351
|
|
352
|
Fong KD, Nacamuli RP, Song HM, Warren SM, Lorenz HP, Longaker MT. New strategies for craniofacial repair and replacement: a brief review. J Craniofac Surg 2003; 14:333-9. [PMID: 12826804 DOI: 10.1097/00001665-200305000-00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Craniofacial anomalies can severely affect the appearance, function, and psychosocial well being of patients; thus, tissue engineers are developing new techniques to functionally and aesthetically rebuild craniofacial structures. In the past decade, there have been tremendous advances in the field of tissue engineering that will substantially alter how surgeons approach craniofacial reconstruction. In this brief review, we highlight some of the preclinical recombinant protein, gene transfer, and cell-based strategies currently being developed to augment endogenous tissue repair or create structures for replacement. In addition, we discuss the importance of studying endogenous models of tissue induction and present some of the current in vitro and in vivo approaches to growing complex tissues/organs for craniofacial reconstruction.
Collapse
Affiliation(s)
- Kenton D Fong
- Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5148, USA
| | | | | | | | | | | |
Collapse
|
353
|
Quantitative Analysis of Bone Formation in the Composites of Cultured Marrow Cells and Hydroxyapatite by X-Ray Computed Tomography. ACTA ACUST UNITED AC 2003. [DOI: 10.4028/www.scientific.net/kem.240-242.615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
354
|
Abstract
Polyhydroxyalkanonate is a typical biodegradable material, which is permitted for use in the medical and pharmaceutical fields. For its biodegradability, biocompatibility, and toxicological safety, the majority of products practically used are composed of homo-polymers of poly(lactic acid), poly(glycolic acid), and poly(epsilon-caprolactone) and their co-polymers. On the market, suture strings are still the main usage. The needs of biodegradable materials have been being gradually increased by the development of drug delivery systems, tissue engineering, and regenerative medicine. Some types of formulation, that is, mono-fibers, twisted fibers, films, fabrics, sponges, and injectable particles are developed to match each purpose. This article reviews the current clinical applications and trials of polyhydroxyalcanonate products.
Collapse
Affiliation(s)
- Hiroki Ueda
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, 606-8507, Kyoto, Japan
| | | |
Collapse
|
355
|
Akahane M, Ohgushi H, Kuriyama S, Akahane T, Takakura Y. Hydroxyapatite ceramics as a carrier of gene-transduced bone marrow cells. J Orthop Sci 2003; 7:677-82. [PMID: 12486472 DOI: 10.1007/s007760200120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim of this study was to develop an efficient exogenous gene delivery system using cultured marrow cells and porous hydroxyapatite ceramics. Bone marrow cells were obtained from the femoral shaft of a Fischer 344 rat and cultured in a medium containing 15% fetal bovine serum until confluent. After trypsinization, cells were subcultured at a cell density of 1 x 10(4) cells/cm2 in the presence of fetal bovine serum. The subcultured bone marrow cells were infected with recombinant retroviruses carrying the lacZ gene. The retrovirus infection was performed seven times from day 1 to day 7 during the culturing procedure. Cells expressing the lacZ gene were stained blue with the X-gal staining and represented approximately 80%. Composites of virus-infected bone marrow cells and hydroxyapatite ceramics were implanted at the subcutaneous site of recipient Fischer 344 rats. Four weeks after the implantation the ceramics were harvested. The histological sections of the ceramics showed abundant bone formation in the pores of the ceramics and obviously blue-stained osteoblasts and osteocytes. Other cell types that were stained blue were some fibroblastic cells and endothelial cells in the newly formed capillaries. These findings indicate that osteoblasts and osteocytes in the newly formed bone were derived from the cultured bone marrow cells, and therefore gene transfection by retroviruses did not disturb the bone formation process. Because of the durability of the newly formed bone tissue, creating composites of cultured bone marrow cells and hydroxyapatite ceramics might be an ideal method for exogenous gene transfection.
Collapse
Affiliation(s)
- Manabu Akahane
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | |
Collapse
|
356
|
Warren SM, Fong KD, Chen CM, Loboa EG, Cowan CM, Lorenz HP, Longaker MT. Tools and techniques for craniofacial tissue engineering. TISSUE ENGINEERING 2003; 9:187-200. [PMID: 12740082 DOI: 10.1089/107632703764664666] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Craniofacial surgery is an important conduit for tissue-engineering applications. As interdisciplinary collaborations improve, we can expect to see remarkable progress in de novo tissue synthesis, replacement, and repair. Ultimately, we may one day find that gene-modified cell-based tissue-engineering strategies will succeed today's reconstructive strategies. In this review, we highlight the major gene- and cell-based preclinical tools and techniques that are currently being developed to solve common craniofacial problems.
