351
|
Chu CW, Hou F, Zhang J, Phu L, Loktev AV, Kirkpatrick DS, Jackson PK, Zhao Y, Zou H. A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol Biol Cell 2010; 22:448-56. [PMID: 21177827 PMCID: PMC3038643 DOI: 10.1091/mbc.e10-03-0203] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We report that San, an acetyltransferase required for sister chromatid cohesion, also acetylates β-tubulin at lysine 252. The acetylation happens only on free tubulin heterodimers, and it delays the incorporation of modified tubulins into microtubules in vivo. Dynamic instability is a critical property of microtubules (MTs). By regulating the rate of tubulin polymerization and depolymerization, cells organize the MT cytoskeleton to accommodate their specific functions. Among many processes, posttranslational modifications of tubulin are implicated in regulating MT functions. Here we report a novel tubulin acetylation catalyzed by acetyltransferase San at lysine 252 (K252) of β-tubulin. This acetylation, which is also detected in vivo, is added to soluble tubulin heterodimers but not tubulins in MTs. The acetylation-mimicking K252A/Q mutants were incorporated into the MT cytoskeleton in HeLa cells without causing any obvious MT defect. However, after cold-induced catastrophe, MT regrowth is accelerated in San-siRNA cells while the incorporation of acetylation-mimicking mutant tubulins is severely impeded. K252 of β-tubulin localizes at the interface of α-/β-tubulins and interacts with the phosphate group of the α-tubulin-bound GTP. We propose that the acetylation slows down tubulin incorporation into MTs by neutralizing the positive charge on K252 and allowing tubulin heterodimers to adopt a conformation that disfavors tubulin incorporation.
Collapse
Affiliation(s)
- Chih-Wen Chu
- Departments of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Tubulin acetyltransferase discovered: ciliary role in the ancestral eukaryote expanded to neurons in metazoans. Proc Natl Acad Sci U S A 2010; 107:21238-9. [PMID: 21135216 DOI: 10.1073/pnas.1016396108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
353
|
The role of MSUT-2 in tau neurotoxicity: a target for neuroprotection in tauopathy? Biochem Soc Trans 2010; 38:973-6. [PMID: 20658987 DOI: 10.1042/bst0380973] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously developed a transgenic Caenorhabditis elegans model of human tauopathy disorders by expressing human tau in nematode worm neurons to explore genetic pathways contributing to tau-induced neurodegeneration. This animal model recapitulates several hallmarks of human tauopathies, including altered behaviour, accumulation of detergent-insoluble phosphorylated tau protein and neurodegeneration. To identify genes required for tau neurotoxicity, we carried out a forward genetic screen for mutations that suppress tau neurotoxicity. We ultimately cloned the sut-2 (suppressor of tau pathology-2) gene, mutations in which alleviate tau neurotoxicity in C. elegans. SUT-2 encodes a novel subtype of CCCH zinc-finger protein conserved across animal phyla. SUT-2 shares significant identity with the mammalian SUT-2 (MSUT-2). We identified components of the aggresome as binding partners of MSUT-2. Thus we hypothesize that MSUT-2 plays a role in the formation and/or clearance of protein aggregates. We are currently exploring the role of MSUT-2 in tauopathy using mammalian systems. The identification of sut-2 as a gene required for tau neurotoxicity in C. elegans suggests new neuroprotective strategies targeting MSUT-2 that may be effective in modulating tau neurotoxicity in human tauopathy disorders.
Collapse
|
354
|
Binaschi M, Boldetti A, Gianni M, Maggi CA, Gensini M, Bigioni M, Parlani M, Giolitti A, Fratelli M, Valli C, Terao M, Garattini E. Antiproliferative and differentiating activities of a novel series of histone deacetylase inhibitors. ACS Med Chem Lett 2010; 1:411-5. [PMID: 24900225 DOI: 10.1021/ml1001163] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/30/2010] [Indexed: 11/28/2022] Open
Abstract
Histone deacetylases are promising molecular targets for the development of antitumor agents. A novel series of histone deacetylase inhibitors of the hydroxamic acid type were synthesized for structure-activity studies. Thirteen tricyclic dibenzo-diazepine, -oxazepine, and -thiazepine analogues were studied and shown to induce variable degrees of histone H3/H4 and tubulin acetylation in a cellular model of myeloid leukemia sensitive to all-trans retinoic acid (ATRA). Multiparametric correlations between acetylation of the three substrates, tumor cell growth inhibition, and ATRA-dependent cytodifferentiation were performed, providing information on the chemical functionalities governing these activities. For two analogues, antitumor activity in the animal was demonstrated.
