351
|
A method for resolving occlusions when multitracking individuals in a shoal. Behav Res Methods 2014; 47:1032-1043. [DOI: 10.3758/s13428-014-0520-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
352
|
Lee W, Yang KL. Using medaka embryos as a model system to study biological effects of the electromagnetic fields on development and behavior. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:187-194. [PMID: 25084399 DOI: 10.1016/j.ecoenv.2014.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
The electromagnetic fields (EMFs) of anthropogenic origin are ubiquitous in our environments. The health hazard of extremely low frequency and radiofrequency EMFs has been investigated for decades, but evidence remains inconclusive, and animal studies are urgently needed to resolve the controversies regarding developmental toxicity of EMFs. Furthermore, as undersea cables and technological devices are increasingly used, the lack of information regarding the health risk of EMFs to aquatic organisms needs to be addressed. Medaka embryos (Oryzias latipes) have been a useful tool to study developmental toxicity in vivo due to their optical transparency. Here we explored the feasibility of using medaka embryos as a model system to study biological effects of EMFs on development. We also used a white preference test to investigate behavioral consequences of the EMF developmental toxicity. Newly fertilized embryos were randomly assigned to four groups that were exposed to an EMF with 3.2kHz at the intensity of 0.12, 15, 25, or 60µT. The group exposed to the background 0.12µT served as the control. The embryos were exposed continually until hatch. They were observed daily, and the images were recorded for analysis of several developmental endpoints. Four days after hatching, the hatchlings were tested with the white preference test for their anxiety-like behavior. The results showed that embryos exposed to all three levels of the EMF developed significantly faster. The endpoints affected included the number of somites, eye width and length, eye pigmentation density, midbrain width, head growth, and the day to hatch. In addition, the group exposed to the EMF at 60µT exhibited significantly higher levels of anxiety-like behavior than the other groups did. In conclusion, the EMF tested in this study accelerated embryonic development and heightened anxiety-like behavior. Our results also demonstrate that the medaka embryo is a sensitive and cost-efficient in vivo model system to study developmental toxicity of EMFs.
Collapse
Affiliation(s)
- Wenjau Lee
- Department of Bioscience Technology, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan City, Taiwan.
| | - Kun-Lin Yang
- Department of Bioscience Technology, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan City, Taiwan
| |
Collapse
|
353
|
Sterling ME, Karatayev O, Chang GQ, Algava DB, Leibowitz SF. Model of voluntary ethanol intake in zebrafish: effect on behavior and hypothalamic orexigenic peptides. Behav Brain Res 2014; 278:29-39. [PMID: 25257106 DOI: 10.1016/j.bbr.2014.09.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 02/03/2023]
Abstract
Recent studies in zebrafish have shown that exposure to ethanol in tank water affects various behaviors, including locomotion, anxiety and aggression, and produces changes in brain neurotransmitters, such as serotonin and dopamine. Building on these investigations, the present study had two goals: first, to develop a method for inducing voluntary ethanol intake in individual zebrafish, which can be used as a model in future studies to examine how this behavior is affected by various manipulations, and second, to characterize the effects of this ethanol intake on different behaviors and the expression of hypothalamic orexigenic peptides, galanin (GAL) and orexin (OX), which are known in rodents to stimulate consumption of ethanol and alter behaviors associated with alcohol abuse. Thus, we first developed a new model of voluntary intake of ethanol in fish by presenting this ethanol mixed with gelatin, which they readily consume. Using this model, we found that individual zebrafish can be trained in a short period to consume stable levels of 10% or 20% ethanol (v/v) mixed with gelatin and that their intake of this ethanol-gelatin mixture leads to pharmacologically relevant blood ethanol concentrations which are strongly, positively correlated with the amount ingested. Intake of this ethanol-gelatin mixture increased locomotion, reduced anxiety, and stimulated aggressive behavior, while increasing expression of GAL and OX in specific hypothalamic areas. These findings, confirming results in rats, provide a method in zebrafish for investigating with forward genetics and pharmacological techniques the role of different brain mechanisms in controlling ethanol intake.
Collapse
Affiliation(s)
- M E Sterling
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - O Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - G-Q Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - D B Algava
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - S F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
354
|
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of phenotypic defects affecting facial and neurological development associated with ethanol teratogenicity. It affects approximately 1 in 100 children born in the United States each year. Genetic predisposition along with timing and dosage of ethanol exposure are critical in understanding the prevalence and variability of FASD. The zebrafish attributes of external fertilization, genetic tractability, and high fecundity make it a powerful tool for FASD studies. However, a lack of consensus of ethanol treatment paradigms has limited the interpretation of these various studies. Here we address this concern by examining ethanol tissue concentrations across timing and genetic background. We utilize headspace gas chromatography to determine ethanol concentration in the AB, fli1:EGFP, and Tu backgrounds. In addition, we treated these embryos with ethanol over two different developmental time windows, 6-24 h post fertilization (hpf) and 24-48 hpf. Our analysis demonstrates that embryos rapidly equilibrate to a sub-media level of ethanol. Embryos then maintain this level of ethanol for the duration of exposure. The ethanol tissue concentration level is independent of genetic background, but is timing-dependent. Embryos exposed from 6 to 24 hpf were 2.7-4.2-fold lower than media levels, while embryos were 5.7-6.2-fold lower at 48 hpf. This suggests that embryos strengthen one or more barriers to ethanol as they develop. In addition, both the embryo and, to a lesser extent, the chorion, surrounding the embryo are barriers to ethanol. Overall, this work will help tighten ethanol treatment regimens and strengthen zebrafish as a model of FASD.
Collapse
Affiliation(s)
- C Ben Lovely
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA; Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX 78713, USA.
| | - Regina D Nobles
- Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Johann K Eberhart
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA; Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX 78713, USA
| |
Collapse
|
355
|
Capiotti KM, De Moraes DA, Menezes FP, Kist LW, Bogo MR, Da Silva RS. Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio). Behav Brain Res 2014; 274:319-25. [PMID: 25157430 DOI: 10.1016/j.bbr.2014.08.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus, which causes hyperglycemia, affects the central nervous system and can impairs cognitive functions, such as memory. The aim of this study was to investigate the effects of hyperglycemia on memory as well as on the activity of acethylcholinesterase. Hyperglycemia was induced in adult zebrafish by immersion in glucose 111mM by 14 days. The animals were divided in 4 groups: control, glucose-treated, glucose-washout 7-days and glucose-washout 14-days. We evaluated the performance in inhibitory avoidance task and locomotor activity. We also determined acethylcholinesterase activity and gene expression from whole brain. In order to counteract the effect of hyperglycemia underlined by effects on acethylcholinesterase activity, we treated the animals with galantamine (0.05ng/g), an inhibitor of this enzyme. Also we evaluated the gene expression of insulin receptor and glucose transporter from zebrafish brain. The hyperglycemia promoted memory deficit in adult zebrafish, which can be explained by increased AChE activity. The ache mRNA levels from zebrafish brain were decrease in 111mM glucose group and returned to normal levels after 7 days of glucose withdrawal. Insulin receptors (insra-1, insra-2, insrb-1 and insrb-2) and glut-3 mRNA levels were not significantly changed. Our results also demonstrated that galantamine was able to reverse the memory deficit caused by hyperglycemia, demonstrating that these effects involve modulation of AChE activity. These data suggest that the memory impairment induced by hyperglycemia is underlined by the cholinergic dysfunction caused by the mechanisms involving the control of acetylcholinesterase function and gene expression.
Collapse
Affiliation(s)
- Katiucia Marques Capiotti
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil.
| | - Daiani Almeida De Moraes
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil.
| | - Fabiano Peres Menezes
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil.
| | - Luiza Wilges Kist
- Laboratório de Biologia Genômica e Molecular, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil.
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil.
