351
|
Single particle analysis integrated with microscopy: a high-throughput approach for reconstructing icosahedral particles. J Struct Biol 2014; 186:8-18. [PMID: 24613762 DOI: 10.1016/j.jsb.2014.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 11/21/2022]
Abstract
In cryo-electron microscopy and single particle analysis, data acquisition and image processing are generally carried out in sequential steps and computation of a three-dimensional reconstruction only begins once all the micrographs have been acquired. We are developing an integrated system for processing images of icosahedral particles during microscopy to provide reconstructed density maps in real-time at the highest possible resolution. The system is designed as a combination of pipelines to run in parallel on a computer cluster and analyzes micrographs as they are acquired, handling automatically all the processing steps from defocus estimation and particle picking to origin/orientation determination. An ab initio model is determined independently from the first micrographs collected, and new models are generated as more particles become available. As a proof of concept, we simulated data acquisition sessions using three sets of micrographs of good to excellent quality that were previously recorded from different icosahedral viruses. Results show that the processing of single micrographs can keep pace with an acquisition rate of about two images per minute. The reconstructed density map improves steadily during the image acquisition phase and its quality at the end of data collection is only moderately inferior to that obtained by expert users who processed semi-automatically all the micrographs after the acquisition. The current prototype demonstrates the advantages of integrating three-dimensional image processing with microscopy, which include an ability to monitor acquisition in terms of the final structure and to predict how much data and microscope resources are needed to achieve a desired resolution.
Collapse
|
352
|
Wasilewski S, Rosenthal PB. Web server for tilt-pair validation of single particle maps from electron cryomicroscopy. J Struct Biol 2014; 186:122-31. [PMID: 24582855 DOI: 10.1016/j.jsb.2014.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/16/2022]
Abstract
Three-dimensional structures of biological assemblies may be calculated from images of single particles obtained by electron cryomicroscopy. A key step is the correct determination of the orientation of the particle in individual image projections. A useful tool for validation of the quality of a 3D map and its consistency with images is tilt-pair analysis. In a successful tilt-pair test, the relative angle between orientations assigned to each image of a tilt-pair agrees with the known relative rotation angle of the microscope specimen holder during the experiment. To make the procedure easy to apply to the increasing number of single particle maps, we have developed software and a web server for tilt-pair analysis. The tilt-pair analysis program reports the overall agreement of the assigned orientations with the known tilt angle and axis of the experiment and the distribution of tilt transformations for individual particles recorded in a single image field. We illustrate application of the validation tool to several single particle specimens and describe how to interpret the scores.
Collapse
Affiliation(s)
- Sebastian Wasilewski
- Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Peter B Rosenthal
- Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| |
Collapse
|
353
|
Abstract
With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced.
Collapse
Affiliation(s)
- Fei Guo
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
354
|
Loquet A, Habenstein B, Chevelkov V, Vasa SK, Giller K, Becker S, Lange A. Atomic Structure and Handedness of the Building Block of a Biological Assembly. J Am Chem Soc 2013; 135:19135-8. [DOI: 10.1021/ja411362q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antoine Loquet
- Department
of NMR-based Structural
Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Birgit Habenstein
- Department
of NMR-based Structural
Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Veniamin Chevelkov
- Department
of NMR-based Structural
Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Suresh Kumar Vasa
- Department
of NMR-based Structural
Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Karin Giller
- Department
of NMR-based Structural
Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department
of NMR-based Structural
Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Adam Lange
- Department
of NMR-based Structural
Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| |
Collapse
|
355
|
Combined approaches to flexible fitting and assessment in virus capsids undergoing conformational change. J Struct Biol 2013; 185:427-39. [PMID: 24333899 PMCID: PMC3988922 DOI: 10.1016/j.jsb.2013.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 11/28/2013] [Accepted: 12/06/2013] [Indexed: 01/25/2023]
Abstract
Fitting of atomic components into electron cryo-microscopy (cryoEM) density maps is routinely used to understand the structure and function of macromolecular machines. Many fitting methods have been developed, but a standard protocol for successful fitting and assessment of fitted models has yet to be agreed upon among the experts in the field. Here, we created and tested a protocol that highlights important issues related to homology modelling, density map segmentation, rigid and flexible fitting, as well as the assessment of fits. As part of it, we use two different flexible fitting methods (Flex-EM and iMODfit) and demonstrate how combining the analysis of multiple fits and model assessment could result in an improved model. The protocol is applied to the case of the mature and empty capsids of Coxsackievirus A7 (CAV7) by flexibly fitting homology models into the corresponding cryoEM density maps at 8.2 and 6.1 Å resolution. As a result, and due to the improved homology models (derived from recently solved crystal structures of a close homolog – EV71 capsid – in mature and empty forms), the final models present an improvement over previously published models. In close agreement with the capsid expansion observed in the EV71 structures, the new CAV7 models reveal that the expansion is accompanied by ∼5° counterclockwise rotation of the asymmetric unit, predominantly contributed by the capsid protein VP1. The protocol could be applied not only to viral capsids but also to many other complexes characterised by a combination of atomic structure modelling and cryoEM density fitting.
