351
|
Argandoña VH, Chaman M, Cardemil L, Muñoz O, Zúñiga GE, Corcuera LJ. Ethylene production and peroxidase activity in aphid-infested barley. J Chem Ecol 2001; 27:53-68. [PMID: 11382067 DOI: 10.1023/a:1005615932694] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this work was to investigate whether ethylene is involved in the oxidative and defensive responses of barley to the aphids Schizaphis graminum (biotype C) and Rhopalophum padi. The effect of aphid infestation on ethylene production was measured in two barley cultivars (Frontera and Aramir) that differ in their susceptibility to aphids. Ethylene evolution was higher in plants infested for 16 hr than in plants infested for 4 hr in both cultivars. Under aphid infestation, the production of ethylene was higher in cv. Frontera than in Aramir, the more aphid susceptible cultivar. Ethylene production also increases with the degree of infestation. Maximum ethylene evolution was detected after 16 hr when plants were infested with 10 or more aphids. Comparing the two species of aphids, Schizaphis graminum induced more ethylene evolution than Rhopalosiphum padi. Infestation with S. graminum increased hydrogen peroxide content and total soluble peroxidase activity in cv. Frontera, with a maximum level of H2O2 observed after 20 min of infestation and the maximum in soluble peroxidase activity after 30 min of infestation. When noninfested barley seedlings from cv. Frontera were exposed to ethylene, an increase in hydrogen peroxide and in total peroxidase activity was detected at levels similar to those of infested plants from cv. Frontera. When noninfested plants were treated with 40 ppm of ethylene, the maximum levels of H2O2 and soluble peroxidase activity were at 10 and 40 min, respectively. Ethylene also increased the activity of both cell-wall-bound peroxidases types (ionically and covalently bound), comparable with infestation. These results suggest that ethylene is involved in the oxidative responses of barley plants induced by infestation.
Collapse
Affiliation(s)
- V H Argandoña
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
352
|
Hidalgo P, Garretón V, Berríos CG, Ojeda H, Jordana X, Holuigue L. A nuclear casein kinase 2 activity is involved in early events of transcriptional activation induced by salicylic acid in tobacco. PLANT PHYSIOLOGY 2001; 125:396-405. [PMID: 11154347 PMCID: PMC61020 DOI: 10.1104/pp.125.1.396] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2000] [Revised: 06/09/2000] [Accepted: 08/21/2000] [Indexed: 05/23/2023]
Abstract
Salicylic acid (SA) activates immediate early transcription of genes controlled by a family of DNA promoter elements named as-1-like elements. These elements are functional in the promoter of glutathione S-transferase genes. We have previously shown that SA increases the binding of tobacco (Nicotiana tabacum cv Xanthi nc) nuclear factors to the as-1 sequence in a process mediated by protein phosphorylation. In this study we give evidence for the participation of a nuclear protein kinase CK2 (casein kinase 2) in the pathway activated by SA in tobacco. The first line of evidence comes from the evaluation of the CK2 activity in nuclear extracts prepared from tobacco plants treated with SA or water as a control. Results from these experiments indicate that SA increases the nuclear CK2 activity. The second line of evidence derives from the evaluation of the in vivo effect of 5,6-dichloro-1-(beta-D-ribofuranosyl) benzimidazole (DRB), a cell-permeable CK2 inhibitor, on the responsiveness of the as-1 sequence to SA. Results from these experiments indicate that DRB impairs the activating effect of SA on the transcription of both, the GUS reporter gene controlled by a tetramer of the as-1 element, and the endogenous gnt35 gene encoding a glutathione S-transferase, in transgenic tobacco plants. DRB also impaired the increasing effect of SA on the binding of nuclear factors to the as-1 element. Furthermore, transcription of the as-1/GUS reporter gene activated by the synthetic auxin 2,4-dichlorophenoxyacetic acid and by methyl jasmonate was also inhibited by DRB. To our knowledge, this is the first report in which activation of a CK2 enzyme by a plant hormone is reported.
