351
|
Paterson AH. Leafing through the genomes of our major crop plants: strategies for capturing unique information. Nat Rev Genet 2006; 7:174-84. [PMID: 16485017 DOI: 10.1038/nrg1806] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Crop plants not only have economic significance, but also comprise important botanical models for evolution and development. This is reflected by the recent increase in the percentage of publicly available sequence data that are derived from angiosperms. Further genome sequencing of the major crop plants will offer new learning opportunities, but their large, repetitive, and often polyploid genomes present challenges. Reduced-representation approaches - such as EST sequencing, methyl filtration and Cot-based cloning and sequencing - provide increased efficiency in extracting key information from crop genomes without full-genome sequencing. Combining these methods with phylogenetically stratified sampling to allow comparative genomic approaches has the potential to further accelerate progress in angiosperm genomics.
Collapse
Affiliation(s)
- Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
352
|
Abstract
The economic and scientific importance of the cereals has motivated a rich history of research into their genetics, development, and evolution. The nearly completed sequence of the rice genome is emblematic of a transition to high-throughput genomics and computational biology that has also pervaded study of many other cereals. The relatively close (ca. <50 million years old) relationships among morphologically diverse cereals native to environments that sample much of global geographic diversity make the cereals particularly attractive for comparative studies of plant genome evolution. Extensive germplasm resources, largely a byproduct of their economic importance, together with growing collections of defined mutants, provide foundations for a host of post-genomic studies to shed more light on the relationship between sequence and function in this important group. Using the rapidly growing capabilities of several informatics resources, genomic data from model cereals are likely to be leveraged tremendously in the study and improvement of a wide range of crop plants that sustain much of the world's population, including many which still lack primary genomic resources.
Collapse
Affiliation(s)
- Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
353
|
Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, Lakey N, O'Shaughnessy AL, Nascimento LU, McCombie WR, Martienssen RA. Differential methylation of genes and repeats in land plants. Genome Res 2006; 15:1431-40. [PMID: 16204196 PMCID: PMC1240086 DOI: 10.1101/gr.4100405] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hypomethylated fraction of plant genomes is usually enriched in genes and can be selectively cloned using methylation filtration (MF). Therefore, MF has been used as a gene enrichment technology in sorghum and maize, where gene enrichment was proportional to genome size. Here we apply MF to a broad variety of plant species spanning a wide range of genome sizes. Differential methylation of genic and non-genic sequences was observed in all species tested, from non-vascular to vascular plants, but in some cases, such as wheat and pine, a lower than expected level of enrichment was observed. Remarkably, hexaploid wheat and pine show a dramatically large number of gene-like sequences relative to other plants. In hexaploid wheat, this apparent excess of genes may reflect an abundance of methylated pseudogenes, which may thus be more prevalent in recent polyploids.
Collapse
|
354
|
Abstract
Bioinformatics plays an essential role in today's plant science. As the amount of data grows exponentially, there is a parallel growth in the demand for tools and methods in data management, visualization, integration, analysis, modeling, and prediction. At the same time, many researchers in biology are unfamiliar with available bioinformatics methods, tools, and databases, which could lead to missed opportunities or misinterpretation of the information. In this review, we describe some of the key concepts, methods, software packages, and databases used in bioinformatics, with an emphasis on those relevant to plant science. We also cover some fundamental issues related to biological sequence analyses, transcriptome analyses, computational proteomics, computational metabolomics, bio-ontologies, and biological databases. Finally, we explore a few emerging research topics in bioinformatics.