Collapse
|
356
|
Young JY, Feng Z, Dimitropoulos D, Sala R, Westbrook J, Zhuravleva M, Shao C, Quesada M, Peisach E, Berman HM. Chemical annotation of small and peptide-like molecules at the Protein Data Bank. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat079. [PMID: 24291661 PMCID: PMC3843158 DOI: 10.1093/database/bat079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Over the past decade, the number of polymers and their complexes with small molecules in the Protein Data Bank archive (PDB) has continued to increase significantly. To support scientific advancements and ensure the best quality and completeness of the data files over the next 10 years and beyond, the Worldwide PDB partnership that manages the PDB archive is developing a new deposition and annotation system. This system focuses on efficient data capture across all supported experimental methods. The new deposition and annotation system is composed of four major modules that together support all of the processing requirements for a PDB entry. In this article, we describe one such module called the Chemical Component Annotation Tool. This tool uses information from both the Chemical Component Dictionary and Biologically Interesting molecule Reference Dictionary to aid in annotation. Benchmark studies have shown that the Chemical Component Annotation Tool provides significant improvements in processing efficiency and data quality. Database URL: http://wwpdb.org.
Collapse
Affiliation(s)
- Jasmine Y Young
- Department of Chemistry and Chemical Biology, and Center for Integrative Proteomics Research, Rutgers The State University of New Jersey, 174 Frelinghuysen Rd, Piscataway, NJ 08854-8087, USA and San Diego Supercomputer Centre and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0743, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor. Proc Natl Acad Sci U S A 2013; 110:20242-7. [PMID: 24277851 DOI: 10.1073/pnas.1320041110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most structural information about poliovirus interaction with neutralizing antibodies was obtained in the 1980s in studies of mouse monoclonal antibodies. Recently we have isolated a number of human/chimpanzee anti-poliovirus antibodies and demonstrated that one of them, MAb A12, could neutralize polioviruses of both serotypes 1 and 2. This communication presents data on isolation of an additional cross-neutralizing antibody (F12) and identification of a previously unknown epitope on the surface of poliovirus virions. Epitope mapping was performed by sequencing of antibody-resistant mutants and by cryo-EM of complexes of virions with Fab fragments. The results have demonstrated that both cross-neutralizing antibodies bind the site located at the bottom of the canyon surrounding the fivefold axis of symmetry that was previously shown to interact with cellular poliovirus receptor CD155. However, the same antibody binds to serotypes 1 and 2 through different specific interactions. It was also shown to interact with type 3 poliovirus, albeit with about 10-fold lower affinity, insufficient for effective neutralization. Antibody interaction with the binding site of the cellular receptor may explain its broad reactivity and suggest that further screening or antibody engineering could lead to a universal antibody capable of neutralizing all three serotypes of poliovirus.
Collapse
|
358
|
Li Y, Lu SHJ, Tsai CJ, Bohm C, Qamar S, Dodd RB, Meadows W, Jeon A, McLeod A, Chen F, Arimon M, Berezovska O, Hyman BT, Tomita T, Iwatsubo T, Johnson CM, Farrer LA, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH. Structural interactions between inhibitor and substrate docking sites give insight into mechanisms of human PS1 complexes. Structure 2013; 22:125-35. [PMID: 24210759 PMCID: PMC3887256 DOI: 10.1016/j.str.2013.09.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/28/2013] [Accepted: 09/21/2013] [Indexed: 11/18/2022]
Abstract
Presenilin-mediated endoproteolysis of transmembrane proteins plays a key role in physiological signaling and in the pathogenesis of Alzheimer disease and some cancers. Numerous inhibitors have been found via library screens, but their structural mechanisms remain unknown. We used several biophysical techniques to investigate the structure of human presenilin complexes and the effects of peptidomimetic γ-secretase inhibitors. The complexes are bilobed. The head contains nicastrin ectodomain. The membrane-embedded base has a central channel and a lateral cleft, which may represent the initial substrate docking site. Inhibitor binding induces widespread structural changes, including rotation of the head and closure of the lateral cleft. These changes block substrate access to the catalytic pocket and inhibit the enzyme. Intriguingly, peptide substrate docking has reciprocal effects on the inhibitor binding site. Similar reciprocal shifts may underlie the mechanisms of other inhibitors and of the “lateral gate” through which substrates access to the catalytic site.