Collapse
Affiliation(s)
- Monica Binaschi
- Menarini Ricerche S.p.A., Via Tito Speri 10, 00040 Pomezia (Roma), Italy
| | - Andrea Boldetti
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milano, Italy
| | - Maurizio Gianni
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milano, Italy
| | | | - Martina Gensini
- Menarini Ricerche S.p.A., Via Tito Speri 10, 00040 Pomezia (Roma), Italy
| | - Mario Bigioni
- Menarini Ricerche S.p.A., Via Tito Speri 10, 00040 Pomezia (Roma), Italy
| | - Massimo Parlani
- Menarini Ricerche S.p.A., Via Tito Speri 10, 00040 Pomezia (Roma), Italy
| | | | - Maddalena Fratelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milano, Italy
| | - Claudia Valli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milano, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milano, Italy
| |
Collapse
|
355
|
The role of HDAC6 in cancer. J Biomed Biotechnol 2010; 2011:875824. [PMID: 21076528 PMCID: PMC2975074 DOI: 10.1155/2011/875824] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/24/2010] [Accepted: 09/29/2010] [Indexed: 01/28/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), a member of the HDAC family whose major substrate is α-tubulin, has become a target for drug development to treat cancer due to its major contribution in oncogenic cell transformation. Overexpression of HDAC6 correlates with tumorigenesis and improved survival; therefore, HDAC6 may be used as a marker for prognosis. Previous work demonstrated that in multiple myeloma cells, inhibition of HDAC6 results in apoptosis. Furthermore, HDAC6 is required for the activation of heat-shock factor 1 (HSF1), an activator of heat-shock protein encoding genes (HSPs) and CYLD, a cylindromatosis tumor suppressor gene. HDAC6 contributes to cancer metastasis since its upregulation increases cell motility in breast cancer MCF-7 cells and its interaction with cortactin regulates motility. HDAC6 also affects transcription and translation by regulating the heat-shock protein 90 (Hsp90) and stress granules (SGs), respectively. This review will discuss the role of HDAC6 in the pathogenesis and treatment of cancer.
Collapse
|
356
|
Wang KH, Kao AP, Chang CC, Lee JN, Hou MF, Long CY, Chen HS, Tsai EM. Increasing CD44+/CD24(-) tumor stem cells, and upregulation of COX-2 and HDAC6, as major functions of HER2 in breast tumorigenesis. Mol Cancer 2010; 9:288. [PMID: 21044318 PMCID: PMC2989327 DOI: 10.1186/1476-4598-9-288] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 11/02/2010] [Indexed: 12/21/2022] Open
Abstract
Background Cancer cells are believed to arise primarily from stem cells. CD44+/CD24- have been identified as markers for human breast cancer stem cells. Although, HER2 is a well known breast cancer oncogene, the mechanisms of action of this gene are not completely understood. Previously, we have derived immortal (M13SV1), weakly tumorigenic (M13SV1R2) and highly tumorigenic (M13SV1R2N1) cell lines from a breast epithelial cell type with stem cell phenotypes after successive SV40 large T-antigen transfection, X-ray irradiation and ectopic expression of HER2/C-erbB2/neu. Recently, we found that M13SV1R2 cells became non-tumorigenic after growing in a growth factor/hormone-deprived medium (R2d cells). Results In this study, we developed M13SV1R2N1 under the same growth factor/hormone-deprived condition (R2N1d cells). This provides an opportunity to analyze HER2 effect on gene expression associated with tumorigenesis by comparative study of R2d and R2N1d cells with homogeneous genetic background except HER2 expression. The results reveal distinct characters of R2N1d cells that can be ascribed to HER2: 1) development of fast-growing tumors; 2) high frequency of CD44+/CD24- cells (~50% for R2N1d vs. ~10% for R2d); 3) enhanced expression of COX-2, HDAC6 mediated, respectively, by MAPK and PI3K/Akt pathways, and many genes associated with inflammation, metastasis, and angiogenesis. Furthermore, HER2 expression can be down regulated in non-adhering R2N1d cells. These cells showed longer latent period and lower rate of tumor development compared with adhering cells. Conclusions HER2 may induce breast cancer by increasing the frequency of tumor stem cells and upregulating the expression of COX-2 and HDAC6 that play pivotal roles in tumor progression.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
357
|
Influence of Hsp90 and HDAC inhibition and tubulin acetylation on perinuclear protein aggregation in human retinal pigment epithelial cells. J Biomed Biotechnol 2010; 2011:798052. [PMID: 20981255 PMCID: PMC2963810 DOI: 10.1155/2011/798052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/23/2010] [Indexed: 01/03/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells are continually exposed to oxidative stress that contributes to protein misfolding, aggregation and functional abnormalities during aging. The protein aggregates formed at the cell periphery are delivered along the microtubulus network by dynein-dependent retrograde trafficking to a juxtanuclear location. We demonstrate that Hsp90 inhibition by geldanamycin can effectively suppress proteasome inhibitor, MG-132-induced protein aggregation in a way that is independent of HDAC inhibition or the tubulin acetylation levels in ARPE-19 cells. However, the tubulin acetylation and polymerization state affects the localization of the proteasome-inhibitor-induced aggregation. These findings open new perspectives for understanding the pathogenesis of protein aggregation in retinal cells and can be useful for the development of therapeutic treatments to prevent retinal cell deterioration.