Collapse
Affiliation(s)
- P Hidalgo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
353
|
Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 2000; 26:403-10. [PMID: 11101835 DOI: 10.1038/82521] [Citation(s) in RCA: 595] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infected plants undergo transcriptional reprogramming during initiation of both local defence and systemic acquired resistance (SAR). We monitored gene-expression changes in Arabidopsis thaliana under 14 different SAR-inducing or SAR-repressing conditions using a DNA microarray representing approximately 25-30% of all A. thaliana genes. We derived groups of genes with common regulation patterns, or regulons. The regulon containing PR-1, a reliable marker gene for SAR in A. thaliana, contains known PR genes and novel genes likely to function during SAR and disease resistance. We identified a common promoter element in genes of this regulon that binds members of a plant-specific transcription factor family. Our results extend expression profiling to definition of regulatory networks and gene discovery in plants.
Collapse
Affiliation(s)
- K Maleck
- Syngenta, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
354
|
Dewdney J, Reuber TL, Wildermuth MC, Devoto A, Cui J, Stutius LM, Drummond EP, Ausubel FM. Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:205-18. [PMID: 11069695 DOI: 10.1046/j.1365-313x.2000.00870.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To identify components of the defense response that limit growth of a biotrophic fungal pathogen, we isolated Arabidopsis mutants with enhanced disease susceptibility to Erysiphe orontii. Our initial characterization focused on three mutants, eds14, eds15, and eds16. None of these is considerably more susceptible to a virulent strain of the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm). All three mutants develop a hypersensitive response when infiltrated with Psm expressing the avirulence gene avrRpt2, which activates resistance via the LZ-NBS/LRR resistance protein encoded by RPS2. The growth of Psm(avrRpt2), while somewhat greater in the mutants than in the wild type, is less than growth of the isogenic virulent strain. These results indicate that resistance mediated via LZ-NBS/LRR R genes is functional. Analysis of the growth of avirulent Peronospora parasitica strains showed that the resistance pathway utilized by TIR-NBS/LRR R genes is also operative in all three mutants. Surprisingly, only eds14 and eds16 were more susceptible to Erysiphe cichoracearum. Analysis of the expression profiles of PR-1, BGL2, PR-5 and PDF1.2 in eds14, eds15, and eds16 revealed differences from the wild type for all the lines. In contrast, these mutants were not significantly different from wild type in the deposition of callose at sites of E. orontii penetration. All three mutants have reduced levels of salicylic acid after infection. eds16 was mapped to the lower arm of chromosome I and found by complementation tests to be allelic to the salicylic acid-deficient mutant sid2.
Collapse
Affiliation(s)
- J Dewdney
- Department of Molecular Biology, Wellman 10, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
355
|
Shoji T, Nakajima K, Hashimoto T. Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis. PLANT & CELL PHYSIOLOGY 2000; 41:1072-6. [PMID: 11100780 DOI: 10.1093/pcp/pcd027] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In Nicotiana sylvestris, a set of nicotine biosynthesis genes were activated by exogenous application of methyl jasmonate, but the activation was effectively suppressed by simultaneous treatment with ethylene. When N. sylvestris transgenic hairy roots were treated with a natural ethylene precursor, the jasmonate-responsive expression of the promoter from a nicotine pathway enzyme gene was completely suppressed, and this suppressive effect was abolished when ethylene perception was blocked with silver cation. These and additional immunoblot results suggest that ethylene signal antagonizes jasmonate signal in nicotine biosynthesis.
Collapse
Affiliation(s)
- T Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | |
Collapse
|
356
|
Abstract
A burst of active oxygen species (AOS) is known to be involved in local cell death as part of plant defence against pathogens. It is, however, under dispute to what extent AOS can induce pathogen resistance and immunity throughout the plant. Three experimental strategies that reveal a primary role for AOS and a surprisingly low chemical and spatial specificity are now described for tobacco and Arabidopsis thaliana plants. Ozone is a gaseous AOS that was applied to non-transgenic plants. Hydrogen peroxide or singlet oxygen are AOS that were induced by high-light treatment of transgenic plants that contained antisense constructs inhibiting catalase activity or chlorophyll biosynthetic enzymes. In all cases, activated oxygen species, cellular lesions, ethylene and salicylic acid, and components of major plant defence systems (systemic acquired resistance, hypersensitive response) were induced, as was resistance towards pathogens (tobacco mosaic virus, Pseudomonas syringae or Peronospora parasitica). It is concluded that active oxygen species can act as mediators of plant immunity so that new non-pesticidal plant protection strategies could be developed.
