351
|
Parsons YM, Shaw KL. Mapping unexplored genomes: a genetic linkage map of the Hawaiian cricket Laupala. Genetics 2002; 162:1275-82. [PMID: 12454072 PMCID: PMC1462318 DOI: 10.1093/genetics/162.3.1275] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As with many organisms of evolutionary interest, the Hawaiian cricket Laupala genome is not well characterized genetically. Mapping such an unexplored genome therefore presents challenges not often faced in model genetic organisms and not well covered in the literature. We discuss the evolutionary merits of Laupala as a model for speciation studies involving prezygotic change, our choice of marker system for detecting genetic variation, and the initial genetic expectations pertaining to the construction of any unknown genomic map in general and to the Laupala linkage map construction in particular. We used the technique of amplified fragment length polymorphism (AFLP) to develop a linkage map of Laupala. We utilized both EcoRI/MseI- and EcoRI/PstI-digested genomic DNA to generate AFLP bands and identified 309 markers that segregated among F(2) interspecific hybrid individuals. The map is composed of 231 markers distributed over 11 and 7 species-specific autosomal groups together with a number of putative X chromosome linkage groups. The integration of codominant markers enabled the identification of five homologous linkage groups corresponding to five of the seven autosomal chromosomal pairs found in Laupala.
Collapse
Affiliation(s)
- Y M Parsons
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
352
|
Sinervo B, Svensson E. Correlational selection and the evolution of genomic architecture. Heredity (Edinb) 2002; 89:329-38. [PMID: 12399990 DOI: 10.1038/sj.hdy.6800148] [Citation(s) in RCA: 341] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We review and discuss the importance of correlational selection (selection for optimal character combinations) in natural populations. If two or more traits subject to multivariate selection are heritable, correlational selection builds favourable genetic correlations through the formation of linkage disequilibrium at underlying loci governing the traits. However, linkage disequilibria built up by correlational selection are expected to decay rapidly (ie, within a few generations), unless correlational selection is strong and chronic. We argue that frequency-dependent biotic interactions that have 'Red Queen dynamics' (eg, host-parasite interactions, predator-prey relationships or intraspecific arms races) often fuel chronic correlational selection, which is strong enough to maintain adaptive genetic correlations of the kind we describe. We illustrate these processes and phenomena using empirical examples from various plant and animal systems, including our own recent work on the evolutionary dynamics of a heritable throat colour polymorphism in the side-blotched lizard Uta stansburiana. In particular, male and female colour morphs of side-blotched lizards cycle on five- and two-generation (year) timescales under the force of strong frequency-dependent selection. Each morph refines the other morph in a Red Queen dynamic. Strong correlational selection gradients among life history, immunological and morphological traits shape the genetic correlations of the side-blotched lizard polymorphism. We discuss the broader evolutionary consequences of the buildup of co-adapted trait complexes within species, such as the implications for speciation processes.
Collapse
Affiliation(s)
- B Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
353
|
Fishman L, Kelly AJ, Willis JH. Minor quantitative trait loci underlie floral traits associated with mating system divergence in Mimulus. Evolution 2002; 56:2138-55. [PMID: 12487345 DOI: 10.1111/j.0014-3820.2002.tb00139.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The genetic basis of species differences provides insight into the mode and tempo of phenotypic divergence. We investigate the genetic basis of floral differences between two closely related plant taxa with highly divergent mating systems, Mimulus guttatus (large-flowered outcrosser) and M. nasutus (small-flowered selfer). We had previously constructed a framework genetic linkage map of the hybrid genome containing 174 markers spanning approximately 1800 cM on 14 linkage groups. In this study, we analyze the genetics of 16 floral, reproductive, and vegetative characters measured in a large segregating M. nasutus x M. guttatus F2 population (N = 526) and in replicates of the parental lines and F1 hybrids. Phenotypic analyses reveal strong genetic correlations among floral traits and epistatic breakdown of male and female fertility traits in the F2 hybrids. We use multitrait composite interval mapping to jointly locate and characterize quantitative trait loci (QTLs) underlying interspecific differences in seven floral traits. We identified 24 floral QTLs, most of which affected multiple traits. The large number of QTLs affecting each trait (mean = 13, range = 11-15) indicates a strikingly polygenic basis for floral divergence in this system. In general, QTL effects are small relative to both interspecific differences and environmental variation within genotypes, ruling out QTLs of major effect as contributors to floral divergence between M. guttatus and M. nasutus. QTLs show no pattern of directional dominance. Floral characters associated with pollinator attraction (corolla width) and self-pollen deposition (stigma-anther distance) share several pleiotropic or linked QTLs, but unshared QTLs may have allowed selfing to evolve independently from flower size. We discuss the polygenic nature of divergence between M. nasutus and M. guttatus in light of theoretical work on the evolution of selfing, genetics of adaptation, and maintenance of variation within populations.