The head contains nicastrin ectodomain and overhangs a solute-accessible cavity in base The base has a central channel and a lateral cleft (putative substrate docking site) Inhibitors close the cleft and channel and rotate the head, blocking substrate access
Collapse
Affiliation(s)
- Yi Li
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Stephen Hsueh-Jeng Lu
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ching-Ju Tsai
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christopher Bohm
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Seema Qamar
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Roger B Dodd
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - William Meadows
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Amy Jeon
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Adam McLeod
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Fusheng Chen
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Muriel Arimon
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Oksana Berezovska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Genetics and Genomics, Biostatistics, and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Peter H St George-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada.
| |
Collapse
|
359
|
Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit. Nature 2013; 503:539-43. [PMID: 24185006 DOI: 10.1038/nature12658] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/13/2013] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) and classical swine fever virus (CSFV) messenger RNAs contain related (HCV-like) internal ribosome entry sites (IRESs) that promote 5'-end independent initiation of translation, requiring only a subset of the eukaryotic initiation factors (eIFs) needed for canonical initiation on cellular mRNAs. Initiation on HCV-like IRESs relies on their specific interaction with the 40S subunit, which places the initiation codon into the P site, where it directly base-pairs with eIF2-bound initiator methionyl transfer RNA to form a 48S initiation complex. However, all HCV-like IRESs also specifically interact with eIF3 (refs 2, 5-7, 9-12), but the role of this interaction in IRES-mediated initiation has remained unknown. During canonical initiation, eIF3 binds to the 40S subunit as a component of the 43S pre-initiation complex, and comparison of the ribosomal positions of eIF3 and the HCV IRES revealed that they overlap, so that their rearrangement would be required for formation of ribosomal complexes containing both components. Here we present a cryo-electron microscopy reconstruction of a 40S ribosomal complex containing eIF3 and the CSFV IRES. Remarkably, although the position and interactions of the CSFV IRES with the 40S subunit in this complex are similar to those of the HCV IRES in the 40S-IRES binary complex, eIF3 is completely displaced from its ribosomal position in the 43S complex, and instead interacts through its ribosome-binding surface exclusively with the apical region of domain III of the IRES. Our results suggest a role for the specific interaction of HCV-like IRESs with eIF3 in preventing ribosomal association of eIF3, which could serve two purposes: relieving the competition between the IRES and eIF3 for a common binding site on the 40S subunit, and reducing formation of 43S complexes, thereby favouring translation of viral mRNAs.
Collapse
|
360
|
Lagerstedt I, Moore WJ, Patwardhan A, Sanz-García E, Best C, Swedlow JR, Kleywegt GJ. Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB. J Struct Biol 2013; 184:173-81. [PMID: 24113529 PMCID: PMC3898923 DOI: 10.1016/j.jsb.2013.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/25/2022]
Abstract
The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed.
Collapse
Affiliation(s)
- Ingvar Lagerstedt
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - William J. Moore
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Ardan Patwardhan
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Eduardo Sanz-García
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Christoph Best
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Jason R. Swedlow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Gerard J. Kleywegt
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, United Kingdom
| |
Collapse
|
361
|
Cossio P, Hummer G. Bayesian analysis of individual electron microscopy images: towards structures of dynamic and heterogeneous biomolecular assemblies. J Struct Biol 2013; 184:427-37. [PMID: 24161733 DOI: 10.1016/j.jsb.2013.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/05/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
We develop a method to extract structural information from electron microscopy (EM) images of dynamic and heterogeneous molecular assemblies. To overcome the challenge of disorder in the imaged structures, we analyze each image individually, avoiding information loss through clustering or averaging. The Bayesian inference of EM (BioEM) method uses a likelihood-based probabilistic measure to quantify the consistency between each EM image and given structural models. The likelihood function accounts for uncertainties in the molecular position and orientation, variations in the relative intensities and noise in the experimental images. The BioEM formalism is physically intuitive and mathematically simple. We show that for experimental GroEL images, BioEM correctly identifies structures according to the functional state. The top-ranked structure is the corresponding X-ray crystal structure, followed by an EM structure generated previously from a superset of the EM images used here. To analyze EM images of highly flexible molecules, we propose an ensemble refinement procedure, and validate it with synthetic EM maps of the ESCRT-I-II supercomplex. Both the size of the ensemble and its structural members are identified correctly. BioEM offers an alternative to 3D-reconstruction methods, extracting accurate population distributions for highly flexible structures and their assemblies. We discuss limitations of the method, and possible applications beyond ensemble refinement, including the cross-validation and unbiased post-assessment of model structures, and the structural characterization of systems where traditional approaches fail. Overall, our results suggest that the BioEM framework can be used to analyze EM images of both ordered and disordered molecular systems.