Collapse
|
358
|
Li X. Epigenetics and autosomal dominant polycystic kidney disease. Biochim Biophys Acta Mol Basis Dis 2010; 1812:1213-8. [PMID: 20970496 DOI: 10.1016/j.bbadis.2010.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 10/11/2010] [Accepted: 10/15/2010] [Indexed: 02/07/2023]
Abstract
The roles of epigenetic modulation of gene expression and protein functions in autosomal dominant polycystic kidney disease (ADPKD) have recently become the focus of scientific investigation. Evidence generated to date indicates that one of the epigenetic modifiers, histone deacetylases (HDACs), are important regulators of ADPKD. HDACs are involved in regulating the expression of the Pkd1 gene and are the target of fluid flow-induced calcium signal in kidney epithelial cells. Pharmacological inhibition of HDAC activity has been found to reduce the progression of cyst formation and slow the decline of kidney function in Pkd1 conditional knockout mice and Pkd2 knockout mice, respectively, implicating the potential clinical application of HDAC inhibitors on ADPKD. Since the expression of HDAC6 is upregulated in cystic epithelial cells, the potential roles of HDAC6 in regulating cilia resorption and epidermal growth factor receptor (EGFR) trafficking through deacetylating α-tubulin and regulating Wnt signaling through deacetylating β-catenin are also discussed. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of Pediatrics and Physiology, Medical College of Wisconsin, Milwaukee, WI53226, USA.
| |
Collapse
|
359
|
Lasserre R, Alcover A. Cytoskeletal cross-talk in the control of T cell antigen receptor signaling. FEBS Lett 2010; 584:4845-50. [PMID: 20828561 DOI: 10.1016/j.febslet.2010.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/19/2010] [Accepted: 09/01/2010] [Indexed: 11/25/2022]
Abstract
T cell antigen receptor signaling is triggered and controlled in specialized cellular interfaces formed between T cells and antigen-presenting cells named immunological synapses. Both microtubules and actin cytoskeleton rearrange at the immunological synapse in response to T cell receptor triggering, ensuring in turn the accuracy of intracellular signaling. Recent reports show that the cross-talk between the cortical actin cytoskeleton and microtubule networks is key for structuring the immunological synapse and for controlling T cell receptor signaling. Immunological synapse architecture and the interaction between the signaling machinery and various cytoskeletal elements are therefore crucial for the fine-tuning of T cell signaling.
Collapse
Affiliation(s)
- Rémi Lasserre
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, Paris, France.
| | | |
Collapse
|
360
|
Yue X, Shan B, Lasky JA. TGF-β: Titan of Lung Fibrogenesis. CURRENT ENZYME INHIBITION 2010. [PMID: 24187529 DOI: 10.2174/10067 (2010)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pulmonary fibrosis is characterized by epithelial cell injury, accumulation of myofibroblasts, and excessive deposition of collagen and other extracellular matrix elements, leading to loss of pulmonary function. Studies in both humans and animal models strongly suggest that TGF-β1 plays a pivotal role in the pathogenesis of pulmonary fibrosis. This review will first give an overview of TGF-β signaling and the effects of its inhibition on lung fibrogenesis. This overview includes information on TGF-β signal transduction pathways, the importance of TGF-β in the accumulation of myofibroblasts, the role of TGF-β in epithelial injury and apoptosis, the role of TGF-β in extracellular matrix remodeling, and the effects of inhibiting TGF-β signaling in animal models of lung fibrosis. Subsequently this review will highlight recent advances in two areas of particular interest to our research group: (1) TGF-β and proteoglycans; (2) TGF-β and histone deacetylases. Although our understanding of the role of TGF-β and its mechanisms of action in lung fibrogenesis has increased dramatically in recent years, there is still much to be learned about this important molecule, especially how TGF-β function is modulated in vivo, and its complex interactions with other factors expressed during lung injury and repair. Research in these areas will help identify novel therapeutic targets for the treatment of pulmonary fibrosis that will hopefully improve the prognosis of this devastating illness.