Collapse
Affiliation(s)
- Seung Yon Rhee
- Department of Plant Biology, Carnegie Institution, Stanford, California 94305, USA.
| | | | | |
Collapse
|
355
|
Bennetzen JL. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 2005; 15:621-7. [PMID: 16219458 DOI: 10.1016/j.gde.2005.09.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/27/2005] [Indexed: 01/26/2023]
Abstract
Plant genome structure is largely derived from the differing specificities, abundances and activities of transposable elements. Recent studies indicate that both the amplification and the removal of transposons are rapid processes in plants, accounting for the general lack of intergenic homology between species that last shared a common ancestor more than 10 million years ago. Two newly discovered transposon varieties, Helitrons and Pack-MULEs, acquire and fuse fragments of plant genes, creating the raw material for the evolution of new genes and new genetic functions. Many of these recently assembled, chimeric gene-candidates are expressed, suggesting that some might escape epigenetic silencing and mutational decay, but a proven case of gene creation by any transposable element activity in plants remains to be demonstrated.
Collapse
|
356
|
Hancock JF. Contributions of domesticated plant studies to our understanding of plant evolution. ANNALS OF BOTANY 2005; 96:953-63. [PMID: 16159942 PMCID: PMC4247096 DOI: 10.1093/aob/mci259] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/08/2005] [Accepted: 07/29/2005] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant evolutionary theory has been greatly enriched by studies on crop species. Over the last century, important information has been generated on many aspects of population biology, speciation and polyploid genetics. SCOPE Searches for quantitative trait loci (QTL) in crop species have uncovered numerous blocks of genes that have dramatic effects on adaptation, particularly during the domestication process. Many of these QTL have epistatic and pleiotropic effects making rapid evolutionary change possible. Most of the pioneering work on the molecular basis of self-incompatibility has been conducted on crop species, along with the sequencing of the phytopathogenic resistance genes (R genes) responsible for the 'gene-to-gene' relations of coevolution observed in host-pathogen relationships. Some of the better examples of co-adaptation and early acting inbreeding depression have also been elucidated in crops. Crop-wild progenitor interactions have provided rich opportunities to study the evolution of novel adaptations subsequent to hybridization. Most crop/wild F1 hybrids have reduced fitness, but in some instances the crop relatives have acquired genes that make them more efficient weeds through crop mimicry. Studies on autopolyploid alfalfa and potato have uncovered the means by which polyploid gametes are formed and have led to hypotheses about how multiallelic interactions are associated with fitness and self-fertility. Research on the cole crops and wheat has discovered that newly formed polyploids can undergo dramatic genome rearrangements that could lead to rapid evolutionary change. CONCLUSIONS Many more important evolutionary discoveries are on the horizon, now that the whole genome sequence is available of the two major subspecies of rice Oryza sativa ssp. japonica and O. sativa ssp. indica. The rice sequence data can be used to study the origin of genes and gene families, track rates of sequence divergence over time, and provide hints about how genes evolve and generate products with novel biological properties. The rice sequence data has already been mined to show that transposable elements often carry fragments of cellular genes. This type of genome shuffling could play a role in creating novel, reorganized genes with new adaptive properties.
Collapse
Affiliation(s)
- James F Hancock
- Department of Horticulture, Michigan State University, East Lansing, MI 49924, USA.
| |
Collapse
|
357
|
Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. PLANT PHYSIOLOGY 2005; 139:1107-24. [PMID: 16286450 PMCID: PMC1283751 DOI: 10.1104/pp.105.069005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The wall-associated kinase (WAK) gene family, one of the receptor-like kinase (RLK) gene families in plants, plays important roles in cell expansion, pathogen resistance, and heavy-metal stress tolerance in Arabidopsis (Arabidopsis thaliana). Through a reiterative database search and manual reannotation, we identified 125 OsWAK gene family members from rice (Oryza sativa) japonica cv Nipponbare; 37 (approximately 30%) OsWAKs were corrected/reannotated from earlier automated annotations. Of the 125 OsWAKs, 67 are receptor-like kinases, 28 receptor-like cytoplasmic kinases, 13 receptor-like proteins, 12 short genes, and five pseudogenes. The two-intron gene structure of the Arabidopsis WAK/WAK-Likes is generally conserved in OsWAKs; however, extra/missed introns were observed in some OsWAKs either in extracellular regions or in protein kinase domains. In addition to the 38 OsWAKs with full-length cDNA sequences and the 11 with rice expressed sequence tag sequences, gene expression analyses, using tiling-microarray analysis of the 20 OsWAKs on chromosome 10 and reverse transcription-PCR analysis for five OsWAKs, indicate that the majority of identified OsWAKs are likely expressed in rice. Phylogenetic analyses of OsWAKs, Arabidopsis WAK/WAK-Likes, and barley (Hordeum vulgare) HvWAKs show that the OsWAK gene family expanded in the rice genome due to lineage-specific expansion of the family in monocots. Localized gene duplications appear to be the primary genetic event in OsWAK gene family expansion and the 125 OsWAKs, present on all 12 chromosomes, are mostly clustered.