Collapse
Affiliation(s)
- Stephen M Warren
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305-5148, USA
| | | | | | | | | | | | | |
Collapse
|
357
|
Abstract
Apoptosis, or programmed cell death, is a phenomenon that is integral to development and cellular homeostasis. In the last decade, many of the essential molecules and pathways that control this phenomenon have been elucidated. Because apoptosis is involved in almost all physiologic and pathologic processes, the understanding of its regulation has significant clinical ramifications. This article reviews the basic understanding of programmed cell death in terms of the effector molecules and pathways. Areas of interest to plastic surgeons are reviewed as they pertain to apoptosis. These areas include allotransplantation, craniofacial and limb development, flap survival, wound healing, stem cell science, and physiologic aging. These topics have not yet been studied extensively in the context of cell death. In this review article, other related and more comprehensively studied scientific areas are used to extrapolate their relevance to apoptosis. Apoptosis is an increasingly better understood process. With the knowledge of how programmed cell death is controlled, combined with the improved ability to effectively perform genetic manipulation and to design specific chemical approaches, apoptosis is gaining clinical relevance. In the next few years, practical clinical breakthroughs will help the medical community to understand the phenomenon of apoptosis and how it relates to the needs of patients.
Collapse
Affiliation(s)
- Brian R Gastman
- Department of Otolaryngology, University of Pittsburgh Shool of Medicine, Pa, USA.
| | | | | |
Collapse
|
358
|
Kruyt MC, de Bruijn JD, Wilson CE, Oner FC, van Blitterswijk CA, Verbout AJ, Dhert WJA. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats. TISSUE ENGINEERING 2003; 9:327-36. [PMID: 12740095 DOI: 10.1089/107632703764664792] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study we investigated the bone-forming capacity of tissue-engineered (TE) constructs implanted ectopically in goats. As cell survival is questionable in large animal models, we investigated the significance of vitality, and thus whether living cells instead of only the potentially osteoinductive extracellular matrix are required to achieve bone formation. Vital TE constructs of porous hydroxyapatite (HA) covered with differentiated bone marrow stromal cells (BMSCs) within an extracellular matrix (ECM) were compared with identical constructs that were devitalized before implantation. The devitalized implants did contain the potentially osteoinductive ECM. Furthermore, we evaluated HA impregnated with fresh bone marrow and HA only. Two different types of HA granules with a volume of approximately 40 microm were investigated: HA70/800, a microporous HA with 70% interconnected macroporosity and an average pore size of 800 microm, and HA60/400, a smooth HA with 60% interconnected macropores and an average size of 400 microm. Two granules of each type were combined and then treated as a single unit for cell seeding, implantation, and histology. The tissue-engineered samples were obtained by seeding culture-expanded goat BMSCs on the HA and subsequently culturing these constructs for 6 days to allow cell differentiation and ECM formation. To devitalize, TE constructs were frozen in liquid nitrogen according to a validated protocol. Fresh bone marrow impregnation was performed perioperatively (4 mL per implant unit). All study groups were implanted in bilateral paraspinal muscles. Fluorochromes were administered at three time points to monitor bone mineralization. After 12 weeks the units were explanted and analyzed by histology of nondecalcified sections. Bone formation was present in all vital tissue-engineered implants. None of the other groups showed any bone formation. Histomorphometry indicated that microporous HA70/800 yielded more bone than did HA60/400. Within the newly formed bone, the fluorescent labels showed that mineralization had occurred before 5 weeks of implantation and was directed from the HA surface toward the center of the pores. In conclusion, tissue-engineered bone formation in goats can be achieved only with viable constructs of an appropriate scaffold and sufficient BMSCs.