Collapse
Affiliation(s)
- Xinping Yue
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
361
|
Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 2010; 5:e10848. [PMID: 20520769 PMCID: PMC2877100 DOI: 10.1371/journal.pone.0010848] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 04/26/2010] [Indexed: 12/24/2022] Open
Abstract
Background Tubulin is a major substrate of the cytoplasmic class II histone deacetylase HDAC6. Inhibition of HDAC6 results in higher levels of acetylated tubulin and enhanced binding of the motor protein kinesin-1 to tubulin, which promotes transport of cargoes along microtubules. Microtubule-dependent intracellular trafficking may therefore be regulated by modulating the activity of HDAC6. We have shown previously that the neuromodulator serotonin increases mitochondrial movement in hippocampal neurons via the Akt-GSK3β signaling pathway. Here, we demonstrate a role for HDAC6 in this signaling pathway. Methodology/Principal Findings We found that the presence of tubacin, a specific HDAC6 inhibitor, dramatically enhanced mitochondrial movement in hippocampal neurons, whereas niltubacin, an inactive tubacin analog, had no effect. Compared to control cultures, higher levels of acetylated tubulin were found in neurons treated with tubacin, and more kinesin-1 was associated with mitochondria isolated from these neurons. Inhibition of GSK3β decreased cytoplasmic deacetylase activity and increased tubulin acetylation, whereas blockade of Akt, which phosphorylates and down-regulates GSK3β, increased cytoplasmic deacetylase activity and decreased tubulin acetylation. Concordantly, the administration of 5-HT, 8-OH-DPAT (a specific 5-HT1A receptor agonist), or fluoxetine (a 5-HT reuptake inhibitor) increased tubulin acetylation. GSK3β was found to co-localize with HDAC6 in hippocampal neurons, and inhibition of GSK3β resulted in decreased binding of antibody to phosphoserine-22, a potential GSK3β phosphorylation site in HDAC6. GSK3β may therefore regulate HDAC6 activity by phosphorylation. Conclusions/Significance This study demonstrates that HDAC6 plays an important role in the modulation of mitochondrial transport. The link between HDAC6 and GSK3β, established here, has important implications for our understanding of neurodegenerative disorders. In particular, abnormal mitochondrial transport, which has been observed in such disorders as Alzheimer's disease and Parkinson's disease, could result from the misregulation of HDAC6 by GSK3β. HDAC6 may therefore constitute an attractive target in the treatment of these disorders.
Collapse
Affiliation(s)
- Sigeng Chen
- The Neurosciences Institute, San Diego, California, USA.
| | | | | | | |
Collapse
|
362
|
Lai IL, Lin TP, Yao YL, Lin CY, Hsieh MJ, Yang WM. Histone deacetylase 10 relieves repression on the melanogenic program by maintaining the deacetylation status of repressors. J Biol Chem 2010; 285:7187-96. [PMID: 20032463 PMCID: PMC2844168 DOI: 10.1074/jbc.m109.061861] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HDAC10 belongs to the class II histone deacetylase family; however, its functions remain enigmatic. We report here that the HDAC10 protein complex contained deacetylated chaperone protein hsc70, and HDAC10 relieved repression of melanogenesis by decreasing the repressional activity of two transcriptional regulators, paired box protein 3 (Pax3) and KRAB-associated protein 1 (KAP1). HDAC10 physically interacted with Pax3 and KAP1 in a ternary complex and maintained Pax3 and KAP1 in a deacetylated state. Deacetylated Pax3 and KAP1 derepressed promoters of microphthalmia-associated transcription factor (MITF) and melanocyte-specific tyrosinase-related protein 1 and 2 (TRP-1 and TRP-2), three genes of the melanogenesis cascade, in a trichostatin A-sensitive manner. Co-occupancy of melanogenic promoters by HDAC10, Pax3, and KAP1 only happened in cells of the melanocyte lineage, and KAP1 facilitated nuclear enrichment of HDAC10. Finally, cellular melanin content correlated directly with the expression level and activity of HDAC10. Our results not only show that HDAC10 regulates melanogenesis but also demonstrate that the transcriptional activities of Pax3 and KAP1 are intimately linked to their acetylation status.