Collapse
Affiliation(s)
- Lila Fishman
- Department of Biology, Duke University, Durham, North Carolina 27708-0338, USA.
| | | | | |
Collapse
|
354
|
Rieseberg LH, Widmer A, Arntz AM, Burke JM. Directional selection is the primary cause of phenotypic diversification. Proc Natl Acad Sci U S A 2002; 99:12242-5. [PMID: 12221290 PMCID: PMC129429 DOI: 10.1073/pnas.192360899] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Indexed: 11/18/2022] Open
Abstract
Selection is widely accepted as the principal force shaping phenotypic variation within populations. Its importance in speciation and macroevolution has been questioned, however, because phenotypic differences between species or higher taxa sometimes appear to be nonadaptive. Here, we use the quantitative trait locus (QTL) sign test to evaluate the importance of directional selection in phenotypic divergence. If a trait has a history of directional selection, QTL effects should be mostly in the same direction; otherwise QTLs with antagonistic effects should be common. Analysis of QTL effects for 572 traits from 86 studies revealed significantly fewer antagonistic QTLs than expected under neutrality, a result that validates Darwin's claim that phenotypic diversification is caused mainly by selection. Moreover, interspecific trait differences were more strongly or consistently selected than intraspecific differences, strengthening a growing consensus among students of speciation that directional selection is the primary cause of speciation. Contrary to studies of selection in contemporary populations, life history traits appear to be selected more strongly than morphological traits, but traits related to the timing of development are weakly selected relative to most other traits.
Collapse
Affiliation(s)
- Loren H Rieseberg
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA.
| | | | | | | |
Collapse
|
355
|
van Klinken RD, Edwards OR. Is host-specificity of weed biological control agents likely to evolve rapidly following establishment? Ecol Lett 2002. [DOI: 10.1046/j.1461-0248.2002.00343.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
356
|
Abstract
Genomics is the study of the structure and function of the genome: the set of genetic information encoded in the DNA of the nucleus and organelles of an organism. It is a dynamic field that combines traditional paths of inquiry with new approaches that would have been impossible without recent technological developments. Much of the recent focus has been on obtaining the sequence of entire genomes, determining the order and organization of the genes, and developing libraries that provide immediate physical access to any desired DNA fragment. This has enabled functional studies on a genome-wide level, including analysis of the genetic basis of complex traits, quantification of global patterns of gene expression, and systematic gene disruption projects. The successful contribution of genomics to problems in applied entomology requires the cooperation of the private and public sectors to build upon the knowledge derived from the Drosophila genome and effectively develop models for other insect Orders.
Collapse
Affiliation(s)
- David G Heckel
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
357
|
Aguin-Pombo D. Genetic differentiation among host-associated Alebra leafhoppers (Hemiptera: Cicadellidae). Heredity (Edinb) 2002; 88:415-22. [PMID: 12180082 DOI: 10.1038/sj.hdy.6800050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The limited importance ascribed to sympatric speciation processes via host race formation is partially due to the few cases of host races that have been reported among host populations. This work sheds light on the taxonomy of Alebra leafhoppers and examines the possible existence of host races among host-associated populations. The species of this genus show varying degrees of host association with deciduous trees and shrubs and, frequently, host populations of uncertain taxonomic status coexist and occasionally become pests. Allozyme electrophoresis of 21 Greek populations including sympatric, local and geographically distant samples collected on 13 different plant species, show that they represent at least five species: A. albostriella Fallén, A. viridis (Rey) (sensu Gillham), A. wahlbergi Boheman and two new species. Of these, one is associated to Quercus frainetto and other is specific to Crataegus spp. Significant genetic differences among sympatric and local host populations were found only in A. albostriella, between populations on Turkey oak, beech and common alder. It is suggested that the last two of these host populations may represent different host races. The results show that both the host plant and geographical distance affect the patterns of differentiation in the genus. The formation of some species seems to have been the result of allopatric speciation events while, for others, their origin can be equally explained either by sympatric or allopatric speciation.
Collapse
Affiliation(s)
- D Aguin-Pombo
- Department of Biology, University of Madeira, Campus Universitario da Penteada, 9000 Funchal, Madeira, Portugal.