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
356
|
A dose for the wiser is enough: the alcohol benefits for associative learning in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:109-15. [PMID: 24681197 DOI: 10.1016/j.pnpbp.2014.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/06/2014] [Accepted: 03/18/2014] [Indexed: 11/22/2022]
Abstract
This study aimed to test seeking behavior caused by alcohol and the drug effects on learning in the zebrafish, Danio rerio. Three treatments were conducted: acute, chronic and withdrawal, using 0.10%, 0.25%, and 1.00% alcohol and control (0.00%) (vol/vol.%). For the drug seeking behavior, we used a place preference paradigm (shuttle box tank) before and after alcohol exposure in acute (single exposure) and chronic (7 days) treatments. We observed a change in the basal preference due to the association with alcohol only for 0.25% and 1.00% doses in both acute and chronic offering, indicating an alcohol-seeking behavior after the drug exposure. For the learning task, two treatments were tested: chronic alcohol exposure (26 days including the learning period) and alcohol withdrawal (15 days of alcohol exposure before the learning period). During the learning period, fish received light stimulus followed by food in a pre-defined area of the tank for 8 consecutive days. The low dose group (0.10%) learned the task by the 3rd day both in chronic and withdrawal treatments. The higher doses (0.25% and 1.00%) caused a learning impairment in the chronic treatment group, while fish from the alcohol withdrawal treatment displayed learning on the final testing day. Therefore, we suggest that high alcohol doses impair learning and cause drug seeking behavior, even after drug exposure cessation, while low doses positively affect learning and do not cause seeking behavior. Given our results we propose that the zebrafish is a promising model for identifying active compounds, antibodies or genes which modulate the alcohol dual effects: learning improvement and reinforcing behavior.
Collapse
|
357
|
Toms CN, Echevarria DJ. Back to Basics: Searching for a Comprehensive Framework for Exploring Individual Differences in Zebrafish (Danio Rerio) Behavior. Zebrafish 2014; 11:325-40. [DOI: 10.1089/zeb.2013.0952] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Christina N. Toms
- Department of Biology, The University of Central Florida, Orlando, Florida
| | - David J. Echevarria
- Department of Psychology, The University of Southern Mississippi, Hattiesburg, Mississippi
| |
Collapse
|
358
|
Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS One 2014; 9:e103232. [PMID: 25054216 PMCID: PMC4108411 DOI: 10.1371/journal.pone.0103232] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/30/2014] [Indexed: 02/05/2023] Open
Abstract
The presence of pharmaceutical products in the aquatic environment has been reported in several studies. However, the impact of these drugs on living organisms is still uncharacterized. Here, we investigated the effects of acute exposure to either diazepam or fluoxetine on the stress response in Danio rerio. We showed that diazepam and fluoxetine inhibited the stress axis in zebrafish. Intermediate concentrations of diazepam suppressed the stress response as measured by cortisol levels, whereas fluoxetine inhibited cortisol increase at concentrations similar to those found in the environment. These data suggest that the presence of psychoactive drugs in aquatic ecosystems could cause neuroendocrine dysfunction in fish.
Collapse
|
359
|
Schneider ACR, Machado ABMP, de Assis AM, Hermes DM, Schaefer PG, Guizzo R, Fracasso LB, de-Paris F, Meurer F, Barth AL, da Silveira TR. Effects of Lactobacillus rhamnosus GG on hepatic and serum lipid profiles in zebrafish exposed to ethanol. Zebrafish 2014; 11:371-8. [PMID: 24987799 DOI: 10.1089/zeb.2013.0968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zebrafish is a powerful tool in pharmacological research and useful to identify new therapies. Probiotics can offer therapeutic options in alcoholic liver disease. This study was done in two independent experiments: first, we confirmed the intestinal colonization of probiotic Lactobacillus rhamnosus GG (LGG) after ethanol exposure. Second, four groups were performed: control (C), probiotic (P), ethanol (E), and probiotic+ethanol (P+E). Liver histology, hepatocytes morphometry, hepatic and serum lipid quantifications were conducted in second experiment. During 4 weeks, P and P+E groups were fed with LGG supplemented feed; E and C unsupplemented. E and P+E groups received 0.5% of ethanol added into tank water. Zebrafish exposed to ethanol (E group) presented intense liver steatosis after 28 days in contrast to the almost normalized liver histology of P+E group at the same period. Liver morphometry showed a significant enlargement of hepatocytes of E group after 4 weeks (p<0.0001). Serum triglycerides decreased in P+E group compared with C, P (p<0.001), and E (p=0.004), after 14 and 28 days similarly. Serum cholesterol was also decreased by LGG; P group decreased compared with C and E after 14 days (p=0.002 and p=0.007, respectively) and P+E group decreased significantly compared with E and C groups (p<0.0001) after 28 days. Hepatic triglycerides were reduced in P+E group after 28 days compared to E (p=0.006). The persistence of LGG in zebrafish intestines was demonstrated. LGG decreased serum levels of triglycerides and cholesterol and improved hepatic steatosis.
Collapse
Affiliation(s)
- Ana Claudia Reis Schneider
- 1 Programa de Pós-Graduação: Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul , Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Stimulant and motivational effects of alcohol: Lessons from rodent and primate models. Pharmacol Biochem Behav 2014; 122:37-52. [DOI: 10.1016/j.pbb.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/22/2022]
|
361
|
Siebel AM, Vianna MR, Bonan CD. Pharmacological and toxicological effects of lithium in zebrafish. ACS Chem Neurosci 2014; 5:468-76. [PMID: 24798681 DOI: 10.1021/cn500046h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lithium is the paradigmatic treatment for bipolar disorder and has been widely used as a mood stabilizer due to its ability to reduce manic and depressive episodes, efficiency in long-term mood stabilization, and effectiveness in reducing suicide risks. Despite many decades of clinical use, the molecular targets of lithium are not completely understood. However, they are credited at least partially to glycogen synthase kinase 3 (GSK3) inhibition, mimicking and exacerbating Wnt signaling pathway activation. There has been a great effort to characterize lithium cellular and system actions, aiming to improve treatment effectiveness and reduce side effects. There is also a growing concern about lithium's impact as an environmental contaminant and its effects on development. In this scenario, zebrafish is a helpful model organism to gather more information on lithium's effects in different systems and developmental stages. The rapid external development, initial transparency, capacity to easily absorb substances, and little space required for maintenance and experimentation, among other advantages, make zebrafish a suitable model. In addition, zebrafish has been established as an effective model organism in behavioral and neuropharmacological studies, reacting to a wide range of psychoactive drugs, including lithium. So far only a limited number of studies evaluated the toxicological impact of lithium on zebrafish development and demonstrated morphological, physiological, and behavioral effects that may be informative regarding human findings. Further studies dedicated to characterize and evaluate the underlying mechanisms of the toxic effects and the potential impact of exposure on developing and adult individuals are necessary to establish safe clinical management guidelines for women with bipolar disorder of childbearing age and safety disposal guidelines for pharmaceutical neuroactive compounds.
Collapse
Affiliation(s)
- Anna M. Siebel
- Laboratório
de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
- ZebLab,
Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
| | - Monica R. Vianna
- ZebLab,
Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
- Laboratório
de Biologia e Desenvolvimento do Sistema Nervoso, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga 6681, Prédio 12 D, sala 301, 90619-900, Porto Alegre, RS Brazil
| | - Carla D. Bonan
- Laboratório
de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
- ZebLab,
Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
| |
Collapse
|
362
|
Schmidel AJ, Assmann KL, Werlang CC, Bertoncello KT, Francescon F, Rambo CL, Beltrame GM, Calegari D, Batista CB, Blaser RE, Roman Júnior WA, Conterato GMM, Piato AL, Zanatta L, Magro JD, Rosemberg DB. Subchronic atrazine exposure changes defensive behaviour profile and disrupts brain acetylcholinesterase activity of zebrafish. Neurotoxicol Teratol 2014; 44:62-9. [PMID: 24893294 DOI: 10.1016/j.ntt.2014.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/19/2022]
Abstract
Animal behaviour is the interaction between environment and an individual organism, which also can be influenced by its neighbours. Variations in environmental conditions, as those caused by contaminants, may lead to neurochemical impairments altering the pattern of the behavioural repertoire of the species. Atrazine (ATZ) is an herbicide widely used in agriculture that is frequently detected in surface water, affecting non-target species. The zebrafish is a valuable model organism to assess behavioural and neurochemical effects of different contaminants since it presents a robust behavioural repertoire and also all major neurotransmitter systems described for mammalian species. The goal of this study was to evaluate the effects of subchronic ATZ exposure in defensive behaviours of zebrafish (shoaling, thigmotaxis, and depth preference) using the split depth tank. Furthermore, to investigate a putative role of cholinergic signalling on ATZ-mediated effects, we tested whether this herbicide alters acetylcholinesterase (AChE) activity in brain and muscle preparations. Fish were exposed to ATZ for 14days and the following groups were tested: control (0.2% acetone) and ATZ (10 and 1000μg/L). The behaviour of four animals in the same tank was recorded for 6min and biological samples were prepared. Our results showed that 1000μg/L ATZ significantly increased the inter-fish distance, as well as the nearest and farthest neighbour distances. This group also presented an increase in the shoal area with decreased social interaction. No significant differences were detected for the number of animals in the shallow area, latency to enter the shallow and time spent in shallow and deep areas of the apparatus, but the ATZ 1000 group spent significantly more time near the walls. Although ATZ did not affect muscular AChE, it significantly reduced AChE activity in brain. Exposure to 10μg/L ATZ did not affect behaviour or AChE activity. These data suggest that ATZ impairs defensive behaviours of zebrafish, which could be related to its action on brain cholinergic neurotransmission. Moreover, the use of the split depth tank could be an alternative strategy to assess group behaviour and depth preference after exposure to chemical compounds.