Collapse
Affiliation(s)
- Pilar Cossio
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | |
Collapse
|
362
|
Dai W, Fu C, Raytcheva D, Flanagan J, Khant HA, Liu X, Rochat RH, Haase-Pettingell C, Piret J, Ludtke SJ, Nagayama K, Schmid MF, King JA, Chiu W. Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 2013; 502:707-10. [PMID: 24107993 PMCID: PMC3984937 DOI: 10.1038/nature12604] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022]
Abstract
Cyanobacteria are photosynthetic organisms responsible for ~25% of organic carbon fixation on earth. These bacteria began to convert solar energy and carbon dioxide into bioenergy and oxygen billions of years ago. Cyanophages, which infect these bacteria, play an important role in regulating the marine ecosystem by controlling cyanobacteria community organization and mediating lateral gene transfer. Here we visualize the maturation process of cyanophage Syn5 inside its host cell, Synechococcus, using Zernike Phase Contrast (ZPC) electron cryo-tomography (cryoET)1,2. This imaging modality yields significant enhancement of image contrast over conventional cryoET and thus facilitates the direct identification of subcellular components, including thylakoid membranes, carboxysomes and polyribosomes, as well as phages, inside the congested cytosol of the infected cell. By correlating the structural features and relative abundance of viral progeny within cells at different stages of infection, we identified distinct Syn5 assembly intermediates. Our results suggest that the procapsid releases scaffolding proteins and expands its volume at an early stage of genome packaging. Later in assembly, we detected full particles with a tail either with or without an additional horn. The morphogenetic pathway we describe herein is highly conserved and was probably established long before that of double stranded DNA (dsDNA) viruses infecting higher life forms.
Collapse
Affiliation(s)
- Wei Dai
- National Center for Macromolecular Imaging, Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proc Natl Acad Sci U S A 2013; 110:18037-41. [PMID: 24106306 DOI: 10.1073/pnas.1314449110] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single particle cryo-electron microscopy is currently poised to produce high-resolution structures of many biological assemblies, but several pitfalls can trap the unwary. This critique highlights one problem that is particularly relevant when smaller structures are being studied. It is known as "Einstein from noise," in which the experimenter honestly believes they have recorded images of their particles, whereas in reality, most if not all of their data consist of pure noise. Selection of particles using cross-correlation methods can then lead to 3D maps that resemble the model used in the initial selection and provide the illusion of progress. Suggestions are given about how to circumvent the problem.
Collapse
|
364
|
Ludtke SJ, Serysheva II. Single-particle cryo-EM of calcium release channels: structural validation. Curr Opin Struct Biol 2013; 23:755-62. [PMID: 23831288 PMCID: PMC3805725 DOI: 10.1016/j.sbi.2013.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022]
Abstract
Few tools are available to determine the structure of large integral membrane proteins such as intracellular Ca(2+) release channels, RyRs and IP3Rs. Single particle cryo-EM can readily determine the structure of such channels to intermediate resolution, and can be used to quantitatively assess conformational variability. However, due to the, often low, image contrast of these cryospecimens, methods for validation are critical to insure the accuracy of such structures, and to put limits on their interpretability. The low-resolution structure of RyR has been well established for some time, but high-resolution has been slow to emerge. The structure of IP3R channel by cryo-EM had a number of false-starts, but improved validation methods have recently lead to a demonstrably accurate reconstruction.
Collapse
Affiliation(s)
- Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
365
|
Affiliation(s)
- Robert M Glaeser
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
366
|
Montelione GT, Nilges M, Bax A, Güntert P, Herrmann T, Richardson JS, Schwieters CD, Vranken WF, Vuister GW, Wishart DS, Berman HM, Kleywegt GJ, Markley JL. Recommendations of the wwPDB NMR Validation Task Force. Structure 2013; 21:1563-70. [PMID: 24010715 PMCID: PMC3884077 DOI: 10.1016/j.str.2013.07.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 11/25/2022]
Abstract
As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment.
Collapse
Affiliation(s)
- Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Chen DH, Madan D, Weaver J, Lin Z, Schröder GF, Chiu W, Rye HS. Visualizing GroEL/ES in the act of encapsulating a folding protein. Cell 2013; 153:1354-65. [PMID: 23746846 DOI: 10.1016/j.cell.2013.04.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/06/2013] [Accepted: 04/19/2013] [Indexed: 11/16/2022]
Abstract
The GroEL/ES chaperonin system is required for the assisted folding of many proteins. How these substrate proteins are encapsulated within the GroEL-GroES cavity is poorly understood. Using symmetry-free, single-particle cryo-electron microscopy, we have characterized a chemically modified mutant of GroEL (EL43Py) that is trapped at a normally transient stage of substrate protein encapsulation. We show that the symmetric pattern of the GroEL subunits is broken as the GroEL cis-ring apical domains reorient to accommodate the simultaneous binding of GroES and an incompletely folded substrate protein (RuBisCO). The collapsed RuBisCO folding intermediate binds to the lower segment of two apical domains, as well as to the normally unstructured GroEL C-terminal tails. A comparative structural analysis suggests that the allosteric transitions leading to substrate protein release and folding involve concerted shifts of GroES and the GroEL apical domains and C-terminal tails.