Collapse
Affiliation(s)
- H Sandermann
- GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Institut für Biochemische Pflanzenpathologie, Oberschleissheim, Germany
| |
Collapse
|
357
|
Dong H, Beer SV. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. PHYTOPATHOLOGY 2000; 90:801-11. [PMID: 18944500 DOI: 10.1094/phyto.2000.90.8.801] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT The role of riboflavin as an elicitor of systemic resistance and an activator of a novel signaling process in plants was demonstrated. Following treatment with riboflavin, Arabidopsis thaliana developed systemic resistance to Peronospora parasitica and Pseudomonas syringae pv. Tomato, and tobacco developed systemic resistance to Tobacco mosaic virus (TMV) and Alternaria alternata. Riboflavin, at concentrations necessary for resistance induction, did not cause cell death in plants or directly affect growth of the culturable pathogens. Riboflavin induced expression of pathogenesis-related (PR) genes in the plants, suggesting its ability to trigger a signal transduction pathway that leads to systemic resistance. Both the protein kinase inhibitor K252a and mutation in the NIM1/NPR1 gene which controls transcription of defense genes, impaired responsiveness to riboflavin. In contrast, riboflavin induced resistance and PR gene expression in NahG plants, which fail to accumulate salicylic acid (SA). Thus, riboflavin-induced resistance requires protein kinase signaling mechanisms and a functional NIM1/NPR1 gene, but not accumulation of SA. Riboflavin is an elicitor of systemic resistance, and it triggers resistance signal transduction in a distinct manner.
Collapse
|
358
|
Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A 2000; 97:8849-55. [PMID: 10922045 PMCID: PMC34022 DOI: 10.1073/pnas.97.16.8849] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Salicylic acid (SA) plays a critical signaling role in the activation of plant defense responses after pathogen attack. We have identified several potential components of the SA signaling pathway, including (i) the H(2)O(2)-scavenging enzymes catalase and ascorbate peroxidase, (ii) a high affinity SA-binding protein (SABP2), (iii) a SA-inducible protein kinase (SIPK), (iv) NPR1, an ankyrin repeat-containing protein that exhibits limited homology to IkappaBalpha and is required for SA signaling, and (v) members of the TGA/OBF family of bZIP transcription factors. These bZIP factors physically interact with NPR1 and bind the SA-responsive element in promoters of several defense genes, such as the pathogenesis-related 1 gene (PR-1). Recent studies have demonstrated that nitric oxide (NO) is another signal that activates defense responses after pathogen attack. NO has been shown to play a critical role in the activation of innate immune and inflammatory responses in animals. Increases in NO synthase (NOS)-like activity occurred in resistant but not susceptible tobacco after infection with tobacco mosaic virus. Here we demonstrate that this increase in activity participates in PR-1 gene induction. Two signaling molecules, cGMP and cyclic ADP ribose (cADPR), which function downstream of NO in animals, also appear to mediate plant defense gene activation (e.g., PR-1). Additionally, NO may activate PR-1 expression via an NO-dependent, cADPR-independent pathway. Several targets of NO in animals, including guanylate cyclase, aconitase, and mitogen-activated protein kinases (e.g., SIPK), are also modulated by NO in plants. Thus, at least portions of NO signaling pathways appear to be shared between plants and animals.
Collapse
Affiliation(s)
- D F Klessig
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Dhondt S, Geoffroy P, Stelmach BA, Legrand M, Heitz T. Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:431-40. [PMID: 10972869 DOI: 10.1046/j.1365-313x.2000.00802.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent evidence suggests that oxidized lipid-derived molecules play significant roles in inducible plant defence responses against microbial pathogens, either by directly deterring parasite multiplication, or as signals involved in the induction of sets of defence genes. The synthesis of these oxylipins was hypothesized to be initiated by the phospholipase A2-mediated release of unsaturated fatty acids from membrane lipids. Here, we demonstrate that, in tobacco leaves reacting hypersensitively to tobacco mosaic virus, a strong increase in soluble phospholipase A2 (PLA2) activity occurs at the onset of necrotic lesion appearance. This rapid PLA2 activation occurred before the accumulation of 12-oxophytodienoic and jasmonic acids, two fatty acid-derived defence signals. Three PLA2 isoforms were separated and the most active enzyme was partially purified, its N-terminal sequence displaying similarity with patatin, the major storage protein in potato tubers. Three related tobacco patatin-like cDNAs, called NtPat1, NtPat2 and NtPat3, were cloned, with NtPat2 encoding the PLA2 isolated from infected leaves. RT-PCR experiments showed a rapid transcriptional activation of the three NtPat genes in virus-infected leaves, preceding the increase in PLA2 activity. Recombinant NtPat1 and NtPat3 enzymes were active in an assay using labelled bacterial membranes, and also displayed high bona fide PLA2 activity on phosphatidylcholine substrate. These results point to a possible new role of patatin-like phospholipases in inducible plant defence responses. The induction kinetics together with the enzymatic activity data indicate that the NtPat proteins may provide precursors for oxylipin synthesis during the hypersensitive response to pathogens.