Collapse
Affiliation(s)
- Ademir J Schmidel
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Karla L Assmann
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Chariane C Werlang
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Kanandra T Bertoncello
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Francini Francescon
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Cassiano L Rambo
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Gabriela M Beltrame
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Daiane Calegari
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Cibele B Batista
- Programa de Pós-graduação em Zoologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Rachel E Blaser
- Department of Psychology, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
| | - Walter A Roman Júnior
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Greicy M M Conterato
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Angelo L Piato
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Leila Zanatta
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Jacir Dal Magro
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Denis B Rosemberg
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e Exatas, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil; Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN), 90035-003, Porto Alegre, RS, Brazil; Zebrafish Neuroscience Research Consortium (ZNRC).
| |
Collapse
|
363
|
Moussavi Nik SH, Croft K, Mori TA, Lardelli M. The Comparison of Methods for Measuring Oxidative Stress in Zebrafish Brains. Zebrafish 2014; 11:248-54. [DOI: 10.1089/zeb.2013.0958] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Seyyed Hani Moussavi Nik
- Discipline of Genetics, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, Australia
| | - Kevin Croft
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Trevor A. Mori
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Michael Lardelli
- Discipline of Genetics, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
364
|
Qin M, Wong A, Seguin D, Gerlai R. Induction of social behavior in zebrafish: live versus computer animated fish as stimuli. Zebrafish 2014; 11:185-97. [PMID: 24575942 PMCID: PMC4050712 DOI: 10.1089/zeb.2013.0969] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The zebrafish offers an excellent compromise between system complexity and practical simplicity and has been suggested as a translational research tool for the analysis of human brain disorders associated with abnormalities of social behavior. Unlike laboratory rodents zebrafish are diurnal, thus visual cues may be easily utilized in the analysis of their behavior and brain function. Visual cues, including the sight of conspecifics, have been employed to induce social behavior in zebrafish. However, the method of presentation of these cues and the question of whether computer animated images versus live stimulus fish have differential effects have not been systematically analyzed. Here, we compare the effects of five stimulus presentation types: live conspecifics in the experimental tank or outside the tank, playback of video-recorded live conspecifics, computer animated images of conspecifics presented by two software applications, the previously employed General Fish Animator, and a new application Zebrafish Presenter. We report that all stimuli were equally effective and induced a robust social response (shoaling) manifesting as reduced distance between stimulus and experimental fish. We conclude that presentation of live stimulus fish, or 3D images, is not required and 2D computer animated images are sufficient to induce robust and consistent social behavioral responses in zebrafish.
Collapse
Affiliation(s)
- Meiying Qin
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Computer Science, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Albert Wong
- Department of Computer Science, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Diane Seguin
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and System Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
365
|
Ladu F, Butail S, Macrí S, Porfiri M. Sociality Modulates the Effects of Ethanol in Zebra Fish. Alcohol Clin Exp Res 2014; 38:2096-104. [DOI: 10.1111/acer.12432] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Fabrizio Ladu
- Department of Mechanical and Aerospace Engineering ; New York University Polytechnic School of Engineering; Brooklyn New York
| | - Sachit Butail
- Department of Mechanical and Aerospace Engineering ; New York University Polytechnic School of Engineering; Brooklyn New York
| | - Simone Macrí
- Section of Behavioural Neuroscience ; Department of Cell Biology and Neuroscience; Istituto Superiore di Sanità; Rome Italy
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering ; New York University Polytechnic School of Engineering; Brooklyn New York
| |
Collapse
|
366
|
Gerlai R. Social behavior of zebrafish: from synthetic images to biological mechanisms of shoaling. J Neurosci Methods 2014; 234:59-65. [PMID: 24793400 DOI: 10.1016/j.jneumeth.2014.04.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 11/16/2022]
Abstract
The zebrafish strikes a good balance between system complexity and practical simplicity and as a result it is becoming increasingly frequently utilized in biomedical research as a translational tool. Numerous human brain disorders are associated with abnormal social behavior and the zebrafish has been suggested for modeling such disorders. To start this line of research, however, one may need to first thoroughly examine the laboratory organism, zebrafish, and its features, social behavior in this case. Proper methods need be developed to induce and quantify social behavior. These paradigms may be able to open a window to the brain and facilitate the understanding of the biological mechanisms of social behavior and its abnormalities. This review is based on an oral paper presented at the last Measuring Behavior Conference, and as such it is mainly focused on research conducted in my own laboratory. Tracing the temporal progression of our own work, it discusses questions including what shoaling is, how it can be induced and measured and how it can be utilized in the modeling of certain human brain disorders, for example, alcohol induced abnormalities.
Collapse
Affiliation(s)
- Robert Gerlai
- University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|
367
|
Blaser R, Vira D. Experiments on learning in zebrafish (Danio rerio): A promising model of neurocognitive function. Neurosci Biobehav Rev 2014; 42:224-31. [DOI: 10.1016/j.neubiorev.2014.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
368
|
de Oliveira GMT, Kist LW, Pereira TCB, Bortolotto JW, Paquete FL, de Oliveira EMN, Leite CE, Bonan CD, de Souza Basso NR, Papaleo RM, Bogo MR. Transient modulation of acetylcholinesterase activity caused by exposure to dextran-coated iron oxide nanoparticles in brain of adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:77-84. [PMID: 24704546 DOI: 10.1016/j.cbpc.2014.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 03/14/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest in nanomedicine due to their capability to act simultaneously as a contrast agent and as a targeted drug delivery system. At present, one of the biggest concerns about the use of SPIONs remains around its toxicity and, for this reason, it is important to establish the safe upper limit for each use. In the present study, SPION coated with cross-linked aminated dextran (CLIO-NH₂) were synthesized and their toxicity to zebrafish brain was investigated. We have evaluated the effect of different CLIO-NH₂ doses (20, 50, 100, 140 and 200 mg/kg) as a function of time after exposure (one, 16, 24 and 48 h) on AChE activity and ache expression in zebrafish brain. The animals exposed to 200 mg/kg and tested 24 h after administration of the nanoparticles have shown decreased AChE activity, reduction in the exploratory performance, significantly higher level of ferric iron in the brains and induction of casp8, casp 9 and jun genes. Taken together, these findings suggest acute brain toxicity by the inhibition of acetylcholinesterase and induction of apoptosis.