Collapse
Affiliation(s)
- M C Kruyt
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
359
|
TABATA Y, D. P, D.Med.Sci., D.Pharm.. Significant Role of Tissue Engineering in Regenerative Medicine. J HARD TISSUE BIOL 2003. [DOI: 10.2485/jhtb.12.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
360
|
|
361
|
Shimaoka H, Dohi Y, Ohgushi H, Ikeuchi M, Okamoto M, Kudo A, Kirita T, Yonemasu K. Recombinant growth/differentiation factor-5 (GDF-5) stimulates osteogenic differentiation of marrow mesenchymal stem cells in porous hydroxyapatite ceramic. ACTA ACUST UNITED AC 2003; 68:168-76. [PMID: 14661262 DOI: 10.1002/jbm.a.20059] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To evaluate the growth/differentiation factor-5 (GDF-5) in the in vivo osteogenic potential of bone marrow mesenchymal stem cells (MSCs), we subcutaneously implanted five different kinds of hydroxyapatite (HA) ceramic implants: HA alone, GDF-5/HA composites (GDF/HA), MSCs/HA composites, the MSCs/HA composites supplemented with GDF-5 (GDF/MSCs/HA), and recombinant bone morphogenetic protein-2 (BMP/MSCs/HA). Neither the HA alone nor the GDF/HA composites exhibited any bone formation at any time after implantation. At 4 weeks, the MSCs/HA composites exhibited a certain amount of bone formation in some pore areas. In contrast, at 2 weeks, the GDF/MSCs/HA composites exhibited histologically obvious de novo bone formation together with active osteoblasts in many pore areas and additional bone formation at 4 weeks. In the de novo formed bone, neither chondrocytes nor endochondral bone was detected. The GDF/MSCs/HA composites also showed high alkaline phosphatase (ALP) and osteocalcin expression determined at both the protein and gene levels and the high level of expression was well maintained even at 4 weeks. Compared with GDF/MSCs/HA, the BMP/MSCs/HA composites exhibited excellent osteogenesis with relatively early osteoblastic phenotype expression. The results indicate that GDF-5 synergistically enhances de novo bone formation capability of MSCs/HA composite and suggest that tissue-engineered GDF/MSCs/HA composites could be used as bone graft substitutes.
Collapse
Affiliation(s)
- Hideki Shimaoka
- Department of Public Health, Nara Medical University, 840 Shijocho, Kashihara, Nara 634-8521, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
362
|
Abstract
Tissue engineering will potentially change the practice of plastic surgery more than any other clinical specialty. It is an interdisciplinary field that promises new methods of tissue repair. There has been more than $3.5 billion invested in this field since 1990. Relevant areas of progress include advanced computing, biomaterials, cell technology, growth factor fabrication and delivery, and gene manipulation. Beneficial clinical techniques will emerge from continued investigation in each of these areas. Techniques that are developed must be scaled up to industry with products cleared by regulatory agencies and acceptable to clinicians and patients. A goal of tissue engineering is to change clinical practice, yielding improved patient outcomes and lower costs of care.
Collapse
Affiliation(s)
- Michael J Miller
- Department of Plastic Surgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 443, Houston, TX 77030, USA.
| | | |
Collapse
|
363
|
Ochi K, Chen G, Ushida T, Gojo S, Segawa K, Tai H, Ueno K, Ohkawa H, Mori T, Yamaguchi A, Toyama Y, Hata JI, Umezawa A. Use of isolated mature osteoblasts in abundance acts as desired-shaped bone regeneration in combination with a modified poly-DL-lactic-co-glycolic acid (PLGA)-collagen sponge. J Cell Physiol 2003; 194:45-53. [PMID: 12447988 DOI: 10.1002/jcp.10185] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Controlled regeneration of bone or cartilage has recently begun to facilitate a host of novel clinical treatments. An osteoblast line, which we isolated is able to form new bone matrix in vivo within 2 days and exhibits a mature osteoblast phenotype both in vitro and in vivo. Using these cells, we show that cuboidal bones can be generated into a predesigned shaped-bone with high-density bone trabeculae when used in combination with a modified poly-DL-lactic-co-glycolic acid (PLGA)-collagen sponge. PLGA coated with collagen gel serves as a good scaffold for osteoblasts. These results indicate that mature osteoblasts, in combination with a scaffold such as PLGA-collagen sponge, show promise for use in a custom-shaped bone regeneration tool for both basic research into osteogenesis and for development of therapeutic applications.