Collapse
Affiliation(s)
- Shibo Zhang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res 2005; 15:1292-7. [PMID: 16140995 PMCID: PMC1199544 DOI: 10.1101/gr.4064205] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA transposons are known to frequently capture duplicated fragments of host genes. The evolutionary impact of this phenomenon depends on how frequently the fragments retain protein-coding function as opposed to becoming pseudogenes. Gene fragment duplication by Mutator-like elements (MULEs) has previously been documented in maize, Arabidopsis, and rice. Here we present a rigorous genome-wide analysis of MULEs in the model plant Oryza sativa (domesticated rice). We identify 8274 MULEs with intact termini and target-site duplications (TSDs) and show that 1337 of them contain duplicated host gene fragments. Through a detailed examination of the 5% of duplicated gene fragments that are transcribed, we demonstrate that virtually all cases contain pseudogenic features such as fragmented conserved protein domains, frameshifts, and premature stop codons. In addition, we show that the distribution of the ratio of nonsynonymous to synonymous amino acid substitution rates for the duplications agrees with the expected distribution for pseudogenes. We conclude that MULE-mediated host gene duplication results in the formation of pseudogenes, not novel functional protein-coding genes; however, the transcribed duplications possess characteristics consistent with a potential role in the regulation of host gene expression.
Collapse
Affiliation(s)
- Nikoleta Juretic
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | | | | | |
Collapse
|
359
|
Lal SK, Hannah LC. Plant genomes: Massive changes of the maize genome are caused by Helitrons. Heredity (Edinb) 2005; 95:421-2. [PMID: 16222326 DOI: 10.1038/sj.hdy.6800764] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- S K Lal
- Department of Biological Sciences, Oakland University, Rochester, MI 48309-4401, USA
| | | |
Collapse
|
360
|
Abstract
Comparative mapping studies have revealed a great deal about the patterns of gene order and gene content evolution in plants. These findings have practical importance for leveraging genomic information from model to nonmodel plant species. However, there is much to be learned about the processes by which gene order and content evolve. The role of gene duplication and loss in the evolution of plant gene order, in particular, appears to be more important than commonly appreciated. An exciting area of current research is the study of gene order and content polymorphism within species. Some recent findings suggest that there may be a functional, and adaptive, relationship between gene order and phenotype that is mediated by the effects of gene order on transcriptional regulation.
