351
|
Chiang HS, Zhao Y, Song JH, Liu S, Wang N, Terhorst C, Sharpe AH, Basavappa M, Jeffrey KL, Reinecker HC. GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nat Immunol 2013; 15:63-71. [PMID: 24270516 PMCID: PMC4066330 DOI: 10.1038/ni.2766] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/08/2013] [Indexed: 12/15/2022]
Abstract
Detailed understanding of the signaling intermediates that confer the sensing of intracellular viral nucleic acids for induction of type I interferons is critical for strategies to curtail viral mechanisms that impede innate immune defenses. Here we show that the activation of the microtubule-associated guanine nucleotide exchange factor GEF-H1, encoded by Arhgef2, is essential for sensing of foreign RNA by RIG-I-like receptors. Activation of GEF-H1 controls RIG-I and Mda5-dependent phosphorylation of IRF3 and induction of interferon-β expression in macrophages. Generation of Arhgef2−/− mice revealed a pronounced signaling defect that prevented antiviral host responses to encephalomyocarditis virus and influenza A virus. Microtubule networks sequester GEF-H1 that upon activation is released to enable antiviral signaling by intracellular nucleic acid detection pathways.
Collapse
Affiliation(s)
- Hao-Sen Chiang
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Yun Zhao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Joo-Hye Song
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Song Liu
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center and Center for the Study of Inflammatory Bowel Disease, Harvard Medical School
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center and Center for the Study of Inflammatory Bowel Disease, Harvard Medical School
| | - Arlene H Sharpe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Megha Basavappa
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Kate L Jeffrey
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
352
|
Park SJ, Lee EH, Choi EH, Pascua PNQ, Kwon HI, Kim EH, Lim GJ, Decano A, Kim SM, Choi YK. Avian-derived NS gene segments alter pathogenicity of the A/Puerto Rico/8/34 virus. Virus Res 2013; 179:64-72. [PMID: 24269912 DOI: 10.1016/j.virusres.2013.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 02/02/2023]
Abstract
While the effect of the influenza A virus non-structural protein (NS) on cytokine production during viral infection is well known, inconsistent results have been observed with some other influenza A virus backbone studied. In this study, in order to focus on the impact of the avian NS gene segments on viral virulence, the NS genes encoded by different strains of avian influenza A viruses were incorporated into an identical [A/Puerto Rico/8/1934(H1N1), PR8] virus background to generate various NS recombinant viruses. Thus, PR8NS, PR8×[A/Hong Kong/483/97(H5N1) 483NS, PR8×[A/Ck/Korea/150/03(H9N2) 150NS, and PR8×[A/EM/Korea/W149/06(H5N1) W149NS were constructed utilizing reverse genetics. Here, we show the effects of each of these recombinant viruses upon viral pathogenesis and cytokine production during viral replication in vivo. In this regard, we found that infection of mice with the PR8×150NS recombinant virus resulted in the lowest pathogenicity (6.0×10(4)MLD50), yet elicited the highest levels of TNF-α production in bronchoalveolar lavage (BAL) fluid compared to infection with the other recombinant influenza viruses. In contrast, infection with the PR8 virus showed the highest pathogenicity (1.0×10(2)MLD50) as well as relatively high cytokine levels (IL-1α, IL-1β, IL-17, and eotaxin) in mouse BAL fluid. In addition, the PR8 and PR8×483NS viruses induced severe and extensive inflammation in infected lungs compared with that of PR8×150 NS recombinant virus-infected mice. These results clearly demonstrate that the NS genes of diverse influenza A strains can variable impact pathogenicity, histopathology, and cytokine production in mice even when expressed in an identical genetic background.
Collapse
Affiliation(s)
- Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Eun Ho Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Eun Hye Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Philippe Noriel Q Pascua
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Hyeok-Il Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Gyo-Jin Lim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Arun Decano
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Se Mi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea.
| |
Collapse
|
353
|
Highly pathological influenza A virus infection is associated with augmented expression of PD-1 by functionally compromised virus-specific CD8+ T cells. J Virol 2013; 88:1636-51. [PMID: 24257598 DOI: 10.1128/jvi.02851-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One question that continues to challenge influenza A research is why some strains of virus are so devastating compared to their more mild counterparts. We approached this question from an immunological perspective, investigating the CD8(+) T cell response in a mouse model system comparing high- and low-pathological influenza virus infections. Our findings reveal that the early (day 0 to 5) viral titer was not the determining factor in the outcome of disease. Instead, increased numbers of antigen-specific CD8(+) T cells and elevated effector function on a per-cell basis were found in the low-pathological infection and correlated with reduced illness and later-time-point (day 6 to 10) viral titer. High-pathological infection was associated with increased PD-1 expression on influenza virus-specific CD8(+) T cells, and blockade of PD-L1 in vivo led to reduced virus titers and increased CD8(+) T cell numbers in high- but not low-pathological infection, though T cell functionality was not restored. These data show that high-pathological acute influenza virus infection is associated with a dysregulated CD8(+) T cell response, which is likely caused by the more highly inflamed airway microenvironment during the early days of infection. Therapeutic approaches specifically aimed at modulating innate airway inflammation may therefore promote efficient CD8(+) T cell activity. We show that during a severe influenza virus infection, one type of immune cell, the CD8 T cell, is less abundant and less functional than in a more mild infection. This dysregulated T cell phenotype correlates with a lower rate of virus clearance in the severe infection and is partially regulated by the expression of a suppressive coreceptor called PD-1. Treatment with an antibody that blocks PD-1 improves T cell functionality and increases virus clearance.
Collapse
|
354
|
Inosine-mediated modulation of RNA sensing by Toll-like receptor 7 (TLR7) and TLR8. J Virol 2013; 88:799-810. [PMID: 24227841 DOI: 10.1128/jvi.01571-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA-specific adenosine deaminase (ADAR)-mediated adenosine-to-inosine (A-to-I) editing is a critical arm of the antiviral response. However, mechanistic insights into how A-to-I RNA editing affects viral infection are lacking. We posited that inosine incorporation into RNA facilitates sensing of nonself RNA by innate immune sensors and accordingly investigated the impact of inosine-modified RNA on Toll-like receptor 7 and 8 (TLR7/8) sensing. Inosine incorporation into synthetic single-stranded RNA (ssRNA) potentiated tumor necrosis factor alpha (TNF-α) or alpha interferon (IFN-α) production in human peripheral blood mononuclear cells (PBMCs) in a sequence-dependent manner, indicative of TLR7/8 recruitment. The effect of inosine incorporation on TLR7/8 sensing was restricted to immunostimulatory ssRNAs and was not seen with inosine-containing short double-stranded RNAs or with a deoxy-inosine-modified ssRNA. Inosine-mediated increase of self-secondary structure of an ssRNA resulted in potentiated IFN-α production in human PBMCs through TLR7 recruitment, as established through the use of a TLR7 antagonist and Tlr7-deficient cells. There was a correlation between hyperediting of influenza A viral ssRNA and its ability to stimulate TNF-α, independent of 5'-triphosphate residues, and involving Adar-1. Furthermore, A-to-I editing of viral ssRNA directly enhanced mouse Tlr7 sensing, when present in proportions reproducing biologically relevant levels of RNA editing. Thus, we demonstrate for the first time that inosine incorporation into immunostimulatory ssRNA can potentiate TLR7/8 activation. Our results suggest a novel function of A-to-I RNA editing, which is to facilitate TLR7/8 sensing of phagocytosed viral RNA.
Collapse
|
355
|
Kuznetsova I, Shurygina AP, Wolf B, Wolschek M, Enzmann F, Sansyzbay A, Khairullin B, Sandybayev N, Stukova M, Kiselev O, Egorov A, Bergmann M. Adaptive mutation in nuclear export protein allows stable transgene expression in a chimaeric influenza A virus vector. J Gen Virol 2013; 95:337-349. [PMID: 24222196 DOI: 10.1099/vir.0.056036-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of influenza virus vectors with long insertions of foreign sequences remains difficult due to the small size and instable nature of the virus. Here, we used the influenza virus inherent property of self-optimization to generate a vector stably expressing long transgenes from the NS1 protein ORF. This was achieved by continuous selection of bright fluorescent plaques of a GFP-expressing vector during multiple passages in mouse B16f1 cells. The newly generated vector acquired stability in IFN-competent cell lines and in vivo in murine lungs. Although improved vector fitness was associated with the appearance of four coding mutations in the polymerase (PB2), haemagglutinin and non-structural (NS) segments, the stability of the transgene expression was dependent primarily on the single mutation Q20R in the nuclear export protein (NEP). Importantly, a longer insert, such as a cassette of 1299 nt encoding two Mycobacterium tuberculosis Esat6 and Ag85A proteins, could substitute for the GFP transgene. Thus, the inherent property of the influenza virus to adapt can also be used to adjust a vector backbone to give stable expression of long transgenes.