Collapse
Affiliation(s)
- I-Lu Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
363
|
Simon D, Laloo B, Barillot M, Barnetche T, Blanchard C, Rooryck C, Marche M, Burgelin I, Coupry I, Chassaing N, Gilbert-Dussardier B, Lacombe D, Grosset C, Arveiler B. A mutation in the 3'-UTR of the HDAC6 gene abolishing the post-transcriptional regulation mediated by hsa-miR-433 is linked to a new form of dominant X-linked chondrodysplasia. Hum Mol Genet 2010; 19:2015-27. [PMID: 20181727 DOI: 10.1093/hmg/ddq083] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A family with dominant X-linked chondrodysplasia was previously described. The disease locus was ascribed to a 24 Mb interval in Xp11.3-q13.1. We have identified a variant (c.*281A>T) in the 3' untranslated region (UTR) of the HDAC6 gene that totally segregates with the disease. The variant is located in the seed sequence of hsa-miR-433. Our data showed that, in MG63 osteosarcoma cells, hsa-miR-433 (miR433) down-regulated both the expression of endogenous HDAC6 and that of an enhanced green fluorescent protein-reporter mRNA bearing the wild-type 3'-UTR of HDAC6. This effect was totally abrogated when the reporter mRNA bore the mutated HDAC6 3'-UTR. The HDAC6 protein was found to be over-expressed in thymus from an affected male fetus. Concomitantly, the level of total alpha-tubulin, a target of HDAC6, was found to be increased in the affected fetal thymus, whereas the level of acetylated alpha-tubulin was found to be profoundly decreased. Skin biopsies were obtained from a female patient who presented a striking body asymmetry with hypotrophy of the left limbs. The mutated HDAC6 allele was expressed in 31% of left arm-derived fibroblasts, whereas it was not expressed in the right arm. Overexpression of HDAC6 was observed in left arm-derived fibroblasts. Altogether these results strongly suggest that this HDAC6 3'-UTR variant suppressed hsa-miR-433-mediated post-transcriptional regulation causing the overexpression of HDAC6. This variant is likely to constitute the molecular cause of this new form of X-linked chondrodysplasia. This represents to our knowledge the first example of a skeletal disease caused by the loss of a miRNA-mediated post-transcriptional regulation on its target mRNA.
Collapse
Affiliation(s)
- Delphine Simon
- Laboratoire de Génétique Humaine, EA 4137, Université Victor Segalen Bordeaux 2, Bordeaux 33076, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Dorsam ST, Vomhof-Dekrey E, Hermann RJ, Haring JS, Van der Steen T, Wilkerson E, Boskovic G, Denvir J, Dementieva Y, Primerano D, Dorsam GP. Identification of the early VIP-regulated transcriptome and its associated, interactome in resting and activated murine CD4 T cells. Mol Immunol 2010; 47:1181-94. [PMID: 20117839 DOI: 10.1016/j.molimm.2010.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/15/2009] [Accepted: 01/05/2010] [Indexed: 01/12/2023]
Abstract
More than 40 years after the discovery of vasoactive intestinal peptide (VIP), its transcriptome in the immune system has still not been completely elucidated. In an attempt to understand the biological role of this neuropeptide in immunity, we chose CD4 T cells as a cellular system. Agilent Mouse Whole Genome microarrays were hybridized with fluorescently labeled total RNA isolated from resting CD4 T cells cultured +/-10(-7)M VIP for 5h or PMA/ionomycin activated CD4 T cells cultured +/-10(-7)M VIP for 5h. These VIP-regulated transcriptomes were analyzed by Significance Analysis of Microarrays (SAM) and Ingenuity Pathway Analysis (IPA) software to identify relevant signaling pathways modulated by VIP in the absence and presence of T cell activation. In resting CD4 T cells, VIP-modulated 368 genes, ranging from 3.49 to -4.78-fold. In the PMA/ionomycin activated CD4 T cells, 326 gene expression levels were changed by VIP, ranging from 2.94 to -1.66-fold. IPA analysis revealed that VIP exposure alters cellular function through EGFR signaling in resting CD4 T cells, and modulates immediate early genes, Fos and CREM/ICER, in activated CD4 T cells. These gene expression changes are suggested to explain at a molecular level how VIP can regulate T cell homing to the gut and induce regulatory T cell generation.
Collapse
Affiliation(s)
- Sheri Tinnell Dorsam
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Wang J, Lin A, Lu L. Effect of EGF-induced HDAC6 activation on corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2010; 51:2943-8. [PMID: 20089874 DOI: 10.1167/iovs.09-4639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Epidermal growth factor (EGF) stimulates migration in corneal epithelial wound healing. The purpose of this study was to investigate the effect of EGF-induced alpha-tubulin deacetylation through activating HDAC6 on migration in corneal epithelial wound healing. METHODS Human corneal epithelial (HCE) cells were cultured in DMEM/F12 medium containing 10% FBS in a 37 degrees C incubator supplied with 5% CO(2). Western blot analysis was used to determine protein expression. Activity of HDAC6 was suppressed by trichostatin A (TSA) and by siRNA specific to HDAC6. Corneal epithelial cell migration was measured by using scratch-induced directional migration assay in cultured cells and by corneal epithelial debridement using a mouse whole-eye organ culture model. RESULTS The authors found EGF stimulated corneal epithelial cell migration in wound healing by enhancing HDAC6 activity, resulting in the deacetylation of alpha-tubulin. EGF stimulated HDAC6 enzymatic activity and protein translocation toward the leading edge of the cell. Inhibition of HDAC6 activity by TSA significantly suppressed EGF-induced cell migration and delayed EGF-induced wound healing in epithelially debrided mouse corneas. In the meantime, knockdown of HDAC6 mRNA with specific siRNA effectively abolished EGF-induced deacetylation of alpha-tubulin, resulting in the inhibition of cell migration. CONCLUSIONS These results reveal an important mechanism that involves EGF-induced HDAC6 activation and alpha-tubulin deacetylation, subsequently affecting corneal epithelial migration in the wound-healing process.