| |
Collapse
|
358
|
Drès M, Mallet J. Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond B Biol Sci 2002; 357:471-92. [PMID: 12028786 PMCID: PMC1692958 DOI: 10.1098/rstb.2002.1059] [Citation(s) in RCA: 526] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The existence of a continuous array of sympatric biotypes - from polymorphisms, through ecological or host races with increasing reproductive isolation, to good species - can provide strong evidence for a continuous route to sympatric speciation via natural selection. Host races in plant-feeding insects, in particular, have often been used as evidence for the probability of sympatric speciation. Here, we provide verifiable criteria to distinguish host races from other biotypes: in brief, host races are genetically differentiated, sympatric populations of parasites that use different hosts and between which there is appreciable gene flow. We recognize host races as kinds of species that regularly exchange genes with other species at a rate of more than ca. 1% per generation, rather than as fundamentally distinct taxa. Host races provide a convenient, although admittedly somewhat arbitrary intermediate stage along the speciation continuum. They are a heuristic device to aid in evaluating the probability of speciation by natural selection, particularly in sympatry. Speciation is thereby envisaged as having two phases: (i) the evolution of host races from within polymorphic, panmictic populations; and (ii) further reduction of gene flow between host races until the diverging populations can become generally accepted as species. We apply this criterion to 21 putative host race systems. Of these, only three are unambiguously classified as host races, but a further eight are strong candidates that merely lack accurate information on rates of hybridization or gene flow. Thus, over one-half of the cases that we review are probably or certainly host races, under our definition. Our review of the data favours the idea of sympatric speciation via host shift for three major reasons: (i) the evolution of assortative mating as a pleiotropic by-product of adaptation to a new host seems likely, even in cases where mating occurs away from the host; (ii) stable genetic differences in half of the cases attest to the power of natural selection to maintain multilocus polymorphisms with substantial linkage disequilibrium, in spite of probable gene flow; and (iii) this linkage disequilibrium should permit additional host adaptation, leading to further reproductive isolation via pleiotropy, and also provides conditions suitable for adaptive evolution of mate choice (reinforcement) to cause still further reductions in gene flow. Current data are too sparse to rule out a cryptic discontinuity in the apparently stable sympatric route from host-associated polymorphism to host-associated species, but such a hiatus seems unlikely on present evidence. Finally, we discuss applications of an understanding of host races in conservation and in managing adaptation by pests to control strategies, including those involving biological control or transgenic parasite-resistant plants.
Collapse
Affiliation(s)
- Michele Drès
- Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE UK
| | | |
Collapse
|
359
|
Via S, Hawthorne DJ. The Genetic Architecture of Ecological Specialization: Correlated Gene Effects on Host Use and Habitat Choice in Pea Aphids. Am Nat 2002; 159 Suppl 3:S76-88. [DOI: 10.1086/338374] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
360
|
Fishman L, Kelly AJ, Willis JH. MINOR QUANTITATIVE TRAIT LOCI UNDERLIE FLORAL TRAITS ASSOCIATED WITH MATING SYSTEM DIVERGENCE IN MIMULUS. Evolution 2002. [DOI: 10.1554/0014-3820(2002)056[2138:mqtluf]2.0.co;2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
361
|
Recombination and the divergence of hybridizing species. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2002. [DOI: 10.1007/978-94-010-0265-3_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
362
|
Berlocher SH, Feder JL. Sympatric speciation in phytophagous insects: moving beyond controversy? ANNUAL REVIEW OF ENTOMOLOGY 2002; 47:773-815. [PMID: 11729091 DOI: 10.1146/annurev.ento.47.091201.145312] [Citation(s) in RCA: 450] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sympatric speciation is the splitting of one evolutionary lineage into two without the occurrence of geographic isolation. The concept has been intimately tied to entomology since the 1860s, when Benjamin Walsh proposed that many host-specific phytophagous insects originate by shifting and adapting to new host plant species. If true, sympatric speciation would have tremendous implications for our understanding of species and their origins, biodiversity (25-40% of all animals are thought to be phytophagous specialists), insect-plant coevolution, community ecology, phylogenetics, and systematics, as well as practical significance for the management of insect pests. During much of the twentieth century sympatric speciation was viewed as much less plausible than geographic (allopatric) speciation. However, empirical field studies, laboratory experiments, developments in population genetics theory, and phylogenetic and biogeographic data have all recently combined to shed a more favorable light on the process. We review the evidence for sympatric speciation via host shifting for phytophagous insects and propose a set of testable predictions for distinguishing geographic mode (allopatric versus sympatric) of divergence. Our conclusion is that sympatric speciation is a viable hypothesis. We highlight areas where more thorough testing is needed to move sympatric speciation into the realm of accepted scientific theory.
Collapse
Affiliation(s)
- Stewart H Berlocher
- Department of Entomology, University of Illinois, 320 Morrill Hall, 505 S. Goodwin Avenue, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
363
|
Peichel CL, Nereng KS, Ohgi KA, Cole BL, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM. The genetic architecture of divergence between threespine stickleback species. Nature 2001; 414:901-5. [PMID: 11780061 DOI: 10.1038/414901a] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The genetic and molecular basis of morphological evolution is poorly understood, particularly in vertebrates. Genetic studies of the differences between naturally occurring vertebrate species have been limited by the expense and difficulty of raising large numbers of animals and the absence of molecular linkage maps for all but a handful of laboratory and domesticated animals. We have developed a genome-wide linkage map for the three-spined stickleback (Gasterosteus aculeatus), an extensively studied teleost fish that has undergone rapid divergence and speciation since the melting of glaciers 15,000 years ago. Here we use this map to analyse the genetic basis of recently evolved changes in skeletal armour and feeding morphologies seen in the benthic and limnetic stickleback species from Priest Lake, British Columbia. Substantial alterations in spine length, armour plate number, and gill raker number are controlled by genetic factors that map to independent chromosome regions. Further study of these regions will help to define the number and type of genetic changes that underlie morphological diversification during vertebrate evolution.
Collapse
Affiliation(s)
- C L Peichel
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5329, USA
| | | | | | | | | | | | | | | |
Collapse
|