Collapse
Affiliation(s)
- Irina Kuznetsova
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Anna-Polina Shurygina
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Brigitte Wolf
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Markus Wolschek
- Avir Green Hills Biotechnology AG, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Florian Enzmann
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Abylay Sansyzbay
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Berik Khairullin
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Nurlan Sandybayev
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Marina Stukova
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Oleg Kiselev
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Andrej Egorov
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Michael Bergmann
- Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
356
|
Zinzula L, Tramontano E. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral Res 2013; 100:615-35. [PMID: 24129118 PMCID: PMC7113674 DOI: 10.1016/j.antiviral.2013.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 12/24/2022]
Abstract
dsRNA species are byproducts of RNA virus replication and/or transcription. Prompt detection of dsRNA by RIG-I like receptors (RLRs) is a hallmark of the innate immune response. RLRs activation triggers production of the type I interferon (IFN)-based antiviral response. Highly pathogenic RNA viruses encode proteins that block the RLRs pathway. Hide, mask and hit are 3 strategies of RNA viruses to avoid immune system activation.
Double-stranded RNA (dsRNA) is synthesized during the course of infection by RNA viruses as a byproduct of replication and transcription and acts as a potent trigger of the host innate antiviral response. In the cytoplasm of the infected cell, recognition of the presence of viral dsRNA as a signature of “non-self” nucleic acid is carried out by RIG-I-like receptors (RLRs), a set of dedicated helicases whose activation leads to the production of type I interferon α/β (IFN-α/β). To overcome the innate antiviral response, RNA viruses encode suppressors of IFN-α/β induction, which block RLRs recognition of dsRNA by means of different mechanisms that can be categorized into: (i) dsRNA binding and/or shielding (“hide”), (ii) dsRNA termini processing (“mask”) and (iii) direct interaction with components of the RLRs pathway (“hit”). In light of recent functional, biochemical and structural findings, we review the inhibition mechanisms of RLRs recognition of dsRNA displayed by a number of highly pathogenic RNA viruses with different disease phenotypes such as haemorrhagic fever (Ebola, Marburg, Lassa fever, Lujo, Machupo, Junin, Guanarito, Crimean-Congo, Rift Valley fever, dengue), severe respiratory disease (influenza, SARS, Hendra, Hantaan, Sin Nombre, Andes) and encephalitis (Nipah, West Nile).
Collapse
Affiliation(s)
- Luca Zinzula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato, SS554, 09042 Monserrato (Cagliari), Italy.
| | | |
Collapse
|
357
|
Mammals chop up viral RNA to attack infection. Nature 2013. [DOI: 10.1038/nature.2013.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
358
|
Determinants of virulence of influenza A virus. Eur J Clin Microbiol Infect Dis 2013; 33:479-90. [PMID: 24078062 DOI: 10.1007/s10096-013-1984-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 01/08/2023]
Abstract
Influenza A viruses cause yearly seasonal epidemics and occasional global pandemics in humans. In the last century, four human influenza A virus pandemics have occurred. Occasionally, influenza A viruses that circulate in other species cross the species barrier and infect humans. Virus reassortment (i.e. mixing of gene segments of multiple viruses) and the accumulation of mutations contribute to the emergence of new influenza A virus variants. Fortunately, most of these variants do not have the ability to spread among humans and subsequently cause a pandemic. In this review, we focus on the threat of animal influenza A viruses which have shown the ability to infect humans. In addition, genetic factors which could alter the virulence of influenza A viruses are discussed. The identification and characterisation of these factors may provide insights into genetic traits which change virulence and help us to understand which genetic determinants are of importance for the pandemic potential of animal influenza A viruses.
Collapse
|
359
|
Woo HM, Kim KS, Lee JM, Shim HS, Cho SJ, Lee WK, Ko HW, Keum YS, Kim SY, Pathinayake P, Kim CJ, Jeong YJ. Single-stranded DNA aptamer that specifically binds to the influenza virus NS1 protein suppresses interferon antagonism. Antiviral Res 2013; 100:337-45. [PMID: 24055449 DOI: 10.1016/j.antiviral.2013.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 12/24/2022]
Abstract
Non-structural protein 1 (NS1) of the influenza A virus (IAV) inhibits the host's innate immune response by suppressing the induction of interferons (IFNs). Therefore, blocking NS1 activity can be a potential strategy in the development of antiviral agents against IAV infection. In the present study, we selected a single-stranded DNA aptamer specific to the IAV NS1 protein after 15 cycles of systematic evolution of ligands by exponential enrichment (SELEX) procedure and examined the ability of the selected aptamer to inhibit the function of NS1. The selected aptamer binds to NS1 with a Kd of 18.91±3.95nM and RNA binding domain of NS1 is determined to be critical for the aptamer binding. The aptamer has a G-rich sequence in the random sequence region and forms a G-quadruplex structure. The localization of the aptamer bound to NS1 in cells was determined by confocal images, and flow cytometry analysis further demonstrated that the selected aptamer binds specifically to NS1. In addition, luciferase reporter gene assay, quantitative RT-PCR, and enzyme-linked immunosorbent assay (ELISA) experiments demonstrated that the selected aptamer had the ability to induce IFN-β by suppressing the function of NS1. Importantly, we also found that the selected aptamer was able to inhibit the viral replication without affecting cell viability. These results indicate that the selected ssDNA aptamer has strong potential to be further developed as a therapeutic agent against IAV.
Collapse
Affiliation(s)
- Hye-Min Woo
- Department of Bio and Nanochemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Kaplan BS, Webby RJ. The avian and mammalian host range of highly pathogenic avian H5N1 influenza. Virus Res 2013; 178:3-11. [PMID: 24025480 DOI: 10.1016/j.virusres.2013.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/02/2013] [Indexed: 12/19/2022]
Abstract
Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range.
Collapse
Affiliation(s)
- Bryan S Kaplan
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | | |
Collapse
|
361
|
Survey on ELISA Based on anti Influenza A NS1 Antibodies to Differentiate the Infected and Vaccinated Poultries. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
362
|
Liedmann S, Hrincius ER, Anhlan D, McCullers JA, Ludwig S, Ehrhardt C. New virulence determinants contribute to the enhanced immune response and reduced virulence of an influenza A virus A/PR8/34 variant. J Infect Dis 2013; 209:532-41. [PMID: 23983213 DOI: 10.1093/infdis/jit463] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The identification of amino acid motifs responsible for increased virulence and/or transmission of influenza viruses is of enormous importance to predict pathogenicity of upcoming influenza strains. We phenotypically and genotypically compared 2 variants of influenza virus A/PR/8/34 with different passage histories. The analysis revealed differences in virulence due to an altered type I interferon (IFN) induction, as evidenced by experiments using IFNAR(-/-) mice. Interestingly, these differences were not due to altered functions of the well-known viral IFN antagonists NS1 or PB1-F2. Using reassortant viruses, we showed that differences in the polymerase proteins and nucleoprotein determined the altered virulence. In particular, changes in PB1 and PA contributed to an altered host type I IFN response, indicating IFN antagonistic properties of these proteins. Thus, PB1 and PA appear to harbor previously unknown virulence markers, which may prove helpful in assessing the risk potential of emerging influenza viruses.
Collapse
Affiliation(s)
- Swantje Liedmann
- Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster, Germany
| | | | | | | | | | | |
Collapse
|
363
|
Emergence of a C-terminal seven-amino-acid elongation of NS1 in around 1950 conferred a minor growth advantage to former seasonal influenza A viruses. J Virol 2013; 87:11300-3. [PMID: 23926347 DOI: 10.1128/jvi.01271-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A viruses circulating in humans from ∼1950 to ∼1987 featured a nonstructural (NS1) protein with a C-terminal extension of seven amino acids. The biological significance of this NS1 elongation remained elusive. We observed that replication kinetics of the wild-type virus A/Hong Kong/01/68 (H3N2) and a mutant encoding a truncated NS1 were indistinguishable in most experimental systems. However, wild-type virus outcompeted the mutant during mixed infections, suggesting that the NS1 extension conferred minor growth advantages.