Collapse
Affiliation(s)
- Jie Wang
- Division of Molecular Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502, USA
| | | | | |
Collapse
|
366
|
Vesicle traffic to the immunological synapse: a multifunctional process targeted by lymphotropic viruses. Curr Top Microbiol Immunol 2010; 340:191-207. [PMID: 19960315 DOI: 10.1007/978-3-642-03858-7_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The site of contact between T lymphocytes and antigen-presenting cells becomes, upon antigen recognition, an organized junction named the immunological synapse. Various T cell organelles polarize, together with microtubules, toward the antigen-presenting cell. Among them, intracellular vesicular compartments, such as the Golgi apparatus, the recycling endosomal compartment, or cytotoxic granules help to build the immunological synapse and ensure effector functions, such as polarized secretion of cytokines by helper T cells, or exocytosis of lytic granules by cytotoxic T cells. Lymphotropic retroviruses, such as the human immunodeficiency virus type 1, the human T cell leukemia virus type 1, or the Herpesvirus saimiri, can subvert some of the vesicle traffic mechanisms impeding the generation and function of the immunological synapses. This review focuses on the polarization of vesicle traffic, its regulation, and its role in maintaining the structure and function of the immunological synapse. We discuss how some lymphotropic viruses target the vesicle traffic in T lymphocytes, inhibiting the formation of immunological synapses and modulating the response of infected T cells.
Collapse
|
367
|
Errico A, Deshmukh K, Tanaka Y, Pozniakovsky A, Hunt T. Identification of substrates for cyclin dependent kinases. ACTA ACUST UNITED AC 2010; 50:375-99. [DOI: 10.1016/j.advenzreg.2009.12.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
368
|
Wu Y, Song SW, Sun J, Bruner JM, Fuller GN, Zhang W. IIp45 inhibits cell migration through inhibition of HDAC6. J Biol Chem 2009; 285:3554-3560. [PMID: 20008322 DOI: 10.1074/jbc.m109.063354] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
IIp45 (aka MIIP) is a newly discovered gene whose protein product inhibits cell migration. HDAC6 is a class IIb deacetylase that specifically deacetylates alpha-tubulin, modulates microtubule dynamics, and promotes cell migration. A yeast two-hybrid assay using IIp45 as bait identified HDAC6 protein as a binding partner of IIp45. This physical interaction of the two functionally antagonistic proteins was confirmed by glutathione S-transferase pulldown assay and co-immunoprecipitation assay in human cells. Serial deletion constructs of HDAC6 were used to characterize the interaction of HDAC6 and IIp45, and this analysis found that the two catalytic domains of HDAC6 protein are required for IIp45 binding. We examined the protein expression patterns of IIp45 and HDAC6 in glioma tissues. Elevated protein levels of HDAC6 were found in high grade glioma samples, in contrast to the decreased protein expression of IIp45. The potential negative regulation of HDAC6 expression by IIp45 was confirmed in cell lines with altered IIp45 expression by constitutive overexpression or small interfering RNA knockdown. Protein turnover study revealed that overexpression of IIp45 significantly reduces the intracellular protein stability of endogenous HDAC6, indicating a possible mechanism for the negative regulation of HDAC6 by IIp45. Results from the HDAC activity assay demonstrated that overexpressed IIp45 effectively decreases HDAC6 activity, increases acetylated alpha-tubulin, and reduces cell migration. The increased cell migration resulting from siIIp45 knockdown was significantly reversed by co-transfection of siHDAC6. Thus, we report here for the first time a novel mechanism by which IIp45 inhibits cell motility through inhibition of HDAC6.
Collapse
Affiliation(s)
- Ying Wu
- From the Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Sonya W Song
- From the Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and; the Beijing Shijitan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiyuan Sun
- From the Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Janet M Bruner
- From the Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Gregory N Fuller
- From the Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Wei Zhang
- From the Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and.
| |
Collapse
|
369
|
Wang L, de Zoeten EF, Greene MI, Hancock WW. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov 2009; 8:969-81. [PMID: 19855427 PMCID: PMC2884987 DOI: 10.1038/nrd3031] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical zinc-dependent histone deacetylases (HDACs) catalyse the removal of acetyl groups from histone tails and also from many non-histone proteins, including the transcription factor FOXP3, a key regulator of the development and function of regulatory T cells. Many HDAC inhibitors are in cancer clinical trials, but a subset of HDAC inhibitors has important anti-inflammatory or immunosuppressive effects that might be of therapeutic benefit in immuno-inflammatory disorders or post-transplantation. At least some of these effects result from the ability of HDAC inhibitors to enhance the production and suppressive functions of FOXP3(+) regulatory T cells. Understanding which HDACs contribute to the regulation of the functions of regulatory T cells may further stimulate the development of new class- or subclass-specific HDAC inhibitors with applications beyond oncology.