Collapse
Affiliation(s)
- Todd J Vision
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
361
|
Mauricio R. The 'bricolage' of the genome elucidated through evolutionary genomics. THE NEW PHYTOLOGIST 2005; 168:1-4. [PMID: 16159315 DOI: 10.1111/j.1469-8137.2005.01554.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
362
|
Zabala G, Vodkin LO. The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. THE PLANT CELL 2005; 17:2619-32. [PMID: 16141454 PMCID: PMC1242261 DOI: 10.1105/tpc.105.033506] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 07/27/2005] [Accepted: 08/18/2005] [Indexed: 05/04/2023]
Abstract
We used soybean (Glycine max) cDNA microarrays to identify candidate genes for a stable mutation at the Wp locus in soybean, which changed a purple-flowered phenotype to pink, and found that flavanone 3-hydroxylase cDNAs were overexpressed in purple flower buds relative to the pink. Restriction fragment length polymorphism analysis and RNA gel blots of purple and pink flower isolines, as well as the presence of a 5.7-kb transposon insertion in the wp mutant allele, have unequivocally shown that flavanone 3-hydroxylase gene 1 is the Wp locus. Moreover, the 5.7-kb insertion in wp represents a novel transposable element (termed Tgm-Express1) with inverted repeats closely related to those of other Tgms (transposable-like elements, G. max) but distinct in several characteristics, including the lack of subterminal inverted repeats. More significantly, Tgm-Express1 contains four truncated cellular genes from the soybean genome, resembling the Pack-MULEs (Mutator-like transposable elements) found in maize (Zea mays), rice (Oryza sativa), and Arabidopsis thaliana and the Helitrons of maize. The presence of the Tgm-Express1 element causing the wp mutation, as well as a second Tgm-Express2 element elsewhere in the soybean genome, extends the ability to acquire and transport host DNA segments to the CACTA family of elements, which includes both Tgm and the prototypical maize Spm/En.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
363
|
Ray DA, Hedges DJ, Herke SW, Fowlkes JD, Barnes EW, LaVie DK, Goodwin LM, Densmore LD, Batzer MA. Chompy: an infestation of MITE-like repetitive elements in the crocodilian genome. Gene 2005; 362:1-10. [PMID: 16183215 DOI: 10.1016/j.gene.2005.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/01/2005] [Accepted: 07/07/2005] [Indexed: 01/06/2023]
Abstract
Interspersed repeats are a major component of most eukaryotic genomes and have an impact on genome size and stability, but the repetitive element landscape of crocodilian genomes has not yet been fully investigated. In this report, we provide the first detailed characterization of an interspersed repeat element in any crocodilian genome. Chompy is a putative miniature inverted-repeat transposable element (MITE) family initially recovered from the genome of Alligator mississippiensis (American alligator) but also present in the genomes of Crocodylus moreletii (Morelet's crocodile) and Gavialis gangeticus (Indian gharial). The element has all of the hallmarks of MITEs including terminal inverted repeats, possible target site duplications, and a tendency to form secondary structures. We estimate the copy number in the alligator genome to be approximately 46,000 copies. As a result of their size and unique properties, Chompy elements may provide a useful source of genomic variation for crocodilian comparative genomics.
Collapse
Affiliation(s)
- David A Ray
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Multiscale Systems, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Abstract
It has been known for some time that plant transposons can capture and mobilize cellular genes. Recent work by Jiang and coworkers((1)) has revealed that this process has happened on a massive scale. They found that portions of more than 1000 genes in rice have been captured and mobilized by members of the MULE family of transposons. In rice, and perhaps other plants as well, it appears that thousands of genes and portions of genes have been duplicated, transposed and rearranged. These results have fascinating implications for our understanding of the mode and tempo of gene evolution in plants.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, University of California at Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
365
|
Ma L, Chen C, Liu X, Jiao Y, Su N, Li L, Wang X, Cao M, Sun N, Zhang X, Bao J, Li J, Pedersen S, Bolund L, Zhao H, Yuan L, Wong GKS, Wang J, Deng XW, Wang J. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res 2005; 15:1274-83. [PMID: 16140994 PMCID: PMC1199542 DOI: 10.1101/gr.3657405] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 05/18/2005] [Indexed: 11/25/2022]
Abstract
Arabidopsis and rice are the only two model plants whose finished phase genome sequence has been completed. Here we report the construction of an oligomer microarray based on the presently known and predicted gene models in the rice genome. This microarray was used to analyze the transcriptional activity of the gene models in representative rice organ types. Expression of 86% of the 41,754 known and predicted gene models was detected. A significant fraction of these expressed gene models are organized into chromosomal regions, about 100 kb in length, that exhibit a coexpression pattern. Compared with similar genome-wide surveys of the Arabidopsis transcriptome, our results indicate that similar proportions of the two genomes are expressed in their corresponding organ types. A large percentage of the rice gene models that lack significant Arabidopsis homologs are expressed. Furthermore, the expression patterns of rice and Arabidopsis best-matched homologous genes in distinct functional groups indicate dramatic differences in their degree of conservation between the two species. Thus, this initial comparative analysis reveals some basic similarities and differences between the Arabidopsis and rice transcriptomes.