Collapse
Affiliation(s)
- Giovanna Medeiros Tavares de Oliveira
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Josiane Woutheres Bortolotto
- Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Francisco Lima Paquete
- Laboratório de Síntese de Materiais Nanoestruturados, Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Elisa Magno Nunes de Oliveira
- Laboratório de Síntese de Materiais Nanoestruturados, Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Carlos Eduardo Leite
- Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Nara Regina de Souza Basso
- Laboratório de Síntese de Materiais Nanoestruturados, Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Ricardo Meurer Papaleo
- Laboratório de Síntese de Materiais Nanoestruturados, Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil; Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
369
|
Gerlai R. Fish in behavior research: unique tools with a great promise! J Neurosci Methods 2014; 234:54-8. [PMID: 24768578 DOI: 10.1016/j.jneumeth.2014.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 11/24/2022]
Abstract
Fish represent the most diverse class of vertebrates on Earth and also an unprecedented, but as of yet still largely untapped, resource for comparative analyses that can illuminate answers to questions about both how organisms work and how they evolved. The current review is a general discussion of some of the basic principles of why adding new species such as fish to the short list of biomedical model organisms (mainly the house mouse and the rat) has merit. In addition to the general points, it also reviews some questions about a newcomer, the zebrafish, which is rapidly gaining popularity in brain and behavior research. It discusses some examples demonstrating the advantages and disadvantages of the zebrafish mainly in the context of biomedical research. It is followed by other articles that further elaborate on these questions.
Collapse
Affiliation(s)
- Robert Gerlai
- University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|
370
|
Wang J, Liu C, Ma F, Chen W, Liu J, Hu B, Zheng L. Circadian Clock Mediates Light/Dark Preference in Zebrafish (Danio Rerio). Zebrafish 2014; 11:115-21. [DOI: 10.1089/zeb.2013.0929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Ju Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Changhong Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Fei Ma
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Wei Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Jian Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Bing Hu
- School of Life Science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Lei Zheng
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Medical Engineering, Hefei University of Technology, Hefei, People's Republic of China
| |
Collapse
|
371
|
Oliveira TA, Koakoski G, da Motta AC, Piato AL, Barreto RE, Volpato GL, Barcellos LJG. Death-associated odors induce stress in zebrafish. Horm Behav 2014; 65:340-4. [PMID: 24613177 DOI: 10.1016/j.yhbeh.2014.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 02/09/2023]
Abstract
Living animals exploit information released from dead animals to conduct adaptive biological responses. For instance, a recently published study has shown that avoidance behavior is triggered by death-associated odors in zebrafish. Stress can clearly act as an adaptive response that allows an organism to deal with an imminent threat. However, it has not been demonstrated whether these chemical cues are stressful for fish. Here, we confirmed that dead zebrafish scents induce defensive behavior in live conspecifics. Additionally, we show for the first time in fish that these scents increase cortisol in conspecifics. To reach this conclusion, firstly, we exposed zebrafish to multi-sensorial cues (e.g., visual, tactile, chemical cues) from dead conspecifics that displayed defensive behaviors and increased cortisol. Also, when we limited zebrafish to chemical cues from dead conspecifics, similar responses arose. These responses coincide with the decaying destruction of epidermal cells, indicating that defensive and stress responses could take place as an effect of substances emanating from decaying flesh, as well as alarm substance released due to rupture of epidermal cells. Taken together, these results illustrate that living zebrafish utilize cues from dead conspecific to avoid or to cope with danger and ensure survival.
Collapse
Affiliation(s)
- Thiago Acosta Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Campus Universitário - Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Campus Universitário - Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Adriana Costa da Motta
- Universidade de Passo Fundo (UPF), Curso de Medicina Veterinária, Campus I, Bairro São José, Caixa Postal 611, CEP 99001-970 Passo Fundo, RS, Brazil
| | - Angelo Luis Piato
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Universidade Comunitária da Região de Chapecó, Rua Sen. Attílio Fontana, 591 E, Efapi, 89809-000 SC, Brazil
| | - Rodrigo Egydio Barreto
- Departamento de Fisiologia, Instituto de Biociências, UNESP - Univ. Estadual Paulista, CAUNESP - Centro de Aquicultura da UNESP, Campus de Botucatu - Rubião Jr., 18618-970 Botucatu, São Paulo, Brazil
| | - Gilson Luiz Volpato
- Departamento de Fisiologia, Instituto de Biociências, UNESP - Univ. Estadual Paulista, CAUNESP - Centro de Aquicultura da UNESP, Campus de Botucatu - Rubião Jr., 18618-970 Botucatu, São Paulo, Brazil
| | - Leonardo José Gil Barcellos
- Universidade de Passo Fundo (UPF), Curso de Medicina Veterinária, Campus I, Bairro São José, Caixa Postal 611, CEP 99001-970 Passo Fundo, RS, Brazil.
| |
Collapse
|
372
|
Zenki KC, Mussulini BHM, Rico EP, de Oliveira DL, Rosemberg DB. Effects of ethanol and acetaldehyde in zebrafish brain structures: an in vitro approach on glutamate uptake and on toxicity-related parameters. Toxicol In Vitro 2014; 28:822-8. [PMID: 24681127 DOI: 10.1016/j.tiv.2014.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 01/30/2023]
Abstract
Ethanol (EtOH) and its metabolite, acetaldehyde (ALD), induce deleterious effects on central nervous system (CNS). Here we investigate the in vitro toxicity of EtOH and ALD (concentrations of 0.25%, 0.5%, and 1%) in zebrafish brain structures [telencephalon (TE), opticum tectum (OT), and cerebellum (CE)] by measuring the functionality of glutamate transporters, MTT reduction, and extracellular LDH activity. Both molecules decreased the activity of the Na(+)-dependent glutamate transporters in all brain structures. The strongest glutamate uptake inhibition after EtOH exposure was 58% (TE-1%), and after ALD, 91% (CE-1%). The results of MTT assay and LDH released demonstrated that the actions of EtOH and its metabolite are concentration and structure-dependent, in which ALD was more toxic than EtOH. In summary, our findings demonstrate a differential toxicity in vitro of EtOH and ALD in zebrafish brain structures, which can involve changes on glutamatergic parameters. We suggest that this species may be an interesting model for assessing the toxicological actions of alcohol and its metabolite in CNS.
Collapse
Affiliation(s)
- Kamila Cagliari Zenki
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil.
| | - Ben Hur Marins Mussulini
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Eduardo Pacheco Rico
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN) 90035-003, Porto Alegre, RS, Brazil
| | - Diogo Lösch de Oliveira
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Zebrafish Neuroscience Research Consortium (ZNRC), USA
| | - Denis Broock Rosemberg
- Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN) 90035-003, Porto Alegre, RS, Brazil; Zebrafish Neuroscience Research Consortium (ZNRC), USA; Programa de Pós-graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria. Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
373
|
An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio). Behav Brain Res 2014; 276:161-70. [PMID: 24598276 DOI: 10.1016/j.bbr.2014.02.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/15/2022]
Abstract
The zebrafish is emerging as a popular animal model for alcohol (ethanol or EtOH) addiction due to its simplicity and practical advantages. Two phenomena associated with ethanol addiction are the development of tolerance and withdrawal. Using a multi-level approach in the current study, we characterise ethanol tolerance and withdrawal in zebrafish. We first investigate the temporal trajectory of ethanol concentration in the zebrafish brain in response to an acute exposure and during withdrawal. We report that ethanol concentrations approach a steady state within 60 min of exposure to 0.50% and 1.00% v/v ethanol and rapidly decline and return to zero within 60 min following withdrawal from chronic ethanol exposure (0.50% v/v). We characterise the changes associated with ethanol tolerance and withdrawal in zebrafish by focusing on three domains relevant to ethanol addiction: motor patterns, physiological responses (i.e. cortisol levels), and neurochemical alterations. The use of multiple domains of investigation allowed an in-depth analysis of ethanol induced changes in zebrafish.
