cleavage of the thioredoxin-His(6)-tag from the N-terminus of the expressed kinase with TEV protease yielded 9 mg of recombinant (G-D-I)-eEF-2K per liter of culture. Light scattering shows that eEF-2K is a monomer of ∼85 kDa. In vitro kinetic analysis confirmed that recombinant human eEF-2K is able to phosphorylate wheat germ eEF-2 with kinetic parameters comparable to the mammalian enzyme.
Collapse
Affiliation(s)
- Olga Abramczyk
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
350
|
A novel synthetic C-1 analogue of 7-deoxypancratistatin induces apoptosis in p53 positive and negative human colorectal cancer cells by targeting the mitochondria: enhancement of activity by tamoxifen. Invest New Drugs 2011; 30:1012-27. [PMID: 21494837 DOI: 10.1007/s10637-011-9668-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/04/2011] [Indexed: 12/13/2022]
Abstract
The natural compound pancratistatin (PST), isolated from the Hymenocallis littoralis plant, specifically induces apoptosis in many cancer cell lines. Unlike many other chemotherapeutics, PST is not genotoxic and has minimal adverse effects on non-cancerous cells. However, its availability for preclinical and clinical work is limited due to its low availability in its natural source and difficulties in its chemical synthesis. Several synthetic analogues of 7-deoxypancratistatin with different modifications at C-1 were synthesized and screened for apoptosis inducing activity in human colorectal cancer (CRC) cells. We found that a C-1 acetoxymethyl derivative of 7-deoxypancratistatin, JC-TH-acetate-4 (JCTH-4), was effective in inducing apoptosis in both p53 positive (HCT 116) and p53 negative (HT-29) human CRC cell lines, demonstrating similar efficacy to that of natural PST. JCTH-4 was able to decrease mitochondrial membrane potential (MMP), increase levels of reactive oxygen species in isolated mitochondria, cause release of the apoptogenic factor cytochrome c (Cyto c) from isolated mitochondria, and induce autophagy in HCT 116 and HT-29 cells. Interestingly, when JCTH-4 was administered with tamoxifen (TAM), there was an enhanced effect in apoptosis induction, reactive oxygen species (ROS) production and Cyto c release by isolated mitochondria, and autophagic induction by CRC cells. Minimal toxicity was exhibited by a normal human fetal fibroblast (NFF) and a normal colon fibroblast (CCD-18Co) cell line. Hence, JCTH-4 is a novel compound capable of selectively inducing apoptosis and autophagy in CRC cells alone and in combination with TAM and may serve as a safer and more effective alternative to current cancer therapies.
Collapse
|