Collapse
Affiliation(s)
- S Dhondt
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
360
|
van Wees SC, de Swart EA, van Pelt JA, van Loon LC, Pieterse CM. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2000; 97:8711-6. [PMID: 10890883 PMCID: PMC27013 DOI: 10.1073/pnas.130425197] [Citation(s) in RCA: 307] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The plant-signaling molecules salicylic acid (SA) and jasmonic acid (JA) play an important role in induced disease resistance pathways. Cross-talk between SA- and JA-dependent pathways can result in inhibition of JA-mediated defense responses. We investigated possible antagonistic interactions between the SA-dependent systemic acquired resistance (SAR) pathway, which is induced upon pathogen infection, and the JA-dependent induced systemic resistance (ISR) pathway, which is triggered by nonpathogenic Pseudomonas rhizobacteria. In Arabidopsis thaliana, SAR and ISR are effective against a broad spectrum of pathogens, including the foliar pathogen Pseudomonas syringae pv. tomato (Pst). Simultaneous activation of SAR and ISR resulted in an additive effect on the level of induced protection against Pst. In Arabidopsis genotypes that are blocked in either SAR or ISR, this additive effect was not evident. Moreover, induction of ISR did not affect the expression of the SAR marker gene PR-1 in plants expressing SAR. Together, these observations demonstrate that the SAR and the ISR pathway are compatible and that there is no significant cross-talk between these pathways. SAR and ISR both require the key regulatory protein NPR1. Plants expressing both types of induced resistance did not show elevated Npr1 transcript levels, indicating that the constitutive level of NPR1 is sufficient to facilitate simultaneous expression of SAR and ISR. These results suggest that the enhanced level of protection is established through parallel activation of complementary, NPR1-dependent defense responses that are both active against Pst. Therefore, combining SAR and ISR provides an attractive tool for the improvement of disease control.
Collapse
Affiliation(s)
- S C van Wees
- Graduate School Experimental Plant Sciences, Section of Plant Pathology, Faculty of Biology, Utrecht University, Post Office Box 800.84, 3508 TB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
361
|
Kirsch C, Takamiya-Wik M, Schmelzer E, Hahlbrock K, Somssich IE. A novel regulatory element involved in rapid activation of parsley ELI7 gene family members by fungal elicitor or pathogen infection. MOLECULAR PLANT PATHOLOGY 2000; 1:243-51. [PMID: 20572971 DOI: 10.1046/j.1364-3703.2000.00029.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Abstract In parsley (Petroselinum crispum), members of the ELI7 gene family were rapidly transcriptionally activated following treatment with an elicitor derived from the phytopathogen Phytophthora sojae. Several cDNA and genomic ELI7 clones were isolated. The deduced amino acid sequences revealed close similarity to fatty acid desaturases/hydroxylases, however, the precise functions are still unknown. Analysis of the promoters of two strongly elicitor-induced family members, ELI7.1 and ELI7.2, allowed us to functionally pinpoint a novel, independently acting regulatory region (S box), the only major sequence similarity between the two gene promoters. In situ RNA/RNA hybridization using an ELI7.1 gene-specific probe demonstrated that expression of this gene is rapidly and locally induced around infection sites in planta as well.
Collapse
Affiliation(s)
- C Kirsch
- Max-Planck-Institut für Züchtungsforschung, Abteilung Biochemie, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | | | | | |
Collapse
|
362
|
McDowell JM, Cuzick A, Can C, Beynon J, Dangl JL, Holub EB. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:523-9. [PMID: 10886772 DOI: 10.1046/j.1365-313x.2000.00771.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To better understand the genetic requirements for R gene-dependent defense activation in Arabidopsis, we tested the effect of several defense response mutants on resistance specified by eight RPP genes (for resistance to Peronospora parasitica) expressed in the Col-0 background. In most cases, resistance was not suppressed by a mutation in the SAR regulatory gene NPR1 or by expression of the NahG transgene. Thus, salicylic acid accumulation and NPR1 function are not necessary for resistance mediated by these RPP genes. In addition, resistance conferred by two of these genes, RPP7 and RPP8, was not significantly suppressed by mutations in either EDS1 or NDR1. RPP7 resistance was also not compromised by mutations in EIN2, JAR1 or COI1 which affect ethylene or jasmonic acid signaling. Double mutants were therefore tested. RPP7 and RPP8 were weakly suppressed in an eds1-2/ndr1-1 background, suggesting that these RPP genes operate additively through EDS1, NDR1 and as-yet-undefined signaling components. RPP7 was not compromised in coi1/npr1 or coi1/NahG backgrounds. These observations suggest that RPP7 initiates resistance through a novel signaling pathway that functions independently of salicylic acid accumulation or jasmonic acid response components.