Collapse
|
374
|
Fernandes Y, Tran S, Abraham E, Gerlai R. Embryonic alcohol exposure impairs associative learning performance in adult zebrafish. Behav Brain Res 2014; 265:181-7. [PMID: 24594368 DOI: 10.1016/j.bbr.2014.02.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/16/2022]
Abstract
The zebrafish has been proposed for modeling fetal alcohol spectrum disorders (FASD). Previous FASD research with zebrafish employed high concentrations of alcohol and/or long exposure periods. Here, we exposed zebrafish eggs to low doses of alcohol (0, 0.25, 0.50, 0.75 and 1.0% (vol/vol); external bath application of which 1/20th may reach the inside of the egg) at 16-h post-fertilization (hpf) and only for a short duration (2h) in the hope to avoid gross morphological aberrations and to mimic the more frequent FASD exposure levels. Upon reaching adulthood the exposed and control zebrafish were tested for their associative learning performance in a plus-maze. Embryonic alcohol exposure led to no gross anatomical abnormalities and did not increase mortality. Unexposed (control) zebrafish showed excellent acquisition of association between a conditioned visual stimulus (CS) and food reward, demonstrated by their preference for the target zone of the maze that contained the CS during a probe trial in the absence of reward. However, alcohol-exposed fish showed no such preference and performed indistinguishable from random chance. Locomotor activity during training and the probe trial or the amount of food consumed during training did not differ between the embryonic alcohol exposed and unexposed (control) fish, suggesting that the impaired learning performance found was unlikely to be caused by altered motivation or motor function. Our results suggest that even very small amounts of alcohol reaching the embryo for only a short duration of time may have long lasting deleterious effects on cognitive function in vertebrates.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Department of Cell and System Biology, University of Toronto, Canada
| | - Steven Tran
- Department of Cell and System Biology, University of Toronto, Canada
| | - Emil Abraham
- Department of Psychology, University of Toronto, Canada
| | - Robert Gerlai
- Department of Cell and System Biology, University of Toronto, Canada; Department of Psychology, University of Toronto, Canada.
| |
Collapse
|
375
|
Hashmi MZ, Shen H, Zhu S, Yu C, Shen C. Growth, bioluminescence and shoal behavior hormetic responses to inorganic and/or organic chemicals: a review. ENVIRONMENT INTERNATIONAL 2014; 64:28-39. [PMID: 24361513 DOI: 10.1016/j.envint.2013.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
A biphasic dose response, termed hormesis, is characterized by beneficial effects of a chemical at a low dose and harmful effects at a high dose. This biphasic dose response phenomenon has the potential to strongly alter toxicology in a broad range. The present review focuses on the progress of research into hormetic responses in terms of growth (in plants, birds, algae and humans), bioluminescence, and shoal behavior as end points. The paper describes how both inorganic and organic chemicals at a low dose show stimulatory responses while at higher doses are inhibitory. The article highlights how factors such as symbiosis, density-dependent factors, time, and contrasting environmental factors (availability of nutrients, temperature, light, etc.) affect both the range and amplitude of hormetic responses. Furthermore, the possible underlying mechanisms are also discussed and we suggest that, for every end point, different hormetic mechanisms may exist. The occurrences of varying interacting receptor systems or receptor systems affecting the assessment of hormesis for each endpoint are discussed. The present review suggests that a hormetic model should be adopted for toxicological evaluations instead of the older threshold and linear non-threshold models.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hui Shen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shenhai Zhu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chunna Yu
- Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
376
|
Bortolotto JW, Cognato GP, Christoff RR, Roesler LN, Leite CE, Kist LW, Bogo MR, Vianna MR, Bonan CD. Long-term exposure to paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio). Zebrafish 2014; 11:142-53. [PMID: 24568596 DOI: 10.1089/zeb.2013.0923] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic exposure to paraquat (Pq), a toxic herbicide, can result in Parkinsonian symptoms. This study evaluated the effect of the systemic administration of Pq on locomotion, learning and memory, social interaction, tyrosine hydroxylase (TH) expression, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels, and dopamine transporter (DAT) gene expression in zebrafish. Adult zebrafish received an i.p. injection of either 10 mg/kg (Pq10) or 20 mg/kg (Pq20) of Pq every 3 days for a total of six injections. Locomotion and distance traveled decreased at 24 h after each injection in both treatment doses. In addition, both Pq10- and Pq20-treated animals exhibited differential effects on the absolute turn angle. Nonmotor behaviors were also evaluated, and no changes were observed in anxiety-related behaviors or social interactions in Pq-treated zebrafish. However, Pq-treated animals demonstrated impaired acquisition and consolidation of spatial memory in the Y-maze task. Interestingly, dopamine levels increased while DOPAC levels decreased in the zebrafish brain after both treatments. However, DAT expression decreased in the Pq10-treated group, and there was no change in the Pq20-treated group. The amount of TH protein showed no significant difference in the treated group. Our study establishes a new model to study Parkinson-associated symptoms in zebrafish that have been chronically treated with Pq.
Collapse
Affiliation(s)
- Josiane W Bortolotto
- 1 Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Wong D, von Keyserlingk MAG, Richards JG, Weary DM. Conditioned place avoidance of zebrafish (Danio rerio) to three chemicals used for euthanasia and anaesthesia. PLoS One 2014; 9:e88030. [PMID: 24505365 PMCID: PMC3913715 DOI: 10.1371/journal.pone.0088030] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/02/2014] [Indexed: 11/18/2022] Open
Abstract
Zebrafish are becoming one of the most used vertebrates in developmental and biomedical research. Fish are commonly killed at the end of an experiment with an overdose of tricaine methanesulfonate (TMS, also known as MS-222), but to date little research has assessed if exposure to this or other agents qualifies as euthanasia (i.e. a "good death"). Alternative agents include metomidate hydrochloride and clove oil. We use a conditioned place avoidance paradigm to compare aversion to TMS, clove oil, and metomidate hydrochloride. Zebrafish (n = 51) were exposed to the different anaesthetics in the initially preferred side of a light/dark box. After exposure to TMS zebrafish spent less time in their previously preferred side; aversion was less pronounced following exposure to metomidate hydrochloride and clove oil. Nine of 17 fish exposed to TMS chose not to re-enter the previously preferred side, versus 2 of 18 and 3 of 16 refusals for metomidate hydrochloride and clove oil, respectively. We conclude that metomidate hydrochloride and clove oil are less aversive than TMS and that these agents be used as humane alternatives to TMS for killing zebrafish.
Collapse
Affiliation(s)
- Devina Wong
- Animal Welfare Program, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | | | - Jeffrey G. Richards
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel M. Weary
- Animal Welfare Program, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
378
|
Bailey J, Oliveri A, Levin ED. Zebrafish model systems for developmental neurobehavioral toxicology. ACTA ACUST UNITED AC 2014; 99:14-23. [PMID: 23723169 DOI: 10.1002/bdrc.21027] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 03/06/2013] [Indexed: 02/05/2023]
Abstract
Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models.
Collapse
Affiliation(s)
- Jordan Bailey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
379
|
Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 2014; 35:63-75. [PMID: 24412421 DOI: 10.1016/j.tips.2013.12.002] [Citation(s) in RCA: 788] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/27/2022]
Abstract
The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, e.g., depression, autism, psychoses, drug abuse, and cognitive deficits), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions are a rapidly emerging critical field in translational neuroscience and pharmacology research.
Collapse
Affiliation(s)
- Allan V Kalueff
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| | - Adam Michael Stewart
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
380
|
Makhija DT, Jagtap AG. Studies on sensitivity of zebrafish as a model organism for Parkinson's disease: Comparison with rat model. J Pharmacol Pharmacother 2014; 5:39-46. [PMID: 24554909 PMCID: PMC3917164 DOI: 10.4103/0976-500x.124422] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To determine the utility of zebra fish as an animal model for Parkinson's disease (PD) in comparison with rat model. MATERIALS AND METHODS MTT assay was performed on rat and zebrafish brain synaptosomal fractions using rotenone as a neurotoxic agent. Quercetin and resveratrol were used as standards to compare anti-apoptotic activity in both organisms. Catalepsy was induced in zebrafish by exposing them to haloperidol (9 μM) solution. Drug-treated groups were exposed to bromocriptine and pramipexole, 30 min prior to haloperidol exposure at the dose of 2, 5, and 10 μg/mL. Swimming speed, time spent in the bottom of the tank, and complete cataleptic time were evaluated to assess behavioral changes. In rats, catalepsy was induced using haloperidol (1.25 mg/kg i.p.). Drug-treated groups received bromocriptine (2.5 mg/kg.) and pramipexole (1 mg/kg) orally. Bar test, block test, and locomotor activity were carried out to assess behavioral changes. RESULTS Resveratrol and quercetin showed comparable inhibition of apoptosis in rats and zebrafish. In anti-cataleptic study, bromocriptine and pramipexole-treated groups showed significant difference (P < 0.05) in behavioral parameters as compared to haloperidol control group in both the experimental organisms. Results obtained from fish model were in correlation with rat model. CONCLUSION Findings of the present study revealed that zebrafish model is highly sensitive and can be used for basic screening of drugs against PD.