Collapse
|
364
|
Abstract
After the outbreak of the swine-origin influenza A H1N1 virus in April 2009, World Health Organization declared this novel H1N1 virus as the first pandemic influenza virus (2009 pH1N1) of the 21st century. To elucidate the characteristics of 2009 pH1N1, the growth properties of A/Korea/01/09 (K/09) was analyzed in cells. Interestingly, the maximal titer of K/09 was higher than that of a seasonal H1N1 virus isolated in Korea 2008 (S/08) though the RNP complex of K/09 was less competent than that of S/08. In addition, the NS1 protein of K/09 was determined as a weak interferon antagonist as compared to that of S/08. Thus, in order to confine genetic determinants of K/09, activities of two major surface glycoproteins were analyzed. Interestingly, K/09 possesses highly reactive NA proteins and weak HA cell-binding avidity. These findings suggest that the surface glycoproteins might be a key factor in the features of 2009 pH1N1.
Collapse
Affiliation(s)
- Jin Il Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | | | | | | |
Collapse
|
365
|
Lubaki NM, Ilinykh P, Pietzsch C, Tigabu B, Freiberg AN, Koup RA, Bukreyev A. The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains. J Virol 2013; 87:7471-7485. [PMID: 23616668 PMCID: PMC3700277 DOI: 10.1128/jvi.03316-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/17/2013] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) infections are characterized by deficient T lymphocyte responses, T lymphocyte apoptosis, and lymphopenia in the absence of direct infection of T lymphocytes. In contrast, dendritic cells (DC) are infected but fail to mature appropriately, thereby impairing the T cell response. We investigated the contributions of EBOV proteins in modulating DC maturation by generating recombinant viruses expressing enhanced green fluorescent protein and carrying mutations affecting several potentially immunomodulating domains. They included envelope glycoprotein (GP) domains, as well as innate response antagonist domains (IRADs) previously identified in the VP24 and VP35 proteins. GP expressed by an unrelated vector, but not the wild-type EBOV, was found to strongly induce DC maturation, and infections with recombinant EBOV carrying mutations disabling GP functional domains did not restore DC maturation. In contrast, each of the viruses carrying mutations disabling any IRAD in VP35 induced a dramatic upregulation of DC maturation markers. This was dependent on infection, but not interaction with GP. Disabling of IRADs also resulted in up to a several hundredfold increase in secretion of cytokines and chemokines. Furthermore, these mutations induced formation of homotypic DC clusters, which represent close correlates of their maturation and presumably facilitate transfer of antigen from migratory DC to lymph node DC. Thus, an individual IRAD is insufficient to suppress DC maturation; rather, the suppression of DC maturation and the "immune paralysis" observed during EBOV infections results from a cooperative effect of two or more individual IRADs.
Collapse
Affiliation(s)
- Ndongala M. Lubaki
- Departments of Pathology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Philipp Ilinykh
- Departments of Pathology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Colette Pietzsch
- Departments of Pathology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bersabeh Tigabu
- Departments of Pathology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander N. Freiberg
- Departments of Pathology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Bukreyev
- Departments of Pathology
- Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
366
|
Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing. PLoS Pathog 2013; 9:e1003460. [PMID: 23825951 PMCID: PMC3694860 DOI: 10.1371/journal.ppat.1003460] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/12/2013] [Indexed: 01/19/2023] Open
Abstract
Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression. Influenza A virus is a major human pathogen, which causes approximately 500,000 deaths/year worldwide. In pandemic years, influenza infection can lead to even higher mortality rates, as in 1918, when ∼30–50 million deaths occurred worldwide. In this manuscript, we identified a novel function for the cellular protein termed NS1-BP as a regulator of the influenza A virus life cycle. We found that NS1-BP, together with other host factors, mediates the expression of a key viral protein termed M2. NS1-BP and its interacting partner hnRNP K specifically regulate alternative splicing of the viral M1 mRNA segment, which generates the M2 mRNA that is translated into the essential viral M2 protein. The M2 protein is key for viral uncoating and entry into the host cell cytoplasm. Altogether, inhibition of NS1-BP and hnRNP K functions regulate influenza A virus gene expression and replication. In sum, these studies revealed new functions for the cellular proteins NS1-BP and hnRNP K during viral RNA expression, which facilitate the influenza A virus life cycle.
Collapse
|
367
|
Isolation and genetic characterization of naturally NS-truncated H3N8 equine influenza virus in South Korea. Epidemiol Infect 2013; 142:759-66. [PMID: 23800580 DOI: 10.1017/s095026881300143x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Equine influenza virus (EIV) causes a highly contagious respiratory disease in equids, with confirmed outbreaks in Europe, America, North Africa, and Asia. Although China, Mongolia, and Japan have reported equine influenza outbreaks, Korea has not. Since 2011, we have conducted a routine surveillance programme to detect EIV at domestic stud farms, and isolated H3N8 EIV from horses showing respiratory disease symptoms. Here, we characterized the genetic and biological properties of this novel Korean H3N8 EIV isolate. This H3N8 EIV isolate belongs to the Florida sublineage clade 1 of the American H3N8 EIV lineage, and surprisingly, possessed a non-structural protein (NS) gene segment, where 23 bases of the NS1-encoding region were naturally truncated. Our preliminary biological data indicated that this truncation did not affect virus replication; its effect on biological and immunological properties of the virus will require further study.
Collapse
|
368
|
Engel DA. The influenza virus NS1 protein as a therapeutic target. Antiviral Res 2013; 99:409-16. [PMID: 23796981 DOI: 10.1016/j.antiviral.2013.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists.
Collapse
Affiliation(s)
- Daniel A Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
369
|
Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses. J Virol 2013; 87:9511-22. [PMID: 23785203 DOI: 10.1128/jvi.03248-12] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In response to stress, cells induce ribonucleoprotein aggregates, termed stress granules (SGs). SGs are transient loci containing translation-stalled mRNA, which is eventually degraded or recycled for translation. Infection of some viruses, including influenza A virus with a deletion of nonstructural protein 1 (IAVΔNS1), induces SG-like protein aggregates. Previously, we showed that IAVΔNS1-induced SGs are required for efficient induction of type I interferon (IFN). Here, we investigated SG formation by different viruses using green fluorescent protein (GFP)-tagged Ras-Gap SH3 domain binding protein 1 (GFP-G3BP1) as an SG probe. HeLa cells stably expressing GFP-G3BP1 were infected with different viruses, and GFP fluorescence was monitored live with time-lapse microscopy. SG formations by different viruses was classified into 4 different patterns: no SG formation, stable SG formation, transient SG formation, and alternate SG formation. We focused on encephalomyocarditis virus (EMCV) infection, which exhibited transient SG formation. We found that EMCV disrupts SGs by cleavage of G3BP1 at late stages of infection (>8 h) through a mechanism similar to that used by poliovirus. Expression of a G3BP1 mutant that is resistant to the cleavage conferred persistent formation of SGs as well as an enhanced induction of IFN and other cytokines at late stages of infection. Additionally, knockdown of endogenous G3BP1 blocked SG formation with an attenuated induction of IFN and potentiated viral replication. Taken together, our findings suggest a critical role of SGs as an antiviral platform and shed light on one of the mechanisms by which a virus interferes with host stress and subsequent antiviral responses.
Collapse
|
370
|
Ramanunninair M, Le J, Onodera S, Fulvini AA, Pokorny BA, Silverman J, Devis R, Arroyo JM, He Y, Boyne A, Bera J, Halpin R, Hine E, Spiro DJ, Bucher D. Molecular signature of high yield (growth) influenza a virus reassortants prepared as candidate vaccine seeds. PLoS One 2013; 8:e65955. [PMID: 23776579 PMCID: PMC3679156 DOI: 10.1371/journal.pone.0065955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Background Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt) viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8), to provide the high yield reassortant (HYR) viral ‘seeds’ for vaccine production. HYR must contain the hemagglutinin (HA) and neuraminidase (NA) genes of wt virus and one to six ‘internal’ genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo. Methodology The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2) and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry. Results Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s) except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA. Significance In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine ‘seed’ viruses.