Collapse
Affiliation(s)
- Liqing Wang
- Division of Transplant Immunology, Children's Hospital of Philadelphia, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
370
|
Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J 2009; 29:209-21. [PMID: 19910924 DOI: 10.1038/emboj.2009.324] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 10/12/2009] [Indexed: 02/07/2023] Open
Abstract
TDP-43 is an RNA/DNA-binding protein implicated in transcriptional repression and mRNA processing. Inclusions of TDP-43 are hallmarks of frontotemporal dementia and amyotrophic lateral sclerosis. Besides aggregation of TDP-43, loss of nuclear localization is observed in disease. To identify relevant targets of TDP-43, we performed expression profiling. Thereby, histone deacetylase 6 (HDAC6) downregulation was discovered on TDP-43 silencing and confirmed at the mRNA and protein level in human embryonic kidney HEK293E and neuronal SH-SY5Y cells. This was accompanied by accumulation of the major HDAC6 substrate, acetyl-tubulin. HDAC6 levels were restored by re-expression of TDP-43, dependent on RNA binding and the C-terminal protein interaction domains. Moreover, TDP-43 bound specifically to HDAC6 mRNA arguing for a direct functional interaction. Importantly, in vivo validation in TDP-43 knockout Drosophila melanogaster confirmed the specific downregulation of HDAC6. HDAC6 is necessary for protein aggregate formation and degradation. Indeed, HDAC6-dependent reduction of cellular aggregate formation and increased cytotoxicity of polyQ-expanded ataxin-3 were found in TDP-43 silenced cells. In conclusion, loss of functional TDP-43 causes HDAC6 downregulation and might thereby contribute to pathogenesis.
Collapse
|
371
|
Arts J, King P, Mariën A, Floren W, Beliën A, Janssen L, Pilatte I, Roux B, Decrane L, Gilissen R, Hickson I, Vreys V, Cox E, Bol K, Talloen W, Goris I, Andries L, Du Jardin M, Janicot M, Page M, van Emelen K, Angibaud P. JNJ-26481585, a Novel “Second-Generation” Oral Histone Deacetylase Inhibitor, Shows Broad-Spectrum Preclinical Antitumoral Activity. Clin Cancer Res 2009; 15:6841-51. [DOI: 10.1158/1078-0432.ccr-09-0547] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
372
|
Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 2009; 29:157-73. [DOI: 10.1038/onc.2009.334] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
373
|
Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci 2009; 122:3531-41. [PMID: 19737819 DOI: 10.1242/jcs.046813] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We studied the role of a class II histone deacetylase, HDAC6, known to function as a potent alpha-tubulin deacetylase, in the regulation of microtubule dynamics. Treatment of cells with the class I and II histone deacetylase inhibitor TSA, as well as the selective HDAC6 inhibitor tubacin, increased microtubule acetylation and significantly reduced velocities of microtubule growth and shrinkage. siRNA-mediated knockdown of HDAC6 also increased microtubule acetylation but, surprisingly, had no effect on microtubule growth velocity. At the same time, HDAC6 knockdown abolished the effect of tubacin on microtubule growth, demonstrating that tubacin influences microtubule dynamics via specific inhibition of HDAC6. Thus, the physical presence of HDAC6 with impaired catalytic activity, rather than tubulin acetylation per se, is the factor responsible for the alteration of microtubule growth velocity in HDAC6 inhibitor-treated cells. In support of this notion, HDAC6 mutants bearing inactivating point mutations in either of the two catalytic domains mimicked the effect of HDAC6 inhibitors on microtubule growth velocity. In addition, HDAC6 was found to be physically associated with the microtubule end-tracking protein EB1 and a dynactin core component, Arp1, both of which accumulate at the tips of growing microtubules. We hypothesize that inhibition of HDAC6 catalytic activity may affect microtubule dynamics by promoting the interaction of HDAC6 with tubulin and/or with other microtubule regulatory proteins.