Collapse
Affiliation(s)
- Dong-Hua Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
368
|
Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, Grassucci RA, Hellen CUT, Pestova TV, Frank J. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 2013; 153:1108-19. [PMID: 23706745 DOI: 10.1016/j.cell.2013.04.036] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/06/2013] [Accepted: 04/05/2013] [Indexed: 01/19/2023]
Abstract
Eukaryotic translation initiation begins with assembly of a 43S preinitiation complex. First, methionylated initiator methionine transfer RNA (Met-tRNAi(Met)), eukaryotic initiation factor (eIF) 2, and guanosine triphosphate form a ternary complex (TC). The TC, eIF3, eIF1, and eIF1A cooperatively bind to the 40S subunit, yielding the 43S preinitiation complex, which is ready to attach to messenger RNA (mRNA) and start scanning to the initiation codon. Scanning on structured mRNAs additionally requires DHX29, a DExH-box protein that also binds directly to the 40S subunit. Here, we present a cryo-electron microscopy structure of the mammalian DHX29-bound 43S complex at 11.6 Å resolution. It reveals that eIF2 interacts with the 40S subunit via its α subunit and supports Met-tRNAi(Met) in an unexpected P/I orientation (eP/I). The structural core of eIF3 resides on the back of the 40S subunit, establishing two principal points of contact, whereas DHX29 binds around helix 16. The structure provides insights into eukaryote-specific aspects of translation, including the mechanism of action of DHX29.
Collapse
Affiliation(s)
- Yaser Hashem
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling. Proc Natl Acad Sci U S A 2013; 110:12301-6. [PMID: 23840063 DOI: 10.1073/pnas.1309947110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
High-resolution structures of viruses have made important contributions to modern structural biology. Bacteriophages, the most diverse and abundant organisms on earth, replicate and infect all bacteria and archaea, making them excellent potential alternatives to antibiotics and therapies for multidrug-resistant bacteria. Here, we improved upon our previous electron cryomicroscopy structure of Salmonella bacteriophage epsilon15, achieving a resolution sufficient to determine the tertiary structures of both gp7 and gp10 protein subunits that form the T = 7 icosahedral lattice. This study utilizes recently established best practice for near-atomic to high-resolution (3-5 Å) electron cryomicroscopy data evaluation. The resolution and reliability of the density map were cross-validated by multiple reconstructions from truly independent data sets, whereas the models of the individual protein subunits were validated adopting the best practices from X-ray crystallography. Some sidechain densities are clearly resolved and show the subunit-subunit interactions within and across the capsomeres that are required to stabilize the virus. The presence of the canonical phage and jellyroll viral protein folds, gp7 and gp10, respectively, in the same virus suggests that epsilon15 may have emerged more recently relative to other bacteriophages.
Collapse
|
370
|
Evans PR, Murshudov GN. How good are my data and what is the resolution? ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1204-14. [PMID: 23793146 PMCID: PMC3689523 DOI: 10.1107/s0907444913000061] [Citation(s) in RCA: 3626] [Impact Index Per Article: 302.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/02/2013] [Indexed: 12/01/2022]
Abstract
Following integration of the observed diffraction spots, the process of `data reduction' initially aims to determine the point-group symmetry of the data and the likely space group. This can be performed with the program POINTLESS. The scaling program then puts all the measurements on a common scale, averages measurements of symmetry-related reflections (using the symmetry determined previously) and produces many statistics that provide the first important measures of data quality. A new scaling program, AIMLESS, implements scaling models similar to those in SCALA but adds some additional analyses. From the analyses, a number of decisions can be made about the quality of the data and whether some measurements should be discarded. The effective `resolution' of a data set is a difficult and possibly contentious question (particularly with referees of papers) and this is discussed in the light of tests comparing the data-processing statistics with trials of refinement against observed and simulated data, and automated model-building and comparison of maps calculated with different resolution limits. These trials show that adding weak high-resolution data beyond the commonly used limits may make some improvement and does no harm.
Collapse
Affiliation(s)
- Philip R Evans
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, England.
| | | |
Collapse
|
371
|
Chen S, McMullan G, Faruqi AR, Murshudov GN, Short JM, Scheres SH, Henderson R. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 2013; 135:24-35. [PMID: 23872039 PMCID: PMC3834153 DOI: 10.1016/j.ultramic.2013.06.004] [Citation(s) in RCA: 750] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/04/2013] [Accepted: 06/08/2013] [Indexed: 12/03/2022]
Abstract
Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an unbiased FSC from the two curves, even when a substantial amount of overfitting is present. The approach is software independent. The user is therefore completely free to use any established method or novel combination of methods, provided the HR-noise test is carried out in parallel. Applying this procedure to cryoEM images of beta-galactosidase shows how overfitting varies greatly depending on the procedure, but in the best case shows no overfitting and a resolution of ~6 Å. (382 words)
A new method to validate 3D cryoEM maps of biological structures is described. High-resolution noise substitution is a tool to measure the amount of overfitting of noise in single particle cryoEM. A reliable, unbiased resolution estimation can be obtained even when some overfitting is present. Structure of beta-galactosidase at ~6 Å resolution is determined by cryoEM.