Collapse
Affiliation(s)
- Manojkumar Ramanunninair
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Jianhua Le
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Shiroh Onodera
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Andrew A. Fulvini
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Barbara A. Pokorny
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Jeanmarie Silverman
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Rene Devis
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Jennifer M. Arroyo
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Yu He
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Alex Boyne
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jayati Bera
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rebecca Halpin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Erin Hine
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - David J. Spiro
- Influenza, SARS and Related Viral Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, NIAID/NIH/DHHS, Bethesda, Maryland, United States of America
| | - Doris Bucher
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
371
|
Nicholls JM. The battle between influenza and the innate immune response in the human respiratory tract. Infect Chemother 2013; 45:11-21. [PMID: 24265946 PMCID: PMC3780943 DOI: 10.3947/ic.2013.45.1.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Indexed: 12/23/2022] Open
Abstract
Influenza is a viral infection of the respiratory tract. Infection is normally confined to the upper respiratory tract but certain viral strains have evolved the ability to infect the lower respiratory tract, including the alveoli, leading to inflammation and a disease pattern of diffuse alveolar damage. Factors leading to this sequence of events are novel influenza strains, or strains that have viral proteins, in particular the NS1 protein that allow it to escape the innate immune system. There are three main barriers that prevent infection of pneumocytes - mucin, host defence lectins and cells such as macrophages. Viruses have developed strategies such as neuraminidase and glycosylation patterns that allow this evasion. Though there has been much investment in antiviral drugs, it is proposed that more attention should be directed towards developing or utilizing compounds that enhance the ability of the innate immune system to combat viral infection.
Collapse
Affiliation(s)
- John M Nicholls
- Department of Pathology, Hong Kong University, Hong Kong, Hong Kong
| |
Collapse
|
372
|
High yield production of influenza virus in Madin Darby canine kidney (MDCK) cells with stable knockdown of IRF7. PLoS One 2013; 8:e59892. [PMID: 23555825 PMCID: PMC3608535 DOI: 10.1371/journal.pone.0059892] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/22/2013] [Indexed: 11/23/2022] Open
Abstract
Influenza is a serious public health problem that causes a contagious respiratory disease. Vaccination is the most effective strategy to reduce transmission and prevent influenza. In recent years, cell-based vaccines have been developed with continuous cell lines such as Madin-Darby canine kidney (MDCK) and Vero. However, wild-type influenza and egg-based vaccine seed viruses will not grow efficiently in these cell lines. Therefore, improvement of virus growth is strongly required for development of vaccine seed viruses and cell-based influenza vaccine production. The aim of our research is to develop novel MDCK cells supporting highly efficient propagation of influenza virus in order to expand the capacity of vaccine production. In this study, we screened a human siRNA library that involves 78 target molecules relating to three major type I interferon (IFN) pathways to identify genes that when knocked down by siRNA lead to enhanced production of influenza virus A/Puerto Rico/8/1934 in A549 cells. The siRNAs targeting 23 candidate genes were selected to undergo a second screening pass in MDCK cells. We examined the effects of knockdown of target genes on the viral production using newly designed siRNAs based on sequence analyses. Knockdown of the expression of a canine gene corresponding to human IRF7 by siRNA increased the efficiency of viral production in MDCK cells through an unknown process that includes the mechanisms other than inhibition of IFN-α/β induction. Furthermore, the viral yield greatly increased in MDCK cells stably transduced with the lentiviral vector for expression of short hairpin RNA against IRF7 compared with that in control MDCK cells. Therefore, we propose that modified MDCK cells with lower expression level of IRF7 could be useful not only for increasing the capacity of vaccine production but also facilitating the process of seed virus isolation from clinical specimens for manufacturing of vaccines.
Collapse
|
373
|
Abstract
Viruses that replicate in the cytoplasm cannot access the host nuclear capping machinery. These viruses have evolved viral methyltransferase(s) to methylate N-7 and 2'-O cap of their RNA; alternatively, they "snatch" host mRNA cap to form the 5' end of viral RNA. The function of 2'-O methylation of viral RNA cap is to mimic cellular mRNA and to evade host innate immune restriction. A cytoplasmic virus defective in 2'-O methylation is replicative, but its viral RNA lacks 2'-O methylation and is recognized and eliminated by the host immune response. Such a mutant virus could be rationally designed as a live attenuated vaccine. Here, we use Japanese encephalitis virus (JEV), an important mosquito-borne flavivirus, to prove this novel vaccine concept. We show that JEV methyltransferase is responsible for both N-7 and 2'-O cap methylations as well as evasion of host innate immune response. Recombinant virus completely defective in 2'-O methylation was stable in cell culture after being passaged for >30 days. The mutant virus was attenuated in mice, elicited robust humoral and cellular immune responses, and retained the engineered mutation in vivo. A single dose of immunization induced full protection against lethal challenge with JEV strains in mice. Mechanistically, the attenuation phenotype was attributed to the enhanced sensitivity of the mutant virus to the antiviral effects of interferon and IFIT proteins. Collectively, the results demonstrate the feasibility of using 2'-O methylation-defective virus as a vaccine approach; this vaccine approach should be applicable to other flaviviruses and nonflaviviruses that encode their own viral 2'-O methyltransferases.
Collapse
|
374
|
Weber M, Gawanbacht A, Habjan M, Rang A, Borner C, Schmidt AM, Veitinger S, Jacob R, Devignot S, Kochs G, García-Sastre A, Weber F. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe 2013; 13:336-46. [PMID: 23498958 PMCID: PMC5515363 DOI: 10.1016/j.chom.2013.01.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/12/2012] [Accepted: 01/25/2013] [Indexed: 12/24/2022]
Abstract
Host defense to RNA viruses depends on rapid intracellular recognition of viral RNA by two cytoplasmic RNA helicases: RIG-I and MDA5. RNA transfection experiments indicate that RIG-I responds to naked double-stranded RNAs (dsRNAs) with a triphosphorylated 5' (5'ppp) terminus. However, the identity of the RIG-I stimulating viral structures in an authentic infection context remains unresolved. We show that incoming viral nucleocapsids containing a 5'ppp dsRNA "panhandle" structure trigger antiviral signaling that commences with RIG-I, is mediated through the adaptor protein MAVS, and terminates with transcription factor IRF-3. Independent of mammalian cofactors or viral polymerase activity, RIG-I bound to viral nucleocapsids, underwent a conformational switch, and homo-oligomerized. Enzymatic probing and superresolution microscopy suggest that RIG-I interacts with the panhandle structure of the viral nucleocapsids. These results define cytoplasmic entry of nucleocapsids as the proximal RIG-I-sensitive step during infection and establish viral nucleocapsids with a 5'ppp dsRNA panhandle as a RIG-I activator.
Collapse
Affiliation(s)
- Michaela Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Ali Gawanbacht
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
| | - Matthias Habjan
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
| | - Andreas Rang
- Institute of Virology, Helmut-Ruska-Haus, University Hospital Charité, Charité Campus Mitte, Berlin, Germany
| | - Christoph Borner
- Institute of Molecular Medicine, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Germany
| | - Anna Mareike Schmidt
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Germany
| | - Sophie Veitinger
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, Marburg, Germany
| | - Stéphanie Devignot
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Georg Kochs
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY-10029, USA
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY-10029, USA
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY-10029, USA
| | - Friedemann Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
375
|
Abstract
Interleukin-24 (IL-24), a member of the IL-10 cytokine family whose physiological function remains largely unknown, has been shown to induce apoptosis when expressed in an adenoviral background. It is yet little understood, why IL-24 alone induced apoptosis only in a limited number of tumor cell lines. Analyzing an influenza A virus vector expressing IL-24 for its oncolytic potential revealed enhanced pro-apoptotic activity of the chimeric virus compared with virus or IL-24 alone. Interestingly, IL-24-mediated enhancement of influenza-A-induced apoptosis did not require viral replication but critically depended on toll-like receptor 3 (TLR3) and caspase-8. Immunoprecipitation of TLR3 showed that infection by influenza A virus induced formation of a TLR3-associated signaling complex containing TRIF, RIP1, FADD, cFLIP and pro-caspase-8. Co-administration of IL-24 decreased the presence of cFLIP in the TLR3-associated complex, converting it into an atypical, TLR3-associated death-inducing signaling complex (TLR3 DISC) that induced apoptosis by enabling caspase-8 activation at this complex. The sensitizing effect of IL-24 on TLR3-induced apoptosis, mediated by influenza A virus or the TLR3-specific agonist poly(I:C), was also evident on tumor spheroids. In conclusion, rather than acting as an apoptosis inducer itself, IL-24 sensitizes cancer cells to TLR-mediated apoptosis by enabling the formation of an atypical DISC which, in the case of influenza A virus or poly(I:C), is associated with TLR3.