Collapse
Affiliation(s)
- Kensuke Ochi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Stute N, Fehse B, Schröder J, Arps S, Adamietz P, Held KR, Zander AR. Human mesenchymal stem cells are not of donor origin in patients with severe aplastic anemia who underwent sex-mismatched allogeneic bone marrow transplant. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:977-84. [PMID: 12590713 DOI: 10.1089/152581602321080646] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stromal defects are part of the etiology of severe aplastic anemia (SAA), and hematopoietic engraftment is poor in unrelated and mismatched transplant. Therefore, we wanted to find out whether human mesenchymal stem cells (MSC) are partly of donor origin in patients with SAA years after successful bone marrow transplant (BMT). Three SAA patients 3, 5, and 8 years after BMT (cyclophosphamide, ATG) with bone marrow from an HLA-identical sibling donor of the opposite sex were investigated. MSC were grown from patients' bone marrow aspirates according to Caplan et al. The number of MSC that were isolated from SAA bone marrow post transplant was about 10 times lower than in normal controls. Primary cultures of adherent MSC and passage-one cells were analyzed by dual-color interphase fluorescence in situ hybridization (FISH) analysis using centromere-specific DNA probes for X and Y chromosome. FISH did not show any clear evidence of donor cells in the adherent MSC: In all cases, less than 0.5% of nuclei showed a donor-type signal pattern that is well within assay limits. In a female patient, the absence of male donor cells was confirmed by sensitive and quantitative, Y chromosome-specific TaqMan PCR (QYCS-PCR). In contrast, Ficoll-separated hematopoietic cells from the same aspirates were greater than 90% of donor origin, as expected. In SAA, as previously found in patients with lysosomal and peroxisomal storage disease, bone marrow MSC remain host-derived despite successful hematopoietic engraftment years after allogeneic BMT.
Collapse
Affiliation(s)
- Norbert Stute
- Bone Marrow Transplant Center, University Clinic Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
365
|
Warren SM, Hedrick MH, Sylvester K, Longaker MT, Chen CM. New directions in bioabsorbable technology. J Neurosurg 2002; 97:481-9. [PMID: 12449205 DOI: 10.3171/spi.2002.97.4.0481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Generating replacement tissues requires an interdisciplinary approach that combines developmental, cell, and molecular biology with biochemistry, immunology, engineering, medicine, and the material sciences. Because basic cues for tissue engineering may be derived from endogenous models, investigators are learning how to imitate nature. Endogenous models may provide the biological blueprints for tissue restoration, but there is still much to learn. Interdisciplinary barriers must be overcome to create composite, vascularized, patient-specific tissue constructs for replacement and repair. Although multistep, multicomponent tissue fabrication requires an amalgamation of ideas, the following review is limited to the new directions in bioabsorbable technology. The review highlights novel bioabsorbable design and therapeutic (gene, protein, and cell-based) strategies currently being developed to solve common spine-related problems.
Collapse
Affiliation(s)
- Stephen M Warren
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
366
|
Sikavitsas VI, Bancroft GN, Mikos AG. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 62:136-48. [PMID: 12124795 DOI: 10.1002/jbm.10150] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the accelerated proliferation and differentiation of marrow stromal osteoblasts, and the localization of the enhanced mineralization on the external surface of the scaffolds.
Collapse
Affiliation(s)
- Vassilios I Sikavitsas
- Institute of Biosciences and Bioengineering, Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, Texas 77251-1892, USA
| | | | | |
Collapse
|
367
|
Abstract
Generating replacement tissues requires an interdisciplinary approach that combines developmental, cell, and molecular biology with biochemistry, immunology, engineering, medicine, and the material sciences. Since the basic cues for tissue engineering may be derived from endogenous models, investigators are learning how to imitate nature. Endogenous models may provide the biologic blueprints for tissue restoration, but there is still much to learn. Interdisciplinary barriers must be overcome to create composite, vascularized, patient-specific tissue constructs for replacement and repair. Although multistep, multicomponent tissue fabrication requires an amalgamation of ideas, the following review is limited to the new directions in bioabsorbable technology. The review highlights novel bioabsorbable design and therapeutic (gene, protein, and cell-based) strategies that are currently being developed to solve common spinal problems.