Collapse
Affiliation(s)
- Ligeng Ma
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Brunner S, Pea G, Rafalski A. Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:799-810. [PMID: 16146520 DOI: 10.1111/j.1365-313x.2005.02497.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Helitron transposable elements carrying gene fragments were recently discovered in maize. These elements are frequently specific to certain maize lineages. Here we report evidence supporting the involvement of helitrons in the rapid evolution of the maize genome, in particular in the multiplication of related genic fragments across the genome. We describe a family of four closely related, non-autonomous maize helitrons and their insertion sites at four non-allelic genetic loci across the maize genome: two specific to the B73 inbred, and two to the Mo17 inbred. We propose the phylogeny of this helitron family and provide an approximate timeline of their genomic insertions. One of these elements, the Mo17-specific helitron on chromosome 1 (bin 1.07), is transcriptionally active, probably as a result of insertion in the vicinity of a promoter. Significantly, it produces an alternatively spliced and chimeric transcript joining together genic segments of different chromosomal origin contained within the helitron. This transcript potentially encodes up to four open reading frames. During the course of evolution, transcribed helitrons containing multiple gene fragments may occasionally give rise to new genes with novel biochemical functions by a combinatorial assembly of exons. Thus helitrons not only constantly reshape the genomic organization of maize and profoundly affect its genetic diversity, but also may be involved in the evolution of gene function.
Collapse
Affiliation(s)
- Stephan Brunner
- DuPont Crop Genetics Research, Experimental Station, Building E353, Wilmington, DE 19880-353, USA.
| | | | | |
Collapse
|
367
|
Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 2005; 37:997-1002. [PMID: 16056225 DOI: 10.1038/ng1615] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/27/2005] [Indexed: 12/19/2022]
Abstract
We report a whole-genome comparison of gene content in allelic BAC contigs from two maize inbred lines. Genic content polymorphisms involve as many as 10,000 sequences and are mainly generated by DNA insertions. The termini of eight of the nine genic insertions that we analyzed shared the structural hallmarks of helitron rolling-circle transposons. DNA segments defined by helitron termini contained multiple gene-derived fragments and had a structure typical of nonautonomous helitron-like transposons. Closely related insertions were found in multiple genomic locations. Some of these produced transcripts containing segments of different genes, supporting the idea that these transposition events have a role in exon shuffling and the evolution of new proteins. We identified putative autonomous helitron elements and found evidence for their transcription. Helitrons in maize seem to continually produce new nonautonomous elements responsible for the duplicative insertion of gene segments into new locations and for the unprecedented genic diversity. The maize genome is in constant flux, as transposable elements continue to change both the genic and nongenic fractions of the genome, profoundly affecting genetic diversity.
Collapse
Affiliation(s)
- Michele Morgante
- Dipartimento di Scienze Agrarie ed Ambientali, Universita' di Udine, Via delle Scienze 208, 33100 Udine, Italy.