Collapse
Affiliation(s)
- Dinesh T. Makhija
- Department of Pharmacology, Bombay College of Pharmacy, Mumbai, Maharashtra, India
| | - Aarti G. Jagtap
- Department of Pharmacology, Bombay College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
381
|
Startle response memory and hippocampal changes in adult zebrafish pharmacologically-induced to exhibit anxiety/depression-like behaviors. Physiol Behav 2014; 123:174-9. [DOI: 10.1016/j.physbeh.2013.10.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/02/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
|
382
|
Chronic and acute alcohol administration induced neurochemical changes in the brain: comparison of distinct zebrafish populations. Amino Acids 2014; 46:921-30. [PMID: 24381007 DOI: 10.1007/s00726-013-1658-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/20/2013] [Indexed: 01/27/2023]
Abstract
The zebrafish is increasingly utilized in the analysis of the effects of ethanol (alcohol) on brain function and behavior. We have shown significant population-dependent alcohol-induced changes in zebrafish behavior and have started to analyze alterations in dopaminergic and serotoninergic responses. Here, we analyze the effects of alcohol on levels of selected neurochemicals using a 2 × 3 (chronic × acute) between-subject alcohol exposure paradigm randomized for two zebrafish populations, AB and SF. Each fish first received the particular chronic treatment (0 or 0.5 vol/vol% alcohol) and subsequently the acute exposure (0, 0.5 or 1.0% alcohol). We report changes in levels of dopamine, DOPAC, serotonin, 5HIAA, glutamate, GABA, aspartate, glycine and taurine as quantified from whole brain extracts using HPLC. We also analyze monoamine oxidase and tyrosine hydroxylase enzymatic activity. The results demonstrate that compared to SF, AB is more responsive to both acute alcohol exposure and acute alcohol withdrawal at the level of neurochemistry, a finding that correlates well with prior behavioral observations and one which suggests the involvement of genes in the observed alcohol effects. We discuss correlations between the current results and prior behavioral findings, and stress the importance of characterization of zebrafish strains for future behavior genetic and psychopharmacology studies.
Collapse
|
383
|
Cole GJ, Zhang C, Ojiaku P, Bell V, Devkota S, Mukhopadhyay S. Effects of ethanol exposure on nervous system development in zebrafish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 299:255-315. [PMID: 22959306 DOI: 10.1016/b978-0-12-394310-1.00007-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alcohol (ethanol) is a teratogen that adversely affects nervous system development in a wide range of animal species. In humans numerous congenital abnormalities arise as a result of fetal alcohol exposure, leading to a spectrum of disorders referred to as fetal alcohol spectrum disorder (FASD). These abnormalities include craniofacial defects as well as neurological defects that affect a variety of behaviors. These human FASD phenotypes are reproduced in the rodent central nervous system (CNS) following prenatal ethanol exposure. While the study of ethanol effects on zebrafish development has been more limited, several studies have shown that different strains of zebrafish exhibit differential susceptibility to ethanol-induced cyclopia, as well as behavioral deficits. Molecular mechanisms underlying the effects of ethanol on CNS development also appear to be shared between rodent and zebrafish. Thus, zebrafish appear to recapitulate the observed effects of ethanol on human and mouse CNS development, indicating that zebrafish can serve as a complimentary developmental model system to study the molecular basis of FASD. Recent studies examining the effect of ethanol exposure on zebrafish nervous system development are reviewed, with an emphasis on attempts to elucidate possible molecular pathways that may be impacted by developmental ethanol exposure. Recent work from our laboratories supports a role for perturbed extracellular matrix function in the pathology of ethanol exposure during zebrafish CNS development. The use of the zebrafish model to assess the effects of ethanol exposure on adult nervous system function as manifested by changes in zebrafish behavior is also discussed.
Collapse
Affiliation(s)
- Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
384
|
Pannia E, Tran S, Rampersad M, Gerlai R. Acute ethanol exposure induces behavioural differences in two zebrafish (Danio rerio) strains: a time course analysis. Behav Brain Res 2013; 259:174-85. [PMID: 24239692 DOI: 10.1016/j.bbr.2013.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 01/09/2023]
Abstract
The zebrafish has been proposed as a model organism to study genetic effects influencing behaviour and also as a tool with which the mechanisms of the action of alcohol (ethanol or EtOH) in the vertebrate brain may be investigated. In the current study we exposed zebrafish from two genetically distinct strains (WIK and TU) to a computer animated image of a natural predator of this species, the Indian leaf fish. We measured the subjects' behavioural responses in the presence of different acute doses of alcohol (0.00, 0.25, 0.50, and 1.00% vol/vol) using an observation based event-recording method. We found fish of both strains to exhibit an atypical predator inspection response during the presentation of the animated predator image coupled with a classical fear response, increased jumping frequency. We found numerous alcohol induced behavioural changes and more importantly also revealed alcohol induced strain dependent changes as well, including different dose-response trajectories for WIK vs. TU in predator inspection response, general swimming activity, location of swimming (top vs. bottom half of the tank) and freezing. The results suggest that zebrafish of the TU strain may be more tolerant at least to lower doses of alcohol as compared to WIK. The characterization of strain differences in zebrafish will aid the identification of possible molecular mechanisms involved in alcohol's actions in the vertebrate brain.
Collapse
Affiliation(s)
- Emanuela Pannia
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Nutritional Sciences, University of Toronto, Canada
| | - Steven Tran
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Mindy Rampersad
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
385
|
Physical exercise improves learning in zebrafish, Danio rerio. Behav Processes 2013; 100:44-7. [DOI: 10.1016/j.beproc.2013.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/31/2022]
|
386
|
The utility of the zebrafish model in conditioned place preference to assess the rewarding effects of drugs. Behav Pharmacol 2013; 24:375-83. [PMID: 23811781 DOI: 10.1097/fbp.0b013e328363d14a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Substance abuse is a significant public health concern both domestically and worldwide. The persistent use of substances regardless of aversive consequences forces the user to give higher priority to the drug than to normal activities and obligations. The harmful and hazardous use of psychoactive substances can lead to a dependence syndrome. In this regard, the genetic and neurobiological underpinnings of reward-seeking behavior need to be fully understood in order to develop effective pharmacotherapies and other methods of treatment. Animal models are often implemented in preclinical screening for testing the efficacy of novel treatments. Several paradigms exist that model various facets of addiction including sensitization, tolerance, withdrawal, drug seeking, extinction, and relapse. Self-administration and, most notably, conditioned place preference (CPP) are relatively simple tests that serve as indicators of the aforementioned aspects of addiction by means of behavioral quantification. CPP is a commonly used technique to evaluate the motivational effects of compounds and experiences that have been associated with a positive or negative reward, which capitalizes on the basic principles of Pavlovian conditioning. During training, the unconditioned stimulus is consistently paired with a neutral set of environmental stimuli, which obtain, during conditioning, secondary motivational properties that elicit approach behavior in the absence of the unconditioned stimulus. For over 50 years, rodents have been the primary test subjects. However, the zebrafish (Danio rerio) is gaining favor as a valuable model organism in the fields of biology, genetics, and behavioral neuroscience. This paper presents a discussion on the merits, advantages, and limitations of the zebrafish model and its utility in relation to CPP.