Collapse
Affiliation(s)
- Stephen M Warren
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Mass, USA
| | | | | | | | | |
Collapse
|
368
|
Abstract
Bone is a dynamic tissue that undergoes significant turnover during the life cycle of an individual. Despite having a significant regenerative capability, trauma and other pathological scenarios commonly require therapeutic intervention to facilitate the healing process. Bone tissue engineering, where cellular and biological processes at a site are deliberately manipulated for a therapeutic outcome, offers a viable option for the treatment of skeletal diseases. In this review paper, we aim to provide a brief synopsis of cellular and molecular basis of bone formation that are pertinent to current efforts of bone healing. Different approaches for engineering bone tissue were presented with special emphasis on the use of soluble (diffusible) therapeutic agents to accelerate bone healing. The latter agents have been used for both local bone repair (i.e. introduction of agents directly to a site of repair) as well as systemic bone regeneration (i.e. delivery for regeneration throughout the skeletal system). Critical drug delivery and targeting issues pertinent for each mode of bone regeneration are provided. In addition, future challenges and opportunities in bone tissue engineering are proposed from the authors' perspective.
Collapse
Affiliation(s)
- S A Gittens
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
369
|
Huang Q, Goh JCH, Hutmacher DW, Lee EH. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor beta1 and the potential for in situ chondrogenesis. TISSUE ENGINEERING 2002; 8:469-82. [PMID: 12167232 DOI: 10.1089/107632702760184727] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objectives of this study were (1) to develop a biphasic implant made of a bioresorbable polymeric scaffold in combination with TGF-beta1-loaded fibrin glue for tissue-engineering applications, and (2) to determine whether the implant made of a polycaprolactone (PCL) scaffold and TGF-beta1-loaded fibrin glue could recruit mesenchymal cells and induce the process of cartilage formation when implanted in ectopic sites. Twenty-four 6-month-old New Zealand White rabbits were used. Scaffolds loaded with various doses of TGF-beta1 in fibrin glue were implanted subcutaneously, intramuscularly, and subperiosteally. The rabbits were killed and implants were removed at 2, 4, and 6 weeks postoperatively. The specimens were subjected to various staining techniques for histological analysis. Light microscopic examination of all specimens revealed that the entire pore space of the scaffolds was filled with various tissues in each group. The entire volume of the scaffolds in the groups loaded with TGF-beta1 and implanted intramuscularly and subcutaneously was populated with mesenchymal cells surrounded with an abundant extracellular matrix and blood vessels. The scaffold loaded with TGF-beta1 and implanted subperiosteally was found to be richly populated with chondrocytes at 2 and 4 weeks and immature bone formation was identified at 6 weeks. We conclude that scaffolds loaded with TGF-beta1 can successfully recruit mesenchymal cells and that chondrogenesis occurred when this construct was implanted subperiosteally.
Collapse
Affiliation(s)
- Q Huang
- Department of Orthopedic Surgery, National University Hospital, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | | | | | |
Collapse
|
370
|
Ikeuchi M, Dohi Y, Horiuchi K, Ohgushi H, Noshi T, Yoshikawa T, Yamamoto K, Sugimura M. Recombinant human bone morphogenetic protein-2 promotes osteogenesis within atelopeptide type I collagen solution by combination with rat cultured marrow cells. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 60:61-9. [PMID: 11835160 DOI: 10.1002/jbm.1281] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We evaluated the combination effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) and cultured rat bone marrow mesenchymal stem cells (MSCs) in atelopeptide type I collagen (AC) solution on osteogenesis in a diffusion chamber (DC) to develop a bone substitute having consistent osteogenic capability for clinical applications. The cultured MSCs were obtained by 10-day primary culture of fresh bone marrow cells of Fischer rats. We prepared three groups of DCs: AC solution with rhBMP-2, AC solution with cultured MSCs, and AC solution with rhBMP-2 and cultured MSCs. The prepared combined solutions were injected into DCs, which were subcutaneously implanted into the backs of syngeneic rats. DCs were harvested after 2, 4, or 8 weeks and analyzed for bone-forming capability by determining histological and osteoblastic biochemical markers. De novo bone formation was observed both inside and outside of the membrane filter of DCs in the group of AC solution with rhBMP-2 and cultured MSCs. The alkaline phosphatase activity and osteocalcin content in the group of AC solution with rhBMP-2 and cultured MSCs were significantly higher than those in the group of AC solution with cultured MSCs at any time. These findings indicate that AC aqueous solution is a useful material not only as a carrier of rhBMP-2 but also as a cell-anchorage for differentiation and proliferation of MSCs. Therefore, this study suggests that clinical repairs of bone defects are feasible using injectable AC solution with rhBMP-2 and cultured MSCs as a bone substitute.