| | | | | | | | | | | |
Collapse
|
368
|
Lal SK, Hannah LC. Helitrons contribute to the lack of gene colinearity observed in modern maize inbreds. Proc Natl Acad Sci U S A 2005; 102:9993-4. [PMID: 16009929 PMCID: PMC1177426 DOI: 10.1073/pnas.0504713102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shailesh K Lal
- Department of Biological Sciences, Oakland University, Rochester, MI 48309-4401, USA
| | | |
Collapse
|
369
|
Lai J, Li Y, Messing J, Dooner HK. Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci U S A 2005; 102:9068-73. [PMID: 15951422 PMCID: PMC1157042 DOI: 10.1073/pnas.0502923102] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Different maize inbred lines are polymorphic for the presence or absence of genic sequences at various allelic chromosomal locations. In the bz genomic region, located in 9S, sequences homologous to four different genes from rice and Arabidopsis are present in line McC but absent from line B73. It is shown here that this apparent intraspecific violation of genetic colinearity arises from the movement of genes or gene fragments by Helitrons, a recently discovered class of eukaryotic transposons. Two Helitrons, HelA and HelB, account for all of the genic differences distinguishing the two bz locus haplotypes. HelA is 5.9 kb long and contains sequences for three of the four genes found only in the McC bz genomic region. A nearly identical copy of HelA was isolated from a 5S chromosomal location in B73. Both the 9S and 5S sites appear to be polymorphic in maize, suggesting that these Helitrons have been active recently. Helitrons lack the strong predictive terminal features of other transposons, so the definition of their ends is greatly facilitated by the identification of their vacant sites in Helitron-minus lines. The ends of the 2.7-kb HelB Helitron were discerned from a comparison of the McC haplotype sequence with that of yet a third line, Mo17, because the HelB vacant site is deleted in B73. Maize Helitrons resemble rice Pack-MULEs in their ability to capture genes or gene fragments from several loci and move them around the genome, features that confer on them a potential role in gene evolution.
Collapse
Affiliation(s)
- Jinsheng Lai
- The Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USA
| | | | | | | |
Collapse
|
370
|
Jiao Y, Jia P, Wang X, Su N, Yu S, Zhang D, Ma L, Feng Q, Jin Z, Li L, Xue Y, Cheng Z, Zhao H, Han B, Deng XW. A tiling microarray expression analysis of rice chromosome 4 suggests a chromosome-level regulation of transcription. THE PLANT CELL 2005; 17:1641-57. [PMID: 15863518 PMCID: PMC1143067 DOI: 10.1105/tpc.105.031575] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The complete genome sequence of cultivated rice (Oryza sativa) provides an unprecedented opportunity to understand the biology of this model cereal. An essential and necessary step in this effort is the determination of the coding information and expression patterns of each sequenced chromosome. Here, we report an analysis of the transcriptional activity of rice chromosome 4 using a tiling path microarray based on PCR-generated genomic DNA fragments. Six representative rice organ types were examined using this microarray to catalog the transcribed regions of rice chromosome 4 and to reveal organ- and developmental stage-specific transcription patterns. This analysis provided expression support for 82% of the gene models in the chromosome. Transcriptional activities in 1643 nonannotated regions were also detected. Comparison with cytologically defined chromatin features indicated that in juvenile-stage rice the euchromatic region is more actively transcribed than is the transposon-rich heterochromatic portion of the chromosome. Interestingly, increased transcription of transposon-related gene models in certain heterochromatic regions was observed in mature-stage rice organs and in suspension-cultured cells. These results suggest a close correlation between transcriptional activity and chromosome organization and the developmental regulation of transcription activity at the chromosome level.
Collapse
Affiliation(s)
- Yuling Jiao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8014, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Li L, Wang X, Xia M, Stolc V, Su N, Peng Z, Li S, Wang J, Wang X, Deng XW. Tiling microarray analysis of rice chromosome 10 to identify the transcriptome and relate its expression to chromosomal architecture. Genome Biol 2005; 6:R52. [PMID: 15960804 PMCID: PMC1175972 DOI: 10.1186/gb-2005-6-6-r52] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/01/2005] [Accepted: 04/25/2005] [Indexed: 11/17/2022] Open
Abstract
A transcriptome analysis of chromosome 10 of 2 rice subspecies identifies 549 new gene models and gives experimental evidence for around 75% of the previously unsupported predicted genes.