Collapse
|
376
|
Dobrovolny HM, Reddy MB, Kamal MA, Rayner CR, Beauchemin CAA. Assessing mathematical models of influenza infections using features of the immune response. PLoS One 2013; 8:e57088. [PMID: 23468916 PMCID: PMC3585335 DOI: 10.1371/journal.pone.0057088] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/17/2013] [Indexed: 01/14/2023] Open
Abstract
The role of the host immune response in determining the severity and duration of an influenza infection is still unclear. In order to identify severity factors and more accurately predict the course of an influenza infection within a human host, an understanding of the impact of host factors on the infection process is required. Despite the lack of sufficiently diverse experimental data describing the time course of the various immune response components, published mathematical models were constructed from limited human or animal data using various strategies and simplifying assumptions. To assess the validity of these models, we assemble previously published experimental data of the dynamics and role of cytotoxic T lymphocytes, antibodies, and interferon and determined qualitative key features of their effect that should be captured by mathematical models. We test these existing models by confronting them with experimental data and find that no single model agrees completely with the variety of influenza viral kinetics responses observed experimentally when various immune response components are suppressed. Our analysis highlights the strong and weak points of each mathematical model and highlights areas where additional experimental data could elucidate specific mechanisms, constrain model design, and complete our understanding of the immune response to influenza.
Collapse
Affiliation(s)
- Hana M. Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas, United States of America
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Micaela B. Reddy
- F. Hoffmann-La Roche Inc., Nutley, New Jersey, United States of America
| | - Mohamed A. Kamal
- F. Hoffmann-La Roche Inc., Nutley, New Jersey, United States of America
| | - Craig R. Rayner
- Roche Products Pty Ltd. and Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | | |
Collapse
|
377
|
Matthaei M, Budt M, Wolff T. Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells. PLoS One 2013; 8:e56659. [PMID: 23451066 PMCID: PMC3581526 DOI: 10.1371/journal.pone.0056659] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/14/2013] [Indexed: 12/24/2022] Open
Abstract
The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN-α/β barrier involve mutations in multiple H5N1 genes.
Collapse
Affiliation(s)
- Markus Matthaei
- Division of Influenza/Respiratory Viruses, Robert Koch-Institut, Berlin, Germany
| | - Matthias Budt
- Division of Influenza/Respiratory Viruses, Robert Koch-Institut, Berlin, Germany
| | - Thorsten Wolff
- Division of Influenza/Respiratory Viruses, Robert Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|
378
|
Synergistic effect of the PDZ and p85β-binding domains of the NS1 protein on virulence of an avian H5N1 influenza A virus. J Virol 2013; 87:4861-71. [PMID: 23408626 DOI: 10.1128/jvi.02608-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The influenza A virus NS1 protein affects virulence through several mechanisms, including the host's innate immune response and various signaling pathways. Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype continue to evolve through reassortment and mutations. Our recent phylogenetic analysis identified a group of HPAI H5N1 viruses with two characteristic mutations in NS1: the avian virus-type PDZ domain-binding motif ESEV (which affects virulence) was replaced with ESKV, and NS1-138F (which is highly conserved among all influenza A viruses and may affect the activation of the phosphatidylinositol 3-kinase [PI3K]/Akt signaling pathway) was replaced with NS1-138Y. Here, we show that an HPAI H5N1 virus (A/duck/Hunan/69/2004) encoding NS1-ESKV and NS1-138Y was confined to the respiratory tract of infected mice, whereas a mutant encoding NS1-ESEV and NS1-138F caused systemic infection and killed mice more efficiently. Mutation of either one of these sites had small effects on virulence. In addition, we found that the amino acid at NS1-138 affected not only the induction of the PI3K/Akt pathway but also the interaction of NS1 with cellular PDZ domain proteins. Similarly, the mutation in the PDZ domain-binding motif of NS1 altered its binding to cellular PDZ domain proteins and affected Akt phosphorylation. These findings suggest a functional interplay between the mutations at NS1-138 and NS1-229 that results in a synergistic effect on influenza virulence.
Collapse
|
379
|
Morokutti A, Redlberger-Fritz M, Nakowitsch S, Krenn BM, Wressnigg N, Jungbauer A, Romanova J, Muster T, Popow-Kraupp T, Ferko B. Validation of the modified hemagglutination inhibition assay (mHAI), a robust and sensitive serological test for analysis of influenza virus-specific immune response. J Clin Virol 2013; 56:323-30. [PMID: 23375739 DOI: 10.1016/j.jcv.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND The hemagglutination inhibition assay (HAI) is universally regarded as the gold standard in influenza virus serology. Nevertheless, difficulties in titre readouts are common and interlaboratory variations are frequently reported. OBJECTIVE We developed and validated the modified HAI to facilitate reliable, accurate and reproducible analysis of sera derived from influenza vaccination studies. STUDY DESIGN Clinical and preclinical serum samples, NIBSC reference sera and seasonal influenza virus type A (H1N1 and H3N2) and type B antigens were employed to validate the mHAI. Moreover, pandemic virus strains (H5N1 and H1N1pdm09) were used to prove assay robustness. RESULTS Utilisation of a 0.08% solution of stabilised human erythrocytes, assay buffer containing bovine serum albumin and microscopical plate readout are the major differences between the modified and standard HAI assay protocols. Validation experiments revealed that the mHAI is linear, specific and up to eightfold more sensitive than the standard HAI. In 95.6% of all measurements mHAI titres were precisely measured irrespective of the assay day, run or operator. Moreover, 96.4% (H1N1) or 95.2% (H3N2 and B), respectively, of all serum samples were determined within one dilution step of the nominal values for spiked samples. Finally, the mHAI results remained unaffected by variations in virus antigens, erythrocytes, reagents, laboratory location, sample storage conditions or matrix components. CONCLUSION The modified HAI is easy to analyse, requires only a single source of erythrocytes and allows utilisation of numerous influenza virus antigens, also including virus strains which are difficult to handle by the standard HAI (e.g. H3N2, H5N1 and H1N1pdm09).
Collapse
Affiliation(s)
- A Morokutti
- AVIR Green Hills Biotechnology AG, Forsthausgasse 11, A-1200 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Ortiz-Riaño E, Cheng BYH, Carlos de la Torre J, Martínez-Sobrido L. Arenavirus reverse genetics for vaccine development. J Gen Virol 2013; 94:1175-1188. [PMID: 23364194 DOI: 10.1099/vir.0.051102-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1.
Collapse
Affiliation(s)
- Emilio Ortiz-Riaño
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Benson Yee Hin Cheng
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
381
|
Chua MA, Schmid S, Perez JT, Langlois RA, Tenoever BR. Influenza A virus utilizes suboptimal splicing to coordinate the timing of infection. Cell Rep 2013; 3:23-9. [PMID: 23333274 DOI: 10.1016/j.celrep.2012.12.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 12/14/2012] [Indexed: 02/04/2023] Open
Abstract
Influenza A virus is unique as an RNA virus in that it replicates in the nucleus and undergoes splicing. With only ten major proteins, the virus must gain nuclear access, replicate, assemble progeny virions in the cytoplasm, and then egress. In an effort to elucidate the coordination of these events, we manipulated the transcript levels from the bicistronic nonstructural segment that encodes the spliced virus product responsible for genomic nuclear export. We find that utilization of an erroneous splice site ensures the slow accumulation of the viral nuclear export protein (NEP) while generating excessive levels of an antagonist that inhibits the cellular response to infection. Modulation of this simple transcriptional event results in improperly timed export and loss of virus infection. Together, these data demonstrate that coordination of the influenza A virus life cycle is set by a "molecular timer" that operates on the inefficient splicing of a virus transcript.