Collapse
Affiliation(s)
- J M McDowell
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | | | | | | | | | |
Collapse
|
363
|
Melchers LS, Stuiver MH. Novel genes for disease-resistance breeding. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:147-152. [PMID: 10712959 DOI: 10.1016/s1369-5266(99)00055-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant disease control is entering an exciting period during which transgenic plants showing improved resistance to pathogenic viruses, bacteria, fungi and insects are being developed. This review summarizes the first successful attempts to engineer fungal resistance in crops, and highlights two promising approaches. Biotechnology provides the promise of new integrated disease management strategies that combine modern fungicides and transgenic crops to provide effective disease control for modern agriculture.
Collapse
Affiliation(s)
- L S Melchers
- Zeneca MOGEN, PO Box 628, The Netherlands. Leo.Melchers@ageurope. zeneca.com
| | | |
Collapse
|
364
|
Yu I, Fengler KA, Clough SJ, Bent AF. Identification of Arabidopsis mutants exhibiting an altered hypersensitive response in gene-for-gene disease resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:277-86. [PMID: 10707353 DOI: 10.1094/mpmi.2000.13.3.277] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A mutational study was carried out to isolate Arabidopsis thaliana plants that exhibit full or partial disruption of the RPS2-mediated hypersensitive response (HR) to Pseudomonas syringae that express avrRpt2. Five classes of mutants were identified including mutations at RPS2, dnd mutations causing a "defense, no death" loss-of-HR phenotype, a lesion-mimic mutant that also exhibited an HR- phenotype, and a number of intermediate or partial-loss-of-HR mutants. Surprisingly, many of these mutants displayed elevated resistance to virulent P. syringae and, in some cases, to Peronospora parasitica. Constitutively elevated levels of pathogenesis-related (PR) gene expression and salicylic acid were also observed. In the lesion-mimic mutant, appearance of elevated resistance was temporally correlated with appearance of lesions. For one of the intermediate lines, resistance was shown to be dependent on elevated levels of salicylic acid. A new locus was identified and named IHR1, after the mutant phenotype of "intermediate HR." Genetic analysis of the intermediate-HR plant lines was difficult due to uncertainties in distinguishing the partial/intermediate mutant phenotypes from wild type. Despite this difficulty, the intermediate-HR mutants remain of interest because they reveal potential new defense-related loci and because many of these lines exhibit partially elevated disease resistance without dwarfing or other apparent growth defects.
Collapse
Affiliation(s)
- I Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign 61801, USA
| | | | | | | |
Collapse
|
365
|
Guo A, Salih G, Klessig DF. Activation of a diverse set of genes during the tobacco resistance response to TMV is independent of salicylic acid; induction of a subset is also ethylene independent. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:409-18. [PMID: 10758493 DOI: 10.1046/j.1365-313x.2000.00692.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Through differential screening of a cDNA library, we cloned six groups of genes that are expressed relatively early in the inoculated leaves of tobacco resisting infection by tobacco mosaic virus (TMV). Induction of all these genes was subsequently detected in the uninoculated leaves; thus, their expression is associated with the development of both local and systemic acquired resistance. Exogenously applied salicylic acid (SA) was observed to induce these genes transiently. However, analyses with transgenic NahG plants, which are unable to accumulate SA, demonstrated that expression of these genes in TMV-inoculated leaves is mediated via an SA-independent pathway. Because the expression kinetics of these genes differ from those associated with the well-characterized pathogenesis-related protein (PR-1) and phenylalanine ammonia-lyase (PAL) genes, we propose that they belong to a group which we designate SIS, for SA-independent, systemically induced genes. Interestingly, the expression of several SIS genes in the uninoculated leaves of TMV-infected NahG plants was delayed and/or reduced, raising the possibility that SA is involved in activating some of these genes in systemic tissue. Most of the SIS genes were induced by exogenous ethylene. However, analyses of infected NahG plants treated with ethylene action and/or synthesis inhibitors indicated that the TMV-induced expression of several SIS genes is independent of ethylene as well as SA.