Background Sequencing and annotation of the genome of rice (Oryza sativa) have generated gene models in numbers that top all other fully sequenced species, with many lacking recognizable sequence homology to known genes. Experimental evaluation of these gene models and identification of new models will facilitate rice genome annotation and the application of this knowledge to other more complex cereal genomes. Results We report here an analysis of the chromosome 10 transcriptome of the two major rice subspecies, japonica and indica, using oligonucleotide tiling microarrays. This analysis detected expression of approximately three-quarters of the gene models without previous experimental evidence in both subspecies. Cloning and sequence analysis of the previously unsupported models suggests that the predicted gene structure of nearly half of those models needs improvement. Coupled with comparative gene model mapping, the tiling microarray analysis identified 549 new models for the japonica chromosome, representing an 18% increase in the annotated protein-coding capacity. Furthermore, an asymmetric distribution of genome elements along the chromosome was found that coincides with the cytological definition of the heterochromatin and euchromatin domains. The heterochromatin domain appears to associate with distinct chromosome level transcriptional activities under normal and stress conditions. Conclusion These results demonstrated the utility of genome tiling microarray in evaluating annotated rice gene models and in identifying novel transcriptional units. The tiling microarray sanalysis further revealed a chromosome-wide transcription pattern that suggests a role for transposable element-enriched heterochromatin in shaping global transcription in response to environmental changes in rice.
Collapse
MESH Headings
- Chromosomes, Plant/chemistry
- Chromosomes, Plant/genetics
- Cloning, Molecular
- Gene Expression Profiling
- Gene Expression Regulation, Plant/genetics
- Genes, Plant/genetics
- Models, Genetic
- Oligonucleotide Array Sequence Analysis
- Oryza/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Xiangfeng Wang
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
- Peking-Yale Joint Research Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | - Mian Xia
- National Center of Crop Design, China Bioway Biotech Group Co., LTD, Beijing 100085, China
| | - Viktor Stolc
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Genome Research Facility, NASA Ames Research Center, MS 239-11, Moffett Field, CA 94035, USA
| | - Ning Su
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zhiyu Peng
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Songgang Li
- Peking-Yale Joint Research Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jun Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | - Xiping Wang
- National Center of Crop Design, China Bioway Biotech Group Co., LTD, Beijing 100085, China
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
372
|
Slotkin RK, Freeling M, Lisch D. Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 2005; 37:641-4. [PMID: 15908951 DOI: 10.1038/ng1576] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 04/22/2005] [Indexed: 11/08/2022]
Abstract
It has been suggested that gene silencing evolved as a defense against genomic parasites such as transposons. This idea is based on analysis of mutations that reactivate transposons that are stably silenced: they affect maintenance rather than initiation of silencing. Here we describe the cloning and characterization of a naturally occurring locus able to heritably silence the otherwise highly active MuDR transposon in maize. This locus, Mu killer (Muk), results from the inverted duplication of a partially deleted autonomous MuDR element located at the breakpoint of a genomic deletion. Muk produces a hybrid hairpin transcript that is processed into small RNAs, which are amplified when the target MuDR transcript is present. Muk provides the first example of a naturally occurring transposon derivative capable of initiating the heritable silencing of an active transposon family. Further, transposon-generated inverted duplications may be important for the generation of double-stranded RNAs used in gene silencing.