Collapse
Affiliation(s)
- Mark A Chua
- Microbiology Graduate School Training Program, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
382
|
Miyazaki T. [Chinese herbal medicines to inhibit the replication of influenza viruses]. Nihon Yakurigaku Zasshi 2013; 140:62-5. [PMID: 22878568 DOI: 10.1254/fpj.140.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
383
|
Identification of the N-terminal domain of the influenza virus PA responsible for the suppression of host protein synthesis. J Virol 2013; 87:3108-18. [PMID: 23283952 DOI: 10.1128/jvi.02826-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cellular protein synthesis is suppressed during influenza virus infection, allowing for preferential production of viral proteins. To explore the impact of polymerase subunits on protein synthesis, we coexpressed enhanced green fluorescent protein (eGFP) or luciferase together with each polymerase component or NS1 of A/California/04/2009 (Cal) and found that PA has a significant impact on the expression of eGFP and luciferase. Comparison of the suppressive activity on coexpressed proteins between various strains revealed that avian virus or avian-origin PAs have much stronger activity than human-origin PAs, such as the one from A/WSN/33 (WSN). Protein synthesis data suggested that reduced expression of coexpressed proteins is not due to PA's reported proteolytic activity. A recombinant WSN containing Cal PA showed enhanced host protein synthesis shutoff and induction of apoptosis. Further characterization of the PA fragment indicated that the N-terminal domain (PANt), which includes the endonuclease active site, is sufficient to suppress cotransfected gene expression. By characterizing various chimeric PANts, we found that multiple regions of PA, mainly the helix α4 and the flexible loop of amino acids 51 to 74, affect the activity. The suppressive effect of PANt cDNA was mainly due to PA-X, which was expressed by ribosomal frameshifting. In both Cal and WSN viruses, PA-X showed a stronger effect than the corresponding PANt, suggesting that the unique C-terminal sequences of PA-X also play a role in suppressing cotransfected gene expression. Our data indicate strain variations in PA gene products, which play a major role in suppression of host protein synthesis.
Collapse
|
384
|
Influenza A virus NS1 induces G0/G1 cell cycle arrest by inhibiting the expression and activity of RhoA protein. J Virol 2013; 87:3039-52. [PMID: 23283961 DOI: 10.1128/jvi.03176-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus is an important pathogenic virus known to induce host cell cycle arrest in G(0)/G(1) phase and create beneficial conditions for viral replication. However, how the virus achieves arrest remains unclear. We investigated the mechanisms underlying this process and found that the nonstructural protein 1 (NS1) is required. Based on this finding, we generated a viable influenza A virus (H1N1) lacking the entire NS1 gene to study the function of this protein in cell cycle regulation. In addition to some cell cycle regulators that were changed, the concentration and activity of RhoA protein, which is thought to be pivotal for G(1)/S phase transition, were also decreased with overexpressing NS1. And in the meantime, the phosphorylation level of cell cycle regulator pRb, downstream of RhoA kinase, was decreased in an NS1-dependent manner. These findings indicate that the NS1 protein induces G(0)/G(1) cell cycle arrest mainly through interfering with the RhoA/pRb signaling cascade, thus providing favorable conditions for viral protein accumulation and replication. We further investigated the NS1 protein of avian influenza virus (H5N1) and found that it can also decrease the expression and activity of RhoA, suggesting that the H5N1 virus may affect the cell cycle through the same mechanism. The NS1/RhoA/pRb cascade, which can induce the G(0)/G(1) cell cycle arrest identified here, provides a unified explanation for the seemingly different NS1 functions involved in viral replication events. Our findings shed light on the mechanism of influenza virus replication and open new avenues for understanding the interaction between pathogens and hosts.
Collapse
|
385
|
Zheng D, Yi Y, Chen Z. Development of live-attenuated influenza vaccines against outbreaks of H5N1 influenza. Viruses 2012; 4:3589-605. [PMID: 23223214 PMCID: PMC3528281 DOI: 10.3390/v4123589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 01/06/2023] Open
Abstract
Several global outbreaks of highly pathogenic avian influenza (HPAI) H5N1 virus have increased the urgency of developing effective and safe vaccines against H5N1. Compared with H5N1 inactivated vaccines used widely, H5N1 live-attenuated influenza vaccines (LAIVs) have advantages in vaccine efficacy, dose-saving formula, long-lasting effect, ease of administration and some cross-protective immunity. Furthermore, H5N1 LAIVs induce both humoral and cellular immune responses, especially including improved IgA production at the mucosa. The current trend of H5N1 LAIVs development is toward cold-adapted, temperature-sensitive or replication-defective vaccines, and moreover, H5N1 LAIVs plus mucosal adjuvants are promising candidates. This review provides an update on the advantages and development of H5N1 live-attenuated influenza vaccines.
Collapse
Affiliation(s)
- Dan Zheng
- Shanghai Institute of Biological Products, 1262 YanAn Road(w), 200052, Shanghai, China; E-Mails: (D.Z.); (Y.Y.)
| | - Yinglei Yi
- Shanghai Institute of Biological Products, 1262 YanAn Road(w), 200052, Shanghai, China; E-Mails: (D.Z.); (Y.Y.)
| | - Ze Chen
- Shanghai Institute of Biological Products, 1262 YanAn Road(w), 200052, Shanghai, China; E-Mails: (D.Z.); (Y.Y.)
- College of Life Sciences, Hunan Normal University, Changsha Yuelushan 410081, Hunan, China
| |
Collapse
|
386
|
Rahim MN, Selman M, Sauder PJ, Forbes NE, Stecho W, Xu W, Lebar M, Brown EG, Coombs KM. Generation and characterization of a new panel of broadly reactive anti-NS1 mAbs for detection of influenza A virus. J Gen Virol 2012; 94:593-605. [PMID: 23223621 DOI: 10.1099/vir.0.046649-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus (IAV) non-structural protein 1 (NS1) has multiple functions, is essential for virus replication and may be a good target for IAV diagnosis. To generate broadly cross-reactive NS1-specific mAbs, mice were immunized with A/Hong Kong/1/1968 (H3N2) 6×His-tagged NS1 and hybridomas were screened with glutathione S-transferase-conjugated NS1 of A/Puerto Rico/8/1934 (H1N1). mAbs were isotyped and numerous IgG-type clones were characterized further. Most clones specifically recognized NS1 from various H1N1 and H3N2 IAV types by both immunoblot and immunofluorescence microscopy in mouse M1, canine Madin-Darby canine kidney and human A549 cells. mAb epitopes were mapped by overlapping peptides and selective reactivity to the newly described viral NS3 protein. These mAbs detected NS1 in both the cytoplasm and nucleus by immunostaining, and some detected NS1 as early as 5 h post-infection, suggesting their potential diagnostic use for tracking productive IAV replication and characterizing NS1 structure and function. It was also demonstrated that the newly identified NS3 protein is localized in the cytoplasm to high levels.
Collapse
Affiliation(s)
- Md Niaz Rahim
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Mohammed Selman
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patricia J Sauder
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Nicole E Forbes
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William Stecho
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wanhong Xu
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Mark Lebar
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Earl G Brown
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kevin M Coombs
- Manitoba Institute of Child Health, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| |
Collapse
|
387
|
Barber MRW, Aldridge JR, Fleming-Canepa X, Wang YD, Webster RG, Magor KE. Identification of avian RIG-I responsive genes during influenza infection. Mol Immunol 2012; 54:89-97. [PMID: 23220072 DOI: 10.1016/j.molimm.2012.10.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/26/2012] [Accepted: 10/27/2012] [Indexed: 12/28/2022]
Abstract
Ducks can survive infection with highly pathogenic avian influenza viruses that are lethal to chickens. We showed that the influenza detector, RIG-I can initiate antiviral responses in ducks, but this gene is absent in chickens. We can reconstitute this pathway by transfecting chicken DF-1 embryonic fibroblast cells with duck RIG-I, which augments their antiviral response to influenza and decreases viral titer. However, the genes downstream of duck RIG-I that mediate this antiviral response to influenza are not known. Using microarrays, we compared the transcriptional profile of chicken embryonic fibroblasts transfected with duck RIG-I or empty vector, and infected with low or highly pathogenic avian influenza viruses. Transfected duck RIG-I expressed in chicken cells was associated with the marked induction of many antiviral innate immune genes upon infection with both viruses. We used real-time PCR to confirm upregulation of a subset of these antiviral genes including MX1, PKR, IFIT5, OASL, IFNB, and downregulation of the influenza matrix gene. These results provide some insight into the genes induced by duck RIG-I upon influenza infection, and provide evidence that duck RIG-I can function to elicit an interferon-driven, antiviral response against influenza in chicken embryonic fibroblasts.