Collapse
|
372
|
Murray SC, Flanagan J, Popova OB, Chiu W, Ludtke SJ, Serysheva II. Validation of cryo-EM structure of IP₃R1 channel. Structure 2013; 21:900-9. [PMID: 23707684 DOI: 10.1016/j.str.2013.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
About a decade ago, three electron cryomicroscopy (cryo-EM) single-particle reconstructions of IP3R1 were reported at low resolution. It was disturbing that these structures bore little similarity to one another, even at the level of quaternary structure. Recently, we published an improved structure of IP3R1 at ∼1 nm resolution. However, this structure did not bear any resemblance to any of the three previously published structures, leading to the question of why the structure should be considered more reliable than the original three. Here, we apply several methods, including class-average/map comparisons, tilt-pair validation, and use of multiple refinement software packages, to give strong evidence for the reliability of our recent structure. The map resolution and feature resolvability are assessed with the gold standard criterion. This approach is generally applicable to assessing the validity of cryo-EM maps of other molecular machines.
Collapse
Affiliation(s)
- Stephen C Murray
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
373
|
Gutmanas A, Oldfield TJ, Patwardhan A, Sen S, Velankar S, Kleywegt GJ. The role of structural bioinformatics resources in the era of integrative structural biology. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:710-21. [PMID: 23633580 PMCID: PMC3640467 DOI: 10.1107/s0907444913001157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/11/2013] [Indexed: 11/10/2022]
Abstract
The history and the current state of the PDB and EMDB archives is briefly described, as well as some of the challenges that they face. It seems natural that the role of structural biology archives will change from being a pure repository of historic data into becoming an indispensable resource for the wider biomedical community. As part of this transformation, it will be necessary to validate the biomacromolecular structure data and ensure the highest possible quality for the archive holdings, to combine structural data from different spatial scales into a unified resource and to integrate structural data with functional, genetic and taxonomic data as well as other information available in bioinformatics resources. Some recent developments and plans to address these challenges at PDBe are presented.
Collapse
Affiliation(s)
- Aleksandras Gutmanas
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Thomas J. Oldfield
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Ardan Patwardhan
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Sanchayita Sen
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Sameer Velankar
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Gerard J. Kleywegt
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| |
Collapse
|
374
|
Berman HM, Coimbatore Narayanan B, Di Costanzo L, Dutta S, Ghosh S, Hudson BP, Lawson CL, Peisach E, Prlić A, Rose PW, Shao C, Yang H, Young J, Zardecki C. Trendspotting in the Protein Data Bank. FEBS Lett 2013; 587:1036-45. [PMID: 23337870 PMCID: PMC4068610 DOI: 10.1016/j.febslet.2012.12.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 01/20/2023]
Abstract
The Protein Data Bank (PDB) was established in 1971 as a repository for the three dimensional structures of biological macromolecules. Since then, more than 85000 biological macromolecule structures have been determined and made available in the PDB archive. Through analysis of the corpus of data, it is possible to identify trends that can be used to inform us abou the future of structural biology and to plan the best ways to improve the management of the ever-growing amount of PDB data.
Collapse
Affiliation(s)
- Helen M Berman
- Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854-8076, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Cryo-EM structure of a novel calicivirus, Tulane virus. PLoS One 2013; 8:e59817. [PMID: 23533651 PMCID: PMC3606144 DOI: 10.1371/journal.pone.0059817] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/19/2013] [Indexed: 12/18/2022] Open
Abstract
Tulane virus (TV) is a newly isolated cultivatable calicivirus that infects juvenile rhesus macaques. Here we report a 6.3 Å resolution cryo-electron microscopy structure of the TV virion. The TV virion is about 400 Å in diameter and consists of a T = 3 icosahedral protein capsid enclosing the RNA genome. 180 copies of the major capsid protein VP1 (∼57 KDa) are organized into two types of dimers A/B and C/C and form a thin, smooth shell studded with 90 dimeric protrusions. The overall capsid organization and the capsid protein fold of TV closely resemble that of other caliciviruses, especially of human Norwalk virus, the prototype human norovirus. These close structural similarities support TV as an attractive surrogate for the non-cultivatable human noroviruses. The most distinctive feature of TV is that its C/C dimers are in a highly flexible conformation with significantly reduced interactions between the shell (S) domain and the protruding (P) domain of VP1. A comparative structural analysis indicated that the P domains of TV C/C dimers were much more flexible than those of other caliciviruses. These observations, combined with previous studies on other caliciviruses, led us to hypothesize that the enhanced flexibility of C/C dimer P domains are likely required for efficient calicivirus-host cell interactions and the consequent uncoating and genome release. Residues in the S-P1 hinge between the S and P domain may play a critical role in the flexibility of P domains of C/C dimers.