Collapse
|
387
|
Butail S, Bartolini T, Porfiri M. Collective response of zebrafish shoals to a free-swimming robotic fish. PLoS One 2013; 8:e76123. [PMID: 24146825 PMCID: PMC3797741 DOI: 10.1371/journal.pone.0076123] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/20/2013] [Indexed: 01/21/2023] Open
Abstract
In this work, we explore the feasibility of regulating the collective behavior of zebrafish with a free-swimming robotic fish. The visual cues elicited by the robot are inspired by salient features of attraction in zebrafish and include enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiform locomotion. The robot is autonomously controlled with an online multi-target tracking system and swims in circular trajectories in the presence of groups of zebrafish. We investigate the collective response of zebrafish to changes in robot speed, achieved by varying its tail-beat frequency. Our results show that the speed of the robot is a determinant of group cohesion, quantified through zebrafish nearest-neighbor distance, which increases with the speed of the robot until it reaches [Formula: see text]. We also find that the presence of the robot causes a significant decrease in the group speed, which is not accompanied by an increase in the freezing response of the subjects. Findings of this study are expected to inform the design of experimental protocols that leverage the use of robots to study the zebrafish animal model.
Collapse
Affiliation(s)
- Sachit Butail
- Department of Mechanical and Aerospace Engineering, Polytechnic Institute of New York University, Brooklyn, New York, United States of America
| | - Tiziana Bartolini
- Department of Mechanical and Aerospace Engineering, Polytechnic Institute of New York University, Brooklyn, New York, United States of America
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Polytechnic Institute of New York University, Brooklyn, New York, United States of America
| |
Collapse
|
388
|
Oliveira TA, Koakoski G, Kreutz LC, Ferreira D, da Rosa JGS, de Abreu MS, Giacomini ACV, Oliveira RP, Fagundes M, Piato AL, Barreto RE, Barcellos LJG. Alcohol impairs predation risk response and communication in zebrafish. PLoS One 2013; 8:e75780. [PMID: 24116073 PMCID: PMC3792133 DOI: 10.1371/journal.pone.0075780] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish. We also observed a typical stress response in zebrafish receiving water from these conspecifics, indicating that these fish chemically communicate predation risk. Our work is the first to demonstrate how alcohol effects this prey-predator interaction. We showed for the first time that alcohol exposure completely blocks stress axis activation in both fish seeing the predator and in fish that come in indirect contact with a predator by receiving water from these conspecifics. Together with other research results and with the translational relevance of this fish species, our data points to zebrafish as a promising animal model to study human alcoholism.
Collapse
Affiliation(s)
- Thiago Acosta Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Luiz Carlos Kreutz
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Daiane Ferreira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - João Gabriel Santos da Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Murilo Sander de Abreu
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ana Cristina Vendrametto Giacomini
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Ricardo Pimentel Oliveira
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Michele Fagundes
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Angelo Luis Piato
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | | | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
- * E-mail:
| |
Collapse
|
389
|
Tran S, Gerlai R. Individual differences in activity levels in zebrafish (Danio rerio). Behav Brain Res 2013; 257:224-9. [PMID: 24084583 DOI: 10.1016/j.bbr.2013.09.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/17/2022]
Abstract
Individual differences and variation in behavioral responses have been identified in many animal species. These differences may be the result of genetic or environmental factors or the interaction between them. Analysis of individual differences in behavior may be important for many reasons. The zebrafish is a powerful model organism that is rapidly gaining popularity in behavioral brain research. However, individual differences have rarely been explored in zebrafish although significant variation in their performance has been reported. In the current study we identified individual differences in activity levels of zebrafish using a genetically heterogeneous population. Groups of zebrafish classified as high, medium, or low activity performers demonstrated consistent activity levels over a period of 7 days, and also in a subsequent open field task, suggesting stable individual differences as opposed to stochastic variation among subjects. We also uncovered a sex dependent relationship between behavioral measures. Female zebrafish in the high activity group preferred the top portion of the tank, whereas low activity females preferred the lower portion but males did not show such a relationship. The relationship between these two behaviors in females implies the potential existence of a behavioral syndrome persisting between contexts. Furthermore, females demonstrated a higher level of consistency in their behavior as compared to males, and the behavioral differences were found to be independent of both body size and weight of the tested subjects. The identification of individual differences in activity levels in zebrafish will allow the investigation of underlying genetic and/or environmental underpinnings.
Collapse
Affiliation(s)
- Steven Tran
- Department of Cell and Systems Biology, University of Toronto at Mississauga, Canada
| | | |
Collapse
|
390
|
Blazina AR, Vianna MR, Lara DR. The spinning task: a new protocol to easily assess motor coordination and resistance in zebrafish. Zebrafish 2013; 10:480-5. [PMID: 24044654 DOI: 10.1089/zeb.2012.0860] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The increasing use of adult zebrafish in behavioral studies has created the need for new and improved protocols. Our investigation sought to evaluate the swimming behavior of zebrafish against a water current using the newly developed Spinning Task. Zebrafish were individually placed in a beaker containing a spinning magnetic stirrer and their latency to be swept into the whirlpool was recorded. We characterized that larger fish (>4 cm) and lower rpm decreased the swimming time in the Spinning Task. There was also a dose-related reduction in swimming after acute treatment with haloperidol, valproic acid, clonazepam, and ethanol, which alter coordination. Importantly, at doses that reduced swimming time in the Spinning Task, these drugs influenced absolute turn angle (ethanol increased and the other drugs decreased), but had no effect of distance travelled in a regular water tank. These results suggest that the Spinning Task is a useful protocol to add information to the assessment of zebrafish motor behavior.
Collapse
Affiliation(s)
- Ana R Blazina
- 1 Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre, Brazil
| | | | | |
Collapse
|
391
|
Pagnussat N, Piato AL, Schaefer IC, Blank M, Tamborski AR, Guerim LD, Bonan CD, Vianna MR, Lara DR. One for All and All for One: The Importance of Shoaling on Behavioral and Stress Responses in Zebrafish. Zebrafish 2013; 10:338-42. [DOI: 10.1089/zeb.2013.0867] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Natália Pagnussat
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo L. Piato
- Laboratório de Psicofarmacologia e Comportamento, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Isabel C. Schaefer
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Martina Blank
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angélica R. Tamborski
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura D. Guerim
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla D. Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Medicina Translacional (INCT-TM), Porto Alegre, RS, Brazil
| | - Mônica R.M. Vianna
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Medicina Translacional (INCT-TM), Porto Alegre, RS, Brazil
| | - Diogo R. Lara
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
392
|
|
393
|
Zhang DL, Hu CX, Li DH, Liu YD. Zebrafish locomotor capacity and brain acetylcholinesterase activity is altered by Aphanizomenon flos-aquae DC-1 aphantoxins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 138-139:139-149. [PMID: 23792258 DOI: 10.1016/j.aquatox.2013.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Aphanizomenon flos-aquae (A. flos-aquae) is a source of neurotoxins known as aphantoxins or paralytic shellfish poisons (PSPs) that present a major threat to the environment and to human health. Generally, altered neurological function is reflected in behavior. Although the molecular mechanism of action of PSPs is well known, its neurobehavioral effects on adult zebrafish and its relationship with altered neurological functions are poorly understood. Aphantoxins purified from a natural isolate of A. flos-aquae DC-1 were analyzed by HPLC. The major analogs found in the toxins were the gonyautoxins 1 and 5 (GTX1 and GTX5; 34.04% and 21.28%, respectively) and the neosaxitoxin (neoSTX, 12.77%). Zebrafish (Danio rerio) were intraperitoneally injected with 5.3 and 7.61 μg STXeq/kg (low and high dose, respectively) of A. flos-aquae DC-1 aphantoxins. The swimming activity was investigated by observation combined with video at 6 timepoints from 1 to 24 h post-exposure. Both aphantoxin doses were associated with delayed touch responses, reduced head-tail locomotory abilities, inflexible turning of head, and a tailward-shifted center of gravity. The normal S-pattern (or undulating) locomotor trajectory was replaced by a mechanical motor pattern of swinging the head after wagging the tail. Finally, these fish principally distributed at the top and/or bottom water of the aquarium, and showed a clear polarized distribution pattern at 12 h post-exposure. Further analysis of neurological function demonstrated that both aphantoxin doses inhibited brain acetylcholinesterase activity. All these changes were dose- and time-dependent. These results demonstrate that aphantoxins can alter locomotor capacity, touch responses and distribution patterns by damaging the cholinergic system of zebrafish, and suggest that zebrafish locomotor behavior and acetylcholinesterase can be used as indicators for investigating aphantoxins and blooms in nature.