Collapse
Affiliation(s)
- Megan R W Barber
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | |
Collapse
|
388
|
Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, Nistal-Villán E, García-Sastre A, Gack MU. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog 2012; 8:e1003059. [PMID: 23209422 PMCID: PMC3510253 DOI: 10.1371/journal.ppat.1003059] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 10/13/2012] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.
Collapse
Affiliation(s)
- Ricardo Rajsbaum
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Randy A. Albrecht
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - May K. Wang
- Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Natalya P. Maharaj
- Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Gijs A. Versteeg
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Estanislao Nistal-Villán
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Michaela U. Gack
- Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| |
Collapse
|
389
|
Meng J, Zhang Z, Zheng Z, Liu Y, Wang H. Methionine-101 from one strain of H5N1 NS1 protein determines its IFN-antagonizing ability and subcellular distribution pattern. SCIENCE CHINA-LIFE SCIENCES 2012; 55:933-9. [PMID: 23124793 DOI: 10.1007/s11427-012-4393-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 09/20/2012] [Indexed: 11/24/2022]
Abstract
Influenza A virus NS1 protein has developed two main IFN-antagonizing mechanisms by inhibiting retinoic-acid-inducible gene I (RIG-I) signal transduction, or by suppressing cellular pre-mRNA processing through binding to cleavage and polyadenylation specific factor 30 (CPSF30). However, the precise effects of NS1 on suppressing type I IFN induction have not been well characterized. Here we report that compared with PR/8/34 NS1, which is localized partially in the cytoplasm and has strong IFN-antagonizing ability via specifically inhibiting IFN-β promoter activity, H5N1 NS1 has strikingly different characteristics. It mainly accumulates in the nucleus of transfected cells and exerts rather weak IFN-counteracting ability through suppression of the overall gene expression. The M101I mutation of H5N1 NS1, namely H5-M101I, fully reversed its functions. H5-M101I gained the ability to specifically inhibit IFN-β promoter activity, translocate to the cytoplasm, and release CPSF30. The previously reported NES (nuclear export signal) (residues 138-147) was unable to lead H5N1 NS1 to translocate. This suggests that other residues may serve as a potent NES. Findings indicated that together with leucine-100, methionine-101 enhanced the regional NES. In addition, methionine-101 was the key residue for the NS1-CPSF30 interaction. This study reveals the importance of methionine-101 in the influenza A virus life cycle and may provide valuable information for antiviral strategies.
Collapse
Affiliation(s)
- Jin Meng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | |
Collapse
|
390
|
Marc D, Barbachou S, Soubieux D. The RNA-binding domain of influenzavirus non-structural protein-1 cooperatively binds to virus-specific RNA sequences in a structure-dependent manner. Nucleic Acids Res 2012; 41:434-49. [PMID: 23093596 PMCID: PMC3592425 DOI: 10.1093/nar/gks979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenzavirus non-structural protein NS1 is involved in several steps of the virus replication cycle. It counteracts the interferon response, and also exhibits other activities towards viral and cellular RNAs. NS1 is known to bind non-specifically to double-stranded RNA (dsRNA) as well as to viral and cellular RNAs. We set out to search whether NS1 could preferentially bind sequence-specific RNA patterns, and performed an in vitro selection (SELEX) to isolate NS1-specific aptamers from a pool of 80-nucleotide(nt)-long RNAs. Among the 63 aptamers characterized, two families were found to harbour a sequence that is strictly conserved at the 5' terminus of all positive-strand RNAs of influenzaviruses A. We found a second virus-specific motif, a 9 nucleotide sequence located 15 nucleotides downstream from NS1's stop codon. In addition, a majority of aptamers had one or two symmetrically positioned copies of the 5'-GUAAC / 3'-CUUAG double-stranded motif, which closely resembles the canonical 5'-splice site. Through an in-depth analysis of the interaction combining fluorimetry and gel-shift assays, we showed that NS1's RNA-binding domain (RBD) specifically recognizes sequence patterns in a structure-dependent manner, resulting in an intimate interaction with high affinity (low nanomolar to subnanomolar K(D) values) that leads to oligomerization of the RBD on its RNA ligands.
Collapse
Affiliation(s)
- Daniel Marc
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, Nouzilly F-37380, France.
| | | | | |
Collapse
|
391
|
Abstract
Influenza A virus (IAV) is a dangerous virus equipped with the potential to evoke widespread pandemic disease. The 2009 H1N1 pandemic highlights the urgency for developing effective therapeutics against IAV infection. Vaccination is a major weapon to combat IAV and efforts to improve current regimes are critically important. Here, we will review the role of dendritic cells (DCs), a pivotal cell type in the initiation of robust IAV immunity. The complexity of DC subset heterogeneity in the respiratory tract and lymph node that drains the IAV infected lung will be discussed, together with the varied and in some cases, conflicting contributions of individual DC populations to presenting IAV associated antigen to T cells.
Collapse
Affiliation(s)
- Jason Waithman
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, West Perth, WA, Australia
| | | |
Collapse
|
392
|
Rajput R, Khanna M, Kumar P, Kumar B, Sharma S, Gupta N, Saxena L. Small interfering RNA targeting the nonstructural gene 1 transcript inhibits influenza A virus replication in experimental mice. Nucleic Acid Ther 2012; 22:414-22. [PMID: 23062009 DOI: 10.1089/nat.2012.0359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nonstructural protein 1 (NS1) of influenza A viruses counteracts the host immune response against the influenza viruses by not only inhibiting the nuclear export and maturation of host cell messenger RNA (mRNA), but by also blocking the double-stranded RNA-activated protein kinase-mediated inhibition of viral RNA translation. Reduction of NS1 gene product in the host cell may be a potent antiviral strategy to provide protection against the influenza virus infection. We used small interfering RNAs (siRNAs) synthesized against the viral mRNA to down regulate the NS1 gene and observed its effect on inhibition of virus replication. When NS1 gene-specific siRNA were transfected in Madin Darby canine kidney (MDCK) cells followed by influenza A virus infection, approximately 60% inhibition in intracellular levels of NS1 RNA was observed. When siRNA was administered in BALB/c mice, 92% reduction in the levels of NS1 gene expression in mice lungs was observed. A significant reduction in the lung virus titers and cytokine levels was also detected in the presence of siRNAs as compared with the untreated control. The study was validated by the use of selectively disabled mutants of each set of siRNA. Our findings suggest that siRNA targeted against NS1 gene of influenza A virus can provide considerable protection to the virus-infected host cells and may be used as potential candidates for nucleic acid-based antiviral therapy for prevention of influenza A virus infection.
Collapse
Affiliation(s)
- Roopali Rajput
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
393
|
Soubies SM, Hoffmann TW, Croville G, Larcher T, Ledevin M, Soubieux D, Quéré P, Guérin JL, Marc D, Volmer R. Deletion of the C-terminal ESEV domain of NS1 does not affect the replication of a low-pathogenic avian influenza virus H7N1 in ducks and chickens. J Gen Virol 2012; 94:50-58. [PMID: 23052391 DOI: 10.1099/vir.0.045153-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H7N1 viruses caused a series of epizootics in Italy between 1999 and 2001. The emergence of these HPAI viruses coincided with the deletion of the six amino acids R(225)VESEV(230) at the C terminus of NS1. In order to assess how the truncation of NS1 affected virus replication, we used reverse genetics to generate a wild-type low-pathogenic avian influenza (LPAI) H7N1 virus with a 230aa NS1 (H7N1(230)) and a mutant virus with a truncated NS1 (H7N1(224)). The 6aa truncation had no impact on virus replication in duck or chicken cells in vitro. The H7N1(230) and H7N1(224) viruses also replicated to similar levels and induced similar immune responses in ducks or chickens. No significant histological lesions were detected in infected ducks, regardless of the virus inoculated. However, in chickens, the H7N1(230) virus induced a more severe interstitial pneumonia than did the H7N1(224) virus. These findings indicate that the C-terminal extremity of NS1, including the PDZ-binding motif ESEV, is dispensable for efficient replication of an LPAI virus in ducks and chickens, even though it may increase virulence in chickens, as revealed by the intensity of the histological lesions.