Collapse
Affiliation(s)
- A Guo
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | | | |
Collapse
|
366
|
Dubery IA, Teodorczuk LG, Louw AE. Early responses in methyl jasmonate-preconditioned cells toward pathogen-derived elicitors. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:105-10. [PMID: 10775507 DOI: 10.1006/mcbr.2000.0198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Early, signal transduction-related responses in cultured tobacco cells due to methyl jasmonate (MeJa), a cell-wall-derived elicitor from Phytophthora nicotianae and chitosan, were investigated. MeJa was an effective inducer of lipid peroxidation and lipoxygenase (LOX) activity with maximum levels reached within 2 h and 4-8 h, respectively. Chitosan and the elicitor induced a transient increase (1-4 h) in lipid peroxidation. Conditioning with MeJA, followed by secondary elicitation, led to a significant increase in malondialdehyde concentration after 1 h. Chitosan and the elicitor induced transient activation of LOX with maximal values between 8 and 12 h, with preconditioning resulting in a rapid increase in LOX activity at 4 h post elicitation. MeJA did not effect phosphoprotein accumulation but conditioning led to the potentiation and differential induction of phosphoproteins due to chitosan and elicitor. The results indicate that cells are sensitized by the exposure to MeJa to respond more intensely and rapidly toward secondary elicitation by fungal pathogen derived elicitors.
Collapse
Affiliation(s)
- I A Dubery
- Department of Chemistry and Biochemistry, RAU University, Auckland Park, South Africa.
| | | | | |
Collapse
|
367
|
The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 2000; 26:252-258. [PMID: 10689085 DOI: 10.1016/s0141-0229(99)00137-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hairy root cultures of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to increase productivity, several biotic and abiotic elicitors were tested. Salicylic acid increased significantly the release of both alkaloids (2- to 12-fold) and it also acted positively on specific production without altering the production profile. AgNO(3) increased significantly scopolamine release (3-fold) and both alkaloid's accumulation (5- to 8-fold) in the roots, thus favoring the production of scopolamine (up to 2-fold). The inhibiting effects of AgNO(3) and salicylic acid on ethylene could be partly responsible for these responses. Yeast extract incremented the intracellular content of both alkaloids (ca. 3-fold), but particularly increased the release of scopolamine (7-fold). CaCl(2) had little effect on accumulation or release of either alkaloid. CdCl(2) acted positively on the release of both alkaloids (3- to 24-fold), but was highly detrimental to growth. Hairy roots of B. candida are therefore susceptible to elicitation by biotic and abiotic elicitors, with variations in the kinetics of induction and the extent of release of each metabolite, thereby also exerting different effects on the alkaloid profile.
Collapse
|
368
|
Abstract
Complementary biochemical and genetic approaches are being used to dissect the signaling network that regulates the innate immune response in plants. Receptor-mediated recognition of invading pathogens triggers a signal amplification loop that is based on synergistic interactions between nitric oxide, reactive oxygen intermediates and salicylic acid. Alternative resistance mechanisms in Arabidopsis are deployed against different types of pathogens; these mechanisms are mediated by either salicylic acid or the growth regulators jasmonic acid and ethylene.
Collapse
Affiliation(s)
- J M McDowell
- Dept of Plant Pathology, Plant Physiology, and Weed Science, Virginia Polytechnic Institute, Blacksburg, VA 24061-0331, USA
| | | |
Collapse
|
369
|
Weiler EW, Laudert D, Stelmach BA, Hennig P, Biesgen C, Kubigsteltig I. Octadecanoid and hexadecanoid signalling in plant defence. NOVARTIS FOUNDATION SYMPOSIUM 1999; 223:191-204. [PMID: 10549556 DOI: 10.1002/9780470515679.ch13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Plants respond to situations requiring the initiation of inducible defence reactions with a complex array of signalling events that ultimately result in the activation of sets of defence genes. Among the chemical signals involved in the induction of defence reactions are cyclic oxylipins derived from C18- or C16-unsaturated fatty acids, the octadecanoids and the hexadecanoids. Key to understanding octadecanoid biology are the C18-metabolite 12-oxophytodienoic acid (OPDA) and the C12-compound jasmonic acid which is biosynthetically derived from 12-oxophytodienoic acid. Different octadecanoids likely have different biological functions. The bouquet of signalling compounds, rather than any single compound, is probably decisive for the biological response that results. This means that the processes regulating the pool sizes of different octadecanoids and their distribution within the plant are key to understanding octadecanoid biology. Recent results, including the cloning of several enzymes of the octadecanoid biosynthetic pathway, have provided first insights into these processes and into how the octadecanoid system is linked to other defence-related signalling pathways of the plant cell.