Collapse
Affiliation(s)
- Masako Ikeuchi
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
371
|
Murphy WL, Mooney DJ. Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. J Am Chem Soc 2002; 124:1910-7. [PMID: 11866603 DOI: 10.1021/ja012433n] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mineralization in biological systems is a widespread, yet incompletely understood phenomenon involving complex interactions at the biomacromolecule-mineral nucleus interface. This study was aimed at understanding and controlling mineral formation in a poly(alpha-hydroxy ester) model system, to gain insight into biological mineralization processes and to develop biomaterials for orthopaedic tissue regeneration. We specifically hypothesized that providing a high surface density of anionic functional groups would enhance nucleation and growth of bonelike mineral following exposure to simulated body fluids (SBF). Polymer surface functionalization was achieved via hydrolysis of 85:15 poly(lactide-co-glycolide) (PLG) films. This treatment led to an increase in surface carboxylic acid and hydroxyl groups, resulting in a substantial increase in polymer surface energy from 42 to 49 dynes/cm2. Treated polymers exhibited a 3-fold increase in heterogeneous mineral grown and growth of a continuous mineral film on the polymer surface. The mineral grown on PLG surfaces is a carbonate apatite, the major mineral component of vertebrate bone tissue. Mineral crystal size and morphology were dependent on the solution characteristics but unaffected by the degree of surface prehydrolysis. The mechanism of heterogeneous carbonate apatite growth was examined via ion binding assays, which indicated that calcium binding is mediated independently by the presence of soluble phosphate counterions and surface functional groups. These findings indicate that poly(alpha-hydroxy ester) materials can be readily mineralized using a biomimetic process, and that the impetus for mineral nucleation in this system appears more complicated than the simple electrostatic interactions proposed in previous biomineralization theory.
Collapse
Affiliation(s)
- William L Murphy
- Department of Biomedical Engineering, Biologic and Materials Sciences, and Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-1078, USA.
| | | |
Collapse
|
372
|
Warren SM, Fong KD, Nacamuli RP, Song HM, Fang TD, Longaker MT. Biomaterials for skin and bone replacement and repair in plastic surgery. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1071-0949(03)90003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
373
|
Abstract
Bone is formed by a series of complex events involving the mineralization of extracellular matrix proteins rigidly orchestrated by cells with specific functions of maintaining the integrity of the bone. Bone, similar to other calcified tissues, is an intimate composite of the organic (collagen and noncollagenous proteins) and inorganic or mineral phases. The bone mineral idealized as calcium hydroxyapatite, Ca10 (PO4)(6)(OH)2, is a carbonatehydroxyapatite, approximated by the formula: (Ca,X)(10)(PO4,HPO4,CO3)(6)(OH,Y)2, where X are cations (magnesium, sodium, strontium ions) that can substitute for the calcium ions, and Y are anions (chloride or fluoride ions) that can substitute for the hydroxyl group. The current author presents a brief review of CaP biomaterials that now are used as grafts for bone repair, augmentation, or substitution. Commercially-available CaP biomaterials differ in origin (natural or synthetic), composition (hydroxyapatite, beta-tricalcium phosphate, and biphasic CaP), or physical forms (particulates, blocks, cements, coatings on metal implants, composites with polymers), and in physicochemical properties. CaP biomaterials have outstanding properties: similarity in composition to bone mineral; bioactivity (ability to form bone apatitelike material or carbonate hydroxyapatite on their surfaces), ability to promote cellular function and expression leading to formation of a uniquely strong bone-CaP biomaterial interface; and osteoconductivity (ability to provide the appropriate scaffold or template for bone formation). In addition, CaP biomaterials with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive (capable of osteogenesis), and can be effective carriers of bone cell seeds. Therefore, CaP biomaterials potentially are useful in tissue engineering for regeneration of hard tissues.