Collapse
Affiliation(s)
- Yuliya Zilberman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
374
|
Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78:959-91. [PMID: 19298183 DOI: 10.1146/annurev.biochem.052308.114844] [Citation(s) in RCA: 843] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many diseases appear to be caused by the misregulation of protein maintenance. Such diseases of protein homeostasis, or "proteostasis," include loss-of-function diseases (cystic fibrosis) and gain-of-toxic-function diseases (Alzheimer's, Parkinson's, and Huntington's disease). Proteostasis is maintained by the proteostasis network, which comprises pathways that control protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation. The decreased ability of the proteostasis network to cope with inherited misfolding-prone proteins, aging, and/or metabolic/environmental stress appears to trigger or exacerbate proteostasis diseases. Herein, we review recent evidence supporting the principle that proteostasis is influenced both by an adjustable proteostasis network capacity and protein folding energetics, which together determine the balance between folding efficiency, misfolding, protein degradation, and aggregation. We review how small molecules can enhance proteostasis by binding to and stabilizing specific proteins (pharmacologic chaperones) or by increasing the proteostasis network capacity (proteostasis regulators). We propose that such therapeutic strategies, including combination therapies, represent a new approach for treating a range of diverse human maladies.
Collapse
Affiliation(s)
- Evan T Powers
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
375
|
Husain M, Harrod KS. Influenza A virus-induced caspase-3 cleaves the histone deacetylase 6 in infected epithelial cells. FEBS Lett 2009; 583:2517-20. [PMID: 19596000 DOI: 10.1016/j.febslet.2009.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/29/2009] [Accepted: 07/08/2009] [Indexed: 11/29/2022]
Abstract
Histone deacetylase 6 (HDAC6) is a multi-substrate cytoplasmic enzyme that regulates many important biological processes. Recently, some reports have implicated HDAC6 in viral infection. However, nothing is known about its regulation in virus-infected cells. The data presented here for the first time demonstrate the caspase-3-mediated cleavage of HDAC6 in influenza A virus (IAV)-infected cells. HDAC6 polypeptide contains the caspase-3 cleavage motif DMAD-S at the C-terminus, and is a caspase-3 substrate. The cleavage removes most of the C-terminal ubiquitin-binding zinc finger domain from HDAC6, which could be significant for HDAC6's role in IAV-induced apoptosis in infected cells.
Collapse
Affiliation(s)
- Matloob Husain
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA.
| | | |
Collapse
|
376
|
Butler K, He R, McLaughlin K, Vistoli G, Langley B, Kozikowski A. Stereoselective HDAC Inhibition from Cysteine-Derived Zinc-Binding Groups. ChemMedChem 2009; 4:1292-301. [DOI: 10.1002/cmdc.200900088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
377
|
Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochem 2009; 109:683-93. [DOI: 10.1111/j.1471-4159.2009.06013.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
378
|
|
379
|
Richon VM, Garcia-Vargas J, Hardwick JS. Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 2009; 280:201-10. [PMID: 19181442 DOI: 10.1016/j.canlet.2009.01.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/22/2008] [Accepted: 01/01/2009] [Indexed: 12/31/2022]
Abstract
Vorinostat is a potent histone deacetylase inhibitor that blocks the catalytic site of these enzymes. A large number of cellular proteins are modified post-translationally by acetylation, leading to altered structure and/or function. Many of these proteins, such as core nucleosomal histones and transcription factors, function in key cellular processes and signal transduction pathways that regulate cell growth, migration, and differentiation. At concentrations that are non-toxic to normal cells, vorinostat dramatically alters cellular acetylation patterns and causes growth arrest and death and in a wide range of transformed cells, both in vitro and in animal tumor models. Vorinostat has shown promising clinical activity against hematologic and solid tumors at doses that have been well tolerated by patients. Recent non-clinical experiments that explored the effects of vorinostat in combination with other chemotherapeutic agents have begun to illuminate potential mechanisms of action for this histone deacetylase inhibitor and are providing guidance for new avenues of clinical investigation.
Collapse
|
380
|
Abstract
Epigenetic modifications play a key role in the patho-physiology of prostate cancer. Histone deacetylases (HDACs) play major roles in prostate cancer progression. HDACs are part of a transcriptional co-repressor complex that influences various tumor suppressor genes. Because of the significant roles played by HDACs in various human cancers, HDAC inhibitors are emerging as a new class of chemotherapeutic agents. HDAC inhibitors have been shown to induce cell growth arrest, differentiation and/or apoptosis in prostate cancer. The combined use of HDAC inhibitors with other chemotherapeutic agents or radiotherapy in cancer treatment has shown promising results. Various HDAC inhibitors are in different stages of clinical trials. In this review, we discuss the molecular mechanism(s) through which HDACs influence prostate cancer progression and the potential roles of HDAC inhibitors in prostate cancer prevention and therapy.
Collapse
Affiliation(s)
- Ata Abbas
- Department of Urology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
381
|
Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Curr Opin Neurobiol 2008; 18:504-15. [DOI: 10.1016/j.conb.2008.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/18/2008] [Accepted: 09/24/2008] [Indexed: 12/17/2022]
|