Collapse
Affiliation(s)
- E W Weiler
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
370
|
Thara VK, Tang X, Gu YQ, Martin GB, Zhou JM. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes pti4 and pti5 independent of ethylene, salicylate and jasmonate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:475-483. [PMID: 10607299 DOI: 10.1046/j.1365-313x.1999.00619.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The tomato genes Pti4 and Pti5 encode ethylene-responsive element binding protein-like transcription factors that bind to the GCC box, a conserved cis-element in many defense-related genes. The Pti proteins have previously been shown to interact with the tomato disease resistance protein Pto. Here we report that the expression of both Pti4 and Pti5 are induced by a virulent strain of Pseudomonas syringae pv tomato. The expression of Pti5 is further enhanced by the interaction of the Pto gene in tomato and the corresponding avrPto gene in the bacterium. The enhancement of Pti5 expression by Pto-avrPto interaction requires a functional Prf gene in the plant. Pti5 appears to be expressed specifically during biotic stresses, suggesting a specific role in plant defense. Pti4 and several EREBP-like genes are induced by ethylene, salicylate and wounding. However, the Pseudomonas bacterium induced a wild-type level of Pti4 and Pti5 transcripts in tomato plants carrying the nahG transgene, the Nr mutation, or the def1 mutation. In addition, the ethylene action inhibitor norbornadiene did not inhibit the induction of Pti4 and Pti5 either in the compatible or incompatible interactions. The results suggest that the Pseudomonas bacterium induces Pti4 and Pti5 expression through a pathway independent of salicylic acid, ethylene and jasmonic acid.
Collapse
|
371
|
Gowda BS, Riopel JL, Timko MP. NRSA-1: a resistance gene homolog expressed in roots of non-host plants following parasitism by Striga asiatica (witchweed). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:217-230. [PMID: 10571881 DOI: 10.1046/j.1365-313x.1999.00598.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Studies of the initial interactions of Striga asiatica with the non-host plant species Tagetes erecta (marigold) established that parasite penetration through the root is arrested most frequently in the cortex. The arrest of parasite ingress is associated with browning and necrosis of root cortical cells flanking the invading endophyte and with increased intracellular wall appositions on the root cell walls directly adjacent to the plant-parasite interface. Using a polymerase chain reaction-based differential cDNA amplification strategy followed by 5'-RACE, we have identified several gene products whose expression is induced in marigold roots during attempted parasitism by Striga. Among these was a 917 bp cDNA encoding a 221 amino acid protein with significant homology to proteins encoded by disease resistance genes from other plant species, including N, RPP5, L6 and M. This cDNA was subsequently used to isolate a nuclear gene, designated NRSA-1, for non-host resistance to Striga asiatica. NRSA-1 is a member of a small gene family in marigold consisting of two to four members. RNA gel blot analysis showed that NRSA-1 transcripts accumulate to high levels in roots near the site of Striga invasion within 120 h after parasite attachment, and appear at lower levels throughout the rest of the plant under Striga parasitism. NRSA-1 expression is rapidly induced by treatment with jasmonic acid (JA), but not by mechanical wounding, treatment with salicylic acid, paraquat or ABA. A possible role for NRSA-1 in the non-host resistance mechanism is discussed.
Collapse
Affiliation(s)
- B S Gowda
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | | | |
Collapse
|
372
|
Glazebrook J. Genes controlling expression of defense responses in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 1999; 2:280-6. [PMID: 10458996 DOI: 10.1016/s1369-5266(99)80050-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the past year, two regulatory defense-related genes, EDS1l and COl1, have been cloned. Several other genes with regulatory functions have been identified by mutation, including DND1, PAD4, CPR6, and SSl1. It has become clear that jasmonate signaling plays an important role in defense response signaling, and that the jasmonate and salicylic acid signaling pathways are interconnected.