Collapse
Affiliation(s)
- Racquel Zapanta LeGeros
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York 10010, USA
| |
Collapse
|
374
|
Schliephake H, Knebel JW, Aufderheide M, Tauscher M. Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: an experimental pilot study in sheep. Int J Oral Maxillofac Surg 2001; 30:531-7. [PMID: 11829236 DOI: 10.1054/ijom.2001.0164] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hypothesis of the present experimental pilot study was that autogeneous cultivated osteoprogenitor cells in porous calcium phosphate scaffolds can increase bone formation in segmental defects of the mandible. The autogenous osteoprogenitor cells of eight sheep were cultivated from bone biopsies from the iliac crest and seeded into cylindrical scaffolds of pyrolized bovine bone of an overall length of 35 mm and 13 mm in diameter. Segmental defects of 35 mm length were created unilaterally in the mandibles of the animals. Reconstruction was performed using cylinders with cultivated osteoprogenitor cells in four animals and empty scaffolds in the remaining four sheep, which served as controls. After 5 months, the mandibles were retrieved and the reconstructed areas were analyzed by qualitative and quantitative histology in serial undecalcified thick-section specimens. There was significantly more bone formation in the group that had received scaffolds with cultivated bone cells (P=0.028). Bone formation was present in 34.4% of the evaluated cross-sectional units in the seeded scaffolds, while it was found in 10.4% in the control group. Although the spatial distribution of bone formation was significantly different across the scaffold in both groups, osteoprogenitor cells appeared to have increased bone formation, particularly in the centre of the defect when compared to the control group. It is concluded that the repair of segmental defects of the mandible can be enhanced by the transplantation of autogenous osteoprogenitor cells in a porous calcium phosphate scaffold.
Collapse
Affiliation(s)
- H Schliephake
- Department of Oral and Maxillofacial Surgery, Georg-August University Goettingen, Germany.
| | | | | | | |
Collapse
|
375
|
Miralles G, Baudoin R, Dumas D, Baptiste D, Hubert P, Stoltz JF, Dellacherie E, Mainard D, Netter P, Payan E. Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 57:268-78. [PMID: 11484190 DOI: 10.1002/1097-4636(200111)57:2<268::aid-jbm1167>3.0.co;2-l] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies are underway to design biosystems containing embedded chondrocytes to fill osteochondral defects and to produce a tissue close to native cartilage. In the present report, a new alginate three-dimensional support for chondrocyte culture is described. A sodium alginate solution, with or without hyaluronic acid (HA), was freeze-dried to obtain large-porosity sponges. This formulation was compared with a hydrogel of the same composition. In the sponge formulation, macroscopic and microscopic studies demonstrated the formation of a macroporous network (average pore size, 174 microm) associated with a microporous one (average pore size, 250 nm). Histological and biochemical studies showed that, when loaded with HA, the sponge provides an adapted environment for proteoglycan and collagen synthesis by chondrocytes. Cytoskeleton organization was studied by three-dimensional fluorescence microscopy (CellScan EPR). Chondrocytes exhibit a marked spherical shape with a nonoriented and sparse actin microfilament network. Type II collagen was detected in both types of sponges (with or without HA) using immunohistochemistry. In conclusion, the sponge formulation affords new perspectives with respect to the in vitro production of "artificial" cartilage. Furthermore, the presence of hyaluronate within the alginate sponge mimics a functional environment, suitable for the production by embedded chondrocytes of an extracellular matrix.
Collapse
Affiliation(s)
- G Miralles
- Laboratoire de Physiopathologie et Pharmacologie Articulaires, UMR 7561 CNRS-UHP, Faculté de Médecine, BP 184, 54505, Vandoeuvre lès Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Abstract
The potential energy surfaces associated with [Ca3(PO4)2n clusters are analyzed in detail using ab initio calculations for n ranging from one to four. Considering separated clusters, energy criteria favor the so-called Posner's cluster Ca9(PO4)6, which is the core of the actual structural model of amorphous calcium phosphate. This is rationalized through the existence of a distinct CaO bonding pattern in this cluster. Considering aggregated clusters as a possible model for amorphous calcium phosphate, the aggregation of Ca3(PO4)2 clusters appears as an alternative to Posner's hypothesis.