Collapse
Affiliation(s)
- Sébastien M Soubies
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Thomas W Hoffmann
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Guillaume Croville
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Thibaut Larcher
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307 Nantes, France
| | - Mireille Ledevin
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307 Nantes, France
| | - Denis Soubieux
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Pascale Quéré
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France.,Equipe PIA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France
| | - Jean-Luc Guérin
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Daniel Marc
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Romain Volmer
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| |
Collapse
|
394
|
Abstract
Seasonal flu affects 5–20% of the human population each year. Although mortality rates are typically <0.1% and the pandemic 2009 H1N1 influenza strain has been well contained by vaccination and strict hygiene, particularly virulent pandemic forms have emerged three times in the last century, resulting in millions of deaths. Current vaccine and therapeutic strategies are limited by the ability of the virus to generate variants that evade vaccine-induced immune responses and resist the therapeutic effects of antiviral drugs. Host genetic variations affect immune responses and may induce adverse effects during drug treatment or against vaccines. To develop new, first-in-class therapeutics, new antiviral targets and new chemical entities must be identified in the context of the immunogenomic repertoire of the patient. Since influenza and so many other viruses need to escape innate immunity to become pathogenic, the viral proteins responsible for this, as well as the host cell molecular pathways that lead to the antiviral response, are an excellent potential source of new therapeutic targets within a systems approach against influenza infections.
Collapse
Affiliation(s)
- Christian V Forst
- University of Texas Southwestern Medical Center, Department of Clinical Sciences, 5323 Harry Hines Boulevard, Dallas, TX 75390-9066, USA
| |
Collapse
|
395
|
Contribution of NS1 effector domain dimerization to influenza A virus replication and virulence. J Virol 2012; 86:13095-8. [PMID: 22993153 DOI: 10.1128/jvi.02237-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conserved tryptophan-187 facilitates homodimerization of the influenza A virus NS1 protein effector domain. We generated a mutant influenza virus strain expressing NS1-W187R to destabilize this self-interaction. NS1-W187R protein exhibited lower double-stranded RNA (dsRNA)-binding activity, showed a temporal redistribution during infection, and was minimally compromised for interferon antagonism. The mutant virus replicated similarly to the wild type in vitro, but it was slightly attenuated for replication in mice, causing notably reduced morbidity and mortality. These data suggest biological relevance for the W187-mediated homotypic interaction of NS1.
Collapse
|
396
|
Gao S, Song L, Li J, Zhang Z, Peng H, Jiang W, Wang Q, Kang T, Chen S, Huang W. Influenza A virus-encoded NS1 virulence factor protein inhibits innate immune response by targeting IKK. Cell Microbiol 2012; 14:1849-66. [PMID: 22891964 DOI: 10.1111/cmi.12005] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/16/2012] [Accepted: 08/06/2012] [Indexed: 12/13/2022]
Abstract
The IKK/NF-κB pathway is an essential signalling process initiated by the cell as a defence against viral infection like influenza virus. This pathway is therefore a prime target for viruses attempting to counteract the host response to infection. Here, we report that the influenza A virus NS1 protein specifically inhibits IKK-mediated NF-κB activation and production of the NF-κB induced antiviral genes by physically interacting with IKK through the C-terminal effector domain. The interaction between NS1 and IKKα/IKKβ affects their phosphorylation function in both the cytoplasm and nucleus. In the cytoplasm, NS1 not only blocks IKKβ-mediated phosphorylation and degradation of IκBα in the classical pathway but also suppresses IKKα-mediated processing of p100 to p52 in the alternative pathway, which leads to the inhibition of nuclear translocation of NF-κB and the subsequent expression of downstream NF-κB target genes. In the nucleus, NS1 impairs IKK-mediated phosphorylation of histone H3 Ser 10 that is critical to induce rapid expression of NF-κB target genes. These results reveal a new mechanism by which influenza A virus NS1 protein counteracts host NF-κB-mediated antiviral response through the disruption of IKK function. In this way, NS1 diminishes antiviral responses to infection and, in turn, enhances viral pathogenesis.
Collapse
Affiliation(s)
- Shijuan Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
397
|
The NS1 protein of influenza A virus interacts with cellular processing bodies and stress granules through RNA-associated protein 55 (RAP55) during virus infection. J Virol 2012; 86:12695-707. [PMID: 22973032 DOI: 10.1128/jvi.00647-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nonstructural protein (NS1) of influenza A virus performs multiple functions in the virus life cycle. Proteomic screening for cellular proteins which interact with NS1 identified the cellular protein RAP55, which is one of the components of cellular processing bodies (P-bodies) and stress granules. To verify whether NS1 interacts with cellular P-bodies, interactions between NS1, RAP55, and other P-body-associated proteins (Ago1, Ago2, and DCP1a) were confirmed using coimmunoprecipitation and cellular colocalization assays. Overexpression of RAP55 induced RAP55-associated stress granule formation and suppressed virus replication. Knockdown of RAP55 with small interfering RNA (siRNA) or expression of a dominant-negative mutant RAP55 protein with defective interaction with P-bodies blocked NS1 colocalization to P-bodies in cells. Expression of NS1 inhibited RAP55 expression and formation of RAP55-associated P-bodies/stress granules. The viral nucleoprotein (NP) was found to be targeted to stress granules in the absence of NS1 but localized to P-bodies when NS1 was coexpressed. Restriction of virus replication via P-bodies occurred in the early phases of infection, as the number of RAP55-associated P-bodies in cells diminished over the course of virus infection. NS1 interaction with RAP55-associated P-bodies/stress granules was associated with RNA binding and mediated via a protein kinase R (PKR)-interacting viral element. Mutations introduced into either RNA binding sites (R38 and K41) or PKR interaction sites (I123, M124, K126, and N127) caused NS1 proteins to lose the ability to interact with RAP55 and to inhibit stress granules. These results reveal an interplay between virus and host during virus replication in which NP is targeted to P-bodies/stress granules while NS1 counteracts this host restriction mechanism.
Collapse
|
398
|
Mutations in the M-gene segment can substantially increase replication efficiency of NS1 deletion influenza A virus in MDCK cells. J Virol 2012; 86:12341-50. [PMID: 22951840 DOI: 10.1128/jvi.01725-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses unable to express NS1 protein (delNS1) replicate poorly and induce large amounts of interferon (IFN). They are therefore considered candidate viruses for live-attenuated influenza vaccines. Their attenuated replication is generally assumed to result from the inability to counter the antiviral host response, as delNS1 viruses replicate efficiently in Vero cells, which lack IFN expression. In this study, delNS1 virus was parallel passaged on IFN-competent MDCK cells, which resulted in two strains that were able to replicate to high virus titers in MDCK cells due to adaptive mutations especially in the M-gene segment but also in the NP and NS gene segments. Most notable were clustered U-to-C mutations in the M segment of both strains and clustered A-to-G mutations in the NS segment of one strain, which presumably resulted from host cell-mediated RNA editing. The M segment mutations in both strains changed the ratio of M1 to M2 expression, probably by affecting splicing efficiency. In one virus, 2 amino acid substitutions in M1 additionally enhanced virus replication, possibly through changes in the M1 distribution between the nucleus and the cytoplasm. Both adapted viruses induced levels of IFN equal to that of the original delNS1 virus. These results show that the increased replication of the adapted viruses is not primarily due to altered IFN induction but rather is related to changes in M1 expression or localization. The mutations identified in this paper may be used to enhance delNS1 virus replication for vaccine production.
Collapse
|
399
|
van de Sandt CE, Kreijtz JHCM, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 2012; 4:1438-76. [PMID: 23170167 PMCID: PMC3499814 DOI: 10.3390/v4091438] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Virology, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
400
|
Sánchez-Aparicio M, Ayllón J, Garcı´a-Sastre A. O018 A Bimolecular Fluorescence Complementation assay to study protein interactions in the RIG-I like receptor pathway. Cytokine 2012. [DOI: 10.1016/j.cyto.2012.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|