Collapse
Affiliation(s)
- De Lu Zhang
- Department of Lifescience and Biotechnology, College of Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | | | | | | |
Collapse
|
394
|
Ariyomo TO, Watt PJ. Disassortative mating for boldness decreases reproductive success in the guppy. Behav Ecol 2013. [DOI: 10.1093/beheco/art070] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
395
|
Spinello C, Macrì S, Porfiri M. Acute ethanol administration affects zebrafish preference for a biologically inspired robot. Alcohol 2013; 47:391-8. [PMID: 23725654 DOI: 10.1016/j.alcohol.2013.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/10/2013] [Accepted: 04/23/2013] [Indexed: 12/16/2022]
Abstract
Preclinical animal models constitute a cornerstone against which the reward processes involved in drug addiction are often studied and dissected. While rodents have traditionally represented the species of choice, a growing body of literature indicates that zebrafish are emerging as a valuable model organism. Specifically, several studies demonstrate that the effects of ethanol at the level of emotional- and cognitive-related domains can be reliably investigated using zebrafish. The rapidly evolving nature of these efforts allows substantial room for the development of novel experimental paradigms suited to this freshwater species. The field of ethorobotics may prove particularly beneficial, due to its ability to convey fully controllable and easily reproducible experimental tools. In this study, we addressed the possibility of using a biologically inspired robot to investigate the emotionally related properties of ethanol in a preference task in zebrafish. To this aim, we evaluated wild-type zebrafish preference toward a robotic stimulus and addressed whether ethanol administration (0.25% and 1.00% ethanol/water concentration) may alter such preferences. In accordance with our previous studies, we observed that zebrafish exhibit a natural attraction toward the robot. Additionally, in agreement with our predictions, we showed that ethanol administration abolishes such preferences. This work is the first to demonstrate that robotic stimuli can be used in zebrafish to investigate the reward-related properties of alcohol.
Collapse
|
396
|
Development of aggressive phenotypes in zebrafish: interactions of age, experience and social status. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
397
|
Cianca V, Bartolini T, Porfiri M, Macrì S. A robotics-based behavioral paradigm to measure anxiety-related responses in zebrafish. PLoS One 2013; 8:e69661. [PMID: 23922773 PMCID: PMC3726767 DOI: 10.1371/journal.pone.0069661] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 06/11/2013] [Indexed: 12/14/2022] Open
Abstract
Zebrafish are gaining momentum as a laboratory animal species for the study of anxiety-related disorders in translational research, whereby they serve a fundamental complement to laboratory rodents. Several anxiety-related behavioral paradigms, which rest upon the presentation of live predatorial stimuli, may yield inconsistent results due to fatigue, habituation, or idiosyncratic responses exhibited by the stimulus itself. To overcome these limitations, we designed and manufactured a fully controllable robot inspired by a natural aquatic predator (Indian leaf fish, Nandus nandus) of zebrafish. We report that this robot elicits aversive antipredatorial reactions in a preference test and that data obtained therein correlate with data observed in traditional anxiety- and fear-related tests (light/dark preference and shelter-seeking). Finally, ethanol administration (0.25; 0.50; 1.00%) exerts anxiolytic effects, thus supporting the view that robotic stimuli can be used in the analysis of anxiety-related behaviors in zebrafish.
Collapse
Affiliation(s)
- Valentina Cianca
- Department of Mechanical and Aerospace Engineering, Polytechnic Institute of New York University, Brooklyn, New York, United States of America
| | - Tiziana Bartolini
- Department of Mechanical and Aerospace Engineering, Polytechnic Institute of New York University, Brooklyn, New York, United States of America
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Polytechnic Institute of New York University, Brooklyn, New York, United States of America
- * E-mail: (MP); (SM)
| | - Simone Macrì
- Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
- * E-mail: (MP); (SM)
| |
Collapse
|
398
|
Kedikian X, Faillace MP, Bernabeu R. Behavioral and molecular analysis of nicotine-conditioned place preference in zebrafish. PLoS One 2013; 8:e69453. [PMID: 23894483 PMCID: PMC3722213 DOI: 10.1371/journal.pone.0069453] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/09/2013] [Indexed: 12/26/2022] Open
Abstract
Studies using mice and rats have demonstrated that nicotine induces a conditioned place preference (CPP), with more effective results obtained by using biased procedures. Zebrafish have also been used as a model system to identify factors influencing nicotine-associated reward by using an unbiased design. Here, we report that zebrafish exhibited putative nicotine biased CPP to an initially aversive compartment (nicotine-paired group). A counterbalanced nicotine-exposed control group did not show a significant preference shift, providing evidence that the preference shift in the nicotine-paired group was not due to a reduction of aversion for this compartment. Zebrafish preference was corroborated by behavioral analysis of several indicators of drug preference, such as time spent in the drug-paired side, number of entries to the drug-paired side, and distance traveled. These results provided strong evidence that zebrafish may actually develop a preference for nicotine, although the drug was administrated in an aversive place for the fish, which was further supported by molecular studies. Reverse transcription-quantitative real-time PCR analysis depicted a significant increase in the expression of α7 and α6 but not α4 and β2 subunits of the nicotinic receptor in nicotine-paired zebrafish brains. In contrast, zebrafish brains from the counterbalanced nicotine group showed no significant changes. Moreover, CREB phosphorylation, an indicator of neural activity, accompanied the acquisition of nicotine-CPP. Our studies offered an incremental value to the drug addiction field, because they further describe behavioral features of CPP to nicotine in zebrafish. The results suggested that zebrafish exposed to nicotine in an unfriendly environment can develop a preference for that initially aversive place, which is likely due to the rewarding effect of nicotine. Therefore, this model can be used to screen exogenous and endogenous molecules involved in nicotine-associated reward in vertebrates.
Collapse
Affiliation(s)
- Ximena Kedikian
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Paula Faillace
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)- CONICET, Buenos Aires, Argentina
| | - Ramón Bernabeu
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencias (IBCN- CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
399
|
Gerlai R. Antipredatory behavior of zebrafish: adaptive function and a tool for translational research. EVOLUTIONARY PSYCHOLOGY 2013; 11:591-605. [PMID: 23864295 PMCID: PMC10481052 DOI: 10.1177/147470491301100308] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/23/2012] [Indexed: 03/29/2024] Open
Abstract
The zebrafish is gaining popularity in behavioral brain research. It may be a cost-effective tool with which we can improve our understanding of the biological and genetic mechanisms of human brain function and dysfunction. Some, myself and collaborators included, have argued that such translational relevance may be best achieved if one considers the ecology and species-specific characteristics of the study organism. In this review, I focus on our own studies investigating zebrafish fear responses, which may be utilized in analyzing the mechanisms of fear and anxiety, and which may be used for screening anxiolytic drugs. I review how zebrafish respond to their natural and synthetic alarm substance as well as to other fear-inducing stimuli, including sympatric and allopatric predatory fish, sympatric or allopatric harmless fish, moving (animated) images of predatory fish and moving images of abstract shapes. I discuss the behavioral responses these stimuli elicit, summarize the methods of the quantification of the behaviors, and speculate about their possible adaptive nature. Although we utilize complex visual stimuli and do not yet know what key features zebrafish may be sensitive to, our results, together with those published by others, imply that this simple vertebrate may have a bright future in behavioral brain research.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada.
| |
Collapse
|
400
|
Abstract
We have created a novel high-throughput imaging system for the analysis of behavior in 7-day-old zebrafish larvae in multi-lane plates. This system measures spontaneous behaviors and the response to an aversive stimulus, which is shown to the larvae via a PowerPoint presentation. The recorded images are analyzed with an ImageJ macro, which automatically splits the color channels, subtracts the background, and applies a threshold to identify individual larvae placement in the lanes. We can then import the coordinates into an Excel sheet to quantify swim speed, preference for edge or side of the lane, resting behavior, thigmotaxis, distance between larvae, and avoidance behavior. Subtle changes in behavior are easily detected using our system, making it useful for behavioral analyses after exposure to environmental toxicants or pharmaceuticals.
Collapse
Affiliation(s)
- Holly Richendrfer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University.
| | | |
Collapse
|