Collapse
Affiliation(s)
- J Glazebrook
- Novartis Agricultural Discovery, Institute, Inc., 3050 Science Park Rd, Suite 102, San Diego, CA 92121, USA.
| |
Collapse
|
373
|
Bolwell GP. Role of active oxygen species and NO in plant defence responses. CURRENT OPINION IN PLANT BIOLOGY 1999; 2:287-94. [PMID: 10459001 DOI: 10.1016/s1369-5266(99)80051-x] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research in the area of active oxygen species is going through a reflective stage. There is controversy whether multiple mechanisms for active oxygen species generation exist and some data may need reassessing since the discovery of a role for NO in defence responses. Important work concerning upstream and downsteam signalling in this area is emerging, and the stage is set for approaches utilising transgenic knockouts and mutants to resolve many questions.
Collapse
Affiliation(s)
- G P Bolwell
- Division of Biochemistry, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, UK.
| |
Collapse
|
374
|
Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:9-20. [PMID: 10417722 DOI: 10.1046/j.1365-313x.1999.00491.x] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The enzyme 4-coumarate:CoA ligase (4CL) plays a key role in channelling carbon flow into diverse branch pathways of phenylpropanoid metabolism which serve important functions in plant growth and adaptation to environmental perturbations. Here we report on the cloning of the 4CL gene family from Arabidopsis thaliana and demonstrate that its three members, At4CL1, At4CL2 and At4CL3, encode isozymes with distinct substrate preference and specificities. Expression studies revealed a differential behaviour of the three genes in various plant organs and upon external stimuli such as wounding and UV irradiation or upon challenge with the fungus, Peronospora parasitica. Phylogenetic comparisons indicate that, in angiosperms, 4CL can be classified into two major clusters, class I and class II, with the At4CL1 and At4CL2 isoforms belonging to class I and At4CL3 to class II. Based on their enzymatic properties, expression characteristics and evolutionary relationships, At4CL3 is likely to participate in the biosynthetic pathway leading to flavonoids whereas At4CL1 and At4CL2 are probably involved in lignin formation and in the production of additional phenolic compounds other than flavonoids.
Collapse
Affiliation(s)
- J Ehlting
- Max-Planck-Institut für Züchtungsforschung, Abteilung Biochemie, Köln, Germany
| | | | | | | | | | | |
Collapse
|
375
|
Hoffman T, Schmidt JS, Zheng X, Bent AF. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. PLANT PHYSIOLOGY 1999; 119:935-50. [PMID: 10069832 PMCID: PMC32108 DOI: 10.1104/pp.119.3.935] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/1998] [Accepted: 11/16/1998] [Indexed: 05/18/2023]
Abstract
Plants commonly respond to pathogen infection by increasing ethylene production, but it is not clear if this ethylene does more to promote disease susceptibility or disease resistance. Ethylene production and/or responsiveness can be altered by genetic manipulation. The present study used mutagenesis to identify soybean (Glycine max L. Merr.) lines with reduced sensitivity to ethylene. Two new genetic loci were identified, Etr1 and Etr2. Mutants were compared with isogenic wild-type parents for their response to different soybean pathogens. Plant lines with reduced ethylene sensitivity developed similar or less-severe disease symptoms in response to virulent Pseudomonas syringae pv glycinea and Phytophthora sojae, but some of the mutants developed similar or more-severe symptoms in response to Septoria glycines and Rhizoctonia solani. Gene-for-gene resistance against P. syringae expressing avrRpt2 remained effective, but Rps1-k-mediated resistance against P. sojae races 4 and 7 was disrupted in the strong ethylene-insensitive etr1-1 mutant. Rps1-k-mediated resistance against P. sojae race 1 remained effective, suggesting that the Rps1-k locus may encode more than one gene for disease resistance. Overall, our results suggest that reduced ethylene sensitivity can be beneficial against some pathogens but deleterious to resistance against other pathogens.
Collapse
Affiliation(s)
- T Hoffman
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
376
|
Abstract
Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicylic acid-independent pathways provides great regulatory potential for activating multiple resistance mechanisms in varying combinations.
Collapse
Affiliation(s)
- CM Pieterse
- Section of Plant Pathology, Dept of Plant Ecology and Evolutionary Biology, Utrecht University, PO Box 800.84, 3508 TB Utrecht, The Netherlands
| |
Collapse
|