Collapse
Affiliation(s)
- N Kanzaki
- School of Science and Engineering Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
377
|
Hall FL, Han B, Kundu RK, Yee A, Nimni ME, Gordon EM. Phenotypic differentiation of TGF-beta1-responsive pluripotent premesenchymal prehematopoietic progenitor (P4 stem) cells from murine bone marrow. ACTA ACUST UNITED AC 2001; 10:261-71. [PMID: 11359673 DOI: 10.1089/15258160151134962] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
On the horizon of modern molecular medicine is the requisite technology to capture multipotent human stem cells that are capable of self-renewal and to direct these stem cells along defined lineages for therapeutic purposes. In this article, we describe the hematopoietic and mesenchymal differentiation potential of a unique population of transforming growth factor-beta1 (TGF-beta1)-responsive stem cells derived from murine bone marrow. Stringent selection of the stem cells was accomplished under low serum conditions by virtue of an inherent survival response to a TGF-beta1-vWF fusion protein that was bound to collagen matrices. The TGF-beta1-responsive stem cells initially exhibited a non-adherent and uniformly blastoid morphology, underwent expansion into colonies upon serum reconstitution, and were capable of overt cytodifferentiation along fibrogenic, osteogenic, chondrogenic, or adipogenic lineages upon growth factor stimulation. Remarkably, these stem cells also underwent rapid expansion in the presence of either hematopoietic stem cell factor (SCF) or interleukin3 (IL-3), and differentiated into myeloid and lymphoid phenotypes upon exposure to the latter. Taken together, these results support the hypothesis that pluripotent premesenchymal prehematopoietic progenitor cells, designated P4 stem cells, are present postnatally in murine bone marrow and, thus, may be summarily isolated for various cell-based experimental therapies.
Collapse
Affiliation(s)
- F L Hall
- Gene Therapy Laboratories, Los Angeles, CA 90089-9025, USA
| | | | | | | | | | | |
Collapse
|
378
|
Blum JS, Li RH, Mikos AG, Barry MA. An optimized method for the chemiluminescent detection of alkaline phosphatase levels during osteodifferentiation by bone morphogenetic protein 2. J Cell Biochem 2001; 80:532-7. [PMID: 11169737 DOI: 10.1002/1097-4644(20010315)80:4<532::aid-jcb1007>3.0.co;2-b] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Differentiation of osteoprogenitor cells into osteoblasts is a pivotal step during the normal development and repair of bone. Upregulation of endogenous cellular alkaline phosphatase activity (AP) is a commonly used intracellular marker for the assessment of osteoprogenitor cell differentiation into the osteoblastic phenotype. Current methods for assaying AP involve colorimetric detection of the enzyme's activity using the synthetic substrate p-nitrophenol phosphate. In this paper, we explored an alternative method of detecting AP using the chemiluminescent substrate disodium 3-(4-methoxyspiro[1,2-dioxetane-3,2'-(5'-chloro)tricyclo[3.3.1.1(3,7)]decan]-4-yl) phenyl phosphate (CSPD) for enhanced AP sensitivity and a more simplified assay. Using calf intestinal alkaline phosphatase as a standardizing enzyme, we determined that the chemiluminescent detection system was four orders of magnitude more sensitive than the standard colorimetric method of detection. Moreover, the chemiluminescent assay was faster and markedly simpler to perform. To maximize the utility of this assay system, two osteoprogenitor cell lines were compared for their ability to generate alkaline phosphatases in vitro when exposed to recombinant human bone morphogenetic protein (rhBMP-2). The W20-17 cell line was substantially more sensitive to rhBMP-2 than the C3H10T1/2 cell line, where each cell line produced detectable increases in AP after exposure to rhBMP-2 levels of 5 and 25 ng/ml, respectively. The experimental design for AP responsiveness to rhBMP-2 was further optimized for chemiluminescent detection with the W20-17 cell line by comparing the effects of reporter cell seeding density and the day of assay. In summary, the data presented in this paper demonstrate a faster, simpler, and more sensitive chemiluminescent method to monitor changes in AP levels during osteodifferentiation.
Collapse
Affiliation(s)
- J S Blum
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
379
|
Blum JS, Li RH, Mikos AG, Barry MA. An optimized method for the chemiluminescent detection of alkaline phosphatase levels during osteodifferentiation by bone morphogenetic protein 2. J Cell Biochem 2001. [DOI: 10.1002/1097-4644(20010315)80:4%3c532::aid-jcb1007%3e3.0.co;2-b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
380
|
Abstract
Tissue engineering is an interdisciplinary field that will yield new sources of tissue for clinical and research purposes in oncology. Bone is under intense investigation by this field. Relevant areas of progress are in advanced computing, biomaterials, cell technology, growth factor fabrication and delivery, and gene manipulation. Clinical techniques will emerge from continued investigation in each of these areas. Techniques that are developed must be scaled up to industry with products cleared by regulatory agencies and acceptable to clinicians and patients. The goals of tissue engineering in oncology are improved tissue models for basic cancer research and a change in clinical practice. Semin. Surg. Oncol. 19:294-301, 2000.
Collapse
Affiliation(s)
- M J Miller
- Department of Plastic Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|