Collapse
|
376
|
Berman HM, Kleywegt GJ, Nakamura H, Markley JL. The future of the Protein Data Bank. Biopolymers 2013; 99:218-22. [PMID: 23023942 PMCID: PMC3684242 DOI: 10.1002/bip.22132] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/14/2012] [Indexed: 11/10/2022]
Abstract
The Worldwide Protein Data Bank (wwPDB) is the international collaboration that manages the deposition, processing and distribution of the PDB archive. The wwPDB's mission is to maintain a single archive of macromolecular structural data that are freely and publicly available to the global community. Its members [RCSB PDB (USA), PDBe (Europe), PDBj (Japan), and BMRB (USA)] host data-deposition sites and mirror the PDB ftp archive. To support future developments in structural biology, the wwPDB partners are addressing organizational, scientific, and technical challenges.
Collapse
Affiliation(s)
- Helen M Berman
- RCSB PDB, Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
377
|
Abstract
Integrative approaches using data from a wide variety of methods are yielding model structures of complex biological assemblies.
Collapse
Affiliation(s)
- Andrew B Ward
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
378
|
Asenjo AB, Chatterjee C, Tan D, DePaoli V, Rice WJ, Diaz-Avalos R, Silvestry M, Sosa H. Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases. Cell Rep 2013; 3:759-68. [PMID: 23434508 DOI: 10.1016/j.celrep.2013.01.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/12/2012] [Accepted: 01/24/2013] [Indexed: 10/27/2022] Open
Abstract
To elucidate the structural basis of the mechanism of microtubule depolymerization by kinesin-13s, we analyzed complexes of tubulin and the Drosophila melanogaster kinesin-13 KLP10A by electron microscopy (EM) and fluorescence polarization microscopy. We report a nanometer-resolution (1.1 nm) cryo-EM three-dimensional structure of the KLP10A head domain (KLP10AHD) bound to curved tubulin. We found that binding of KLP10AHD induces a distinct tubulin configuration with displacement (shear) between tubulin subunits in addition to curvature. In this configuration, the kinesin-binding site differs from that in straight tubulin, providing an explanation for the distinct interaction modes of kinesin-13s with the microtubule lattice or its ends. The KLP10AHD-tubulin interface comprises three areas of interaction, suggesting a crossbow-type tubulin-bending mechanism. These areas include the kinesin-13 family conserved KVD residues, and as predicted from the crossbow model, mutating these residues changes the orientation and mobility of KLP10AHDs interacting with the microtubule.
Collapse
Affiliation(s)
- Ana B Asenjo
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Abstract
Improved electron detectors and image-processing techniques will allow the structures of macromolecules to be determined from tens of thousands of single-particle cryo-EM images, rather than the hundreds of thousands needed previously.
Collapse
Affiliation(s)
- Nikolaus Grigorieff
- is at the Department of Biochemistry and the Howard Hughes Medical Institute, Brandeis University , Waltham , Untied States
| |
Collapse
|
380
|
Patwardhan A, Carazo JM, Carragher B, Henderson R, Heymann JB, Hill E, Jensen GJ, Lagerstedt I, Lawson CL, Ludtke SJ, Mastronarde D, Moore WJ, Roseman A, Rosenthal P, Sorzano COS, Sanz-García E, Scheres SHW, Subramaniam S, Westbrook J, Winn M, Swedlow JR, Kleywegt GJ. Data management challenges in three-dimensional EM. Nat Struct Mol Biol 2012; 19:1203-7. [PMID: 23211764 PMCID: PMC4048199 DOI: 10.1038/nsmb.2426] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/24/2012] [Indexed: 11/09/2022]
Abstract
This report describes the outcomes of the Data Management Challenges in 3D Electron Microscopy workshop. Key topics discussed include data models, validation and raw-data archiving. The meeting participants agreed that the EMDataBank should take the lead in addressing these issues, and concrete action points were agreed upon that will have a substantial impact on the accessibility of three-dimensional EM data in biology and medicine.
Collapse
Affiliation(s)
- Ardan Patwardhan
- Protein Data Bank in Europe, European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
381
|
|
382
|
Berman HM. Creating a community resource for protein science. Protein Sci 2012; 21:1587-96. [PMID: 22969036 PMCID: PMC3527698 DOI: 10.1002/pro.2154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 08/30/2012] [Indexed: 12/13/2022]
Abstract
In addition to being one of the early pioneers in protein crystallography, Carl Brändén made significant contributions to science education with his elegant and beautifully illustrated book Introduction to Protein Structure (Brändén and Tooze, New York: Garland, 1991). It is truly an honor to receive this award in their names. This award and the 40th anniversary of the Protein Data Bank (PDB; Berman et al., Structure 2012;20:391-396) have given me an opportunity to reflect on the various components that have contributed to building a resource for protein science and to try to quantify the impact of having PDB data openly available.
Collapse
Affiliation(s)
- Helen M Berman
- Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
383
|
Jiang W, Guo F, Liu Z. A graph theory method for determination of cryo-EM image focuses. J Struct Biol 2012; 180:343-51. [PMID: 22842112 PMCID: PMC3483361 DOI: 10.1016/j.jsb.2012.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/18/2012] [Accepted: 07/12/2012] [Indexed: 01/08/2023]
Abstract
Accurate determination of micrograph focuses is essential for averaging multiple images to reach high-resolution 3-D reconstructions in electron cryo-microscopy (cryo-EM). Current methods use iterative fitting of focus-dependent simulated power spectra to the power spectra of experimental images, with the fitting performed independently for different images. Here we have developed a novel graph theory based method in which the rotational average focus and individual angular sector focuses of all images are determined simultaneously in closed form using the least square solution of overdetermined linear equations. The new method was shown to be fast, accurate, and robust in tests with large datasets of experimental low dose cryo-EM images. Its integration with three classic power spectra fitting methods also allows cross validation of the results by these vastly different methods. The new integrated focus determination method will improve reliability of automated focus determination for large-scale data processing that is increasingly common in the cryo-EM field.
Collapse
Affiliation(s)
- Wen Jiang
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, 249 S. Martin Jischke Drive, West Lafayette, IN 47906, USA.
| | | | | |
Collapse
|
384
|
Fernandez JJ. Computational methods for electron tomography. Micron 2012; 43:1010-30. [DOI: 10.1016/j.micron.2012.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/13/2023]
|
385
|
Richardson JS, Richardson DC. Studying and polishing the PDB's macromolecules. Biopolymers 2012; 99:170-82. [PMID: 23023928 DOI: 10.1002/bip.22108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/06/2012] [Indexed: 11/07/2022]
Abstract
Macromolecular crystal structures are among the best of scientific data, providing detailed insight into these complex and biologically important molecules with a relatively low level of error and subjectivity. However, there are two notable problems with getting the most information from them. The first is that the models are not perfect: there is still opportunity for improving them, and users need to evaluate whether the local reliability in a structure is up to answering their question of interest. The second is that protein and nucleic acid molecules are highly complex and individual, inherently handed and three-dimensional, and the cooperative and subtle interactions that govern their detailed structure and function are not intuitively evident. Thus there is a real need for graphical representations and descriptive classifications that enable molecular 3D literacy. We have spent our career working to understand these elegant molecules ourselves, and building tools to help us and others determine and understand them better. The Protein Data Bank (PDB) has of course been vital and central to this undertaking. Here we combine some history of our involvement as depositors, illustrators, evaluators, and end-users of PDB structures with commentary on how best to study and draw scientific inferences from them.
Collapse
Affiliation(s)
- Jane S Richardson
- Department of Biochemistry, Duke University, Durham, North Carolina, USA.
| | | |
Collapse
|
386
|
Scheres SHW. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 2012; 180:519-30. [PMID: 23000701 PMCID: PMC3690530 DOI: 10.1016/j.jsb.2012.09.006] [Citation(s) in RCA: 4048] [Impact Index Per Article: 311.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 11/17/2022]
Abstract
RELION, for REgularized LIkelihood OptimizatioN, is an open-source computer program for the refinement of macromolecular structures by single-particle analysis of electron cryo-microscopy (cryo-EM) data. Whereas alternative approaches often rely on user expertise for the tuning of parameters, RELION uses a Bayesian approach to infer parameters of a statistical model from the data. This paper describes developments that reduce the computational costs of the underlying maximum a posteriori (MAP) algorithm, as well as statistical considerations that yield new insights into the accuracy with which the relative orientations of individual particles may be determined. A so-called gold-standard Fourier shell correlation (FSC) procedure to prevent overfitting is also described. The resulting implementation yields high-quality reconstructions and reliable resolution estimates with minimal user intervention and at acceptable computational costs.
Collapse
Affiliation(s)
- Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
387
|
|
388
|
Affiliation(s)
- Phil Evans
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
389
|
Gore S, Velankar S, Kleywegt GJ. Implementing an X-ray validation pipeline for the Protein Data Bank. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:478-83. [PMID: 22505268 PMCID: PMC3322607 DOI: 10.1107/s0907444911050359] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022]
Abstract
There is an increasing realisation that the quality of the biomacromolecular structures deposited in the Protein Data Bank (PDB) archive needs to be assessed critically using established and powerful validation methods. The Worldwide Protein Data Bank (wwPDB) organization has convened several Validation Task Forces (VTFs) to advise on the methods and standards that should be used to validate all of the entries already in the PDB as well as all structures that will be deposited in the future. The recommendations of the X-ray VTF are currently being implemented in a software pipeline. Here, ongoing work on this pipeline is briefly described as well as ways in which validation-related information could be presented to users of structural data.
Collapse
Affiliation(s)
- Swanand Gore
- Protein Data Bank in Europe (PDBe), EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Gerard J. Kleywegt
- Protein Data Bank in Europe (PDBe), EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| |
Collapse
|