Collapse
Affiliation(s)
- R Keith Slotkin
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
373
|
Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J, Buell CR. The institute for genomic research Osa1 rice genome annotation database. PLANT PHYSIOLOGY 2005; 138:18-26. [PMID: 15888674 PMCID: PMC1104156 DOI: 10.1104/pp.104.059063] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have developed a rice (Oryza sativa) genome annotation database (Osa1) that provides structural and functional annotation for this emerging model species. Using the sequence of O. sativa subsp. japonica cv Nipponbare from the International Rice Genome Sequencing Project, pseudomolecules, or virtual contigs, of the 12 rice chromosomes were constructed. Our most recent release, version 3, represents our third build of the pseudomolecules and is composed of 98% finished sequence. Genes were identified using a series of computational methods developed for Arabidopsis (Arabidopsis thaliana) that were modified for use with the rice genome. In release 3 of our annotation, we identified 57,915 genes, of which 14,196 are related to transposable elements. Of these 43,719 non-transposable element-related genes, 18,545 (42.4%) were annotated with a putative function, 5,777 (13.2%) were annotated as encoding an expressed protein with no known function, and the remaining 19,397 (44.4%) were annotated as encoding a hypothetical protein. Multiple splice forms (5,873) were detected for 2,538 genes, resulting in a total of 61,250 gene models in the rice genome. We incorporated experimental evidence into 18,252 gene models to improve the quality of the structural annotation. A series of functional data types has been annotated for the rice genome that includes alignment with genetic markers, assignment of gene ontologies, identification of flanking sequence tags, alignment with homologs from related species, and syntenic mapping with other cereal species. All structural and functional annotation data are available through interactive search and display windows as well as through download of flat files. To integrate the data with other genome projects, the annotation data are available through a Distributed Annotation System and a Genome Browser. All data can be obtained through the project Web pages at http://rice.tigr.org.
Collapse
Affiliation(s)
- Qiaoping Yuan
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Liu D, Crellin P, Chalmers R. Cyclic changes in the affinity of protein-DNA interactions drive the progression and regulate the outcome of the Tn10 transposition reaction. Nucleic Acids Res 2005; 33:1982-92. [PMID: 15814815 PMCID: PMC1074725 DOI: 10.1093/nar/gki348] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Tn10 transpososome is a DNA processing machine in which two transposon ends, a transposase dimer and the host protein integration host factor (IHF), are united in an asymmetrical complex. The transitions that occur during one transposition cycle are not limited to chemical cleavage events at the transposon ends, but also involve a reorganization of the protein and DNA components. Here, we demonstrate multiple pathways for Tn10 transposition. We show that one series of events is favored over all others and involves cyclic changes in the affinity of IHF for its binding site. During transpososome assembly, IHF is bound with high affinity. However, the affinity for IHF drops dramatically after cleavage of the first transposon end, leading to IHF ejection and unfolding of the complex. The ejection of IHF promotes cleavage of the second end, which is followed by restoration of the high affinity state which in turn regulates target interactions.
Collapse
Affiliation(s)
| | | | - Ronald Chalmers
- To whom correspondence should be addressed. Tel: +44 01865 275307; Fax: +44 01865 275297;
| |
Collapse
|
375
|
Abstract
The genomes of multicellular eukaryotes provide information that determines the phenotype. However, not all sequences in the genome are required for this purpose. Other sequences are often selfish in their actions and interact in complex ways. Here, an analogy is developed between the components of the genome, including mobile DNA elements, and an ecological community. Unlike ecological communities, however, the slow rates at which genomes change allow us to reconstruct patterns of interaction that stretch back tens or hundreds of millions of years.
Collapse
Affiliation(s)
- John F Y Brookfield
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
376
|
Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci U S A 2005; 102:2460-5. [PMID: 15695584 PMCID: PMC548991 DOI: 10.1073/pnas.0409474102] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much of the flowering time variation in wild strains of Arabidopsis thaliana is due to allelic variation at two epistatically acting loci, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FLC encodes a MADS (MCM1/AGAMOUS/DEFICIENS/SRF1) domain transcription factor that directly represses a series of flowering-promoting genes. FRI and FLC, however, do not explain all of the observed variation, especially when plants are grown in short days. To identify loci that act in addition to FRI and FLC in controlling flowering of natural accessions, we have analyzed a recombinant inbred line population derived from crosses of accession Niederzenz (Nd) to Columbia, both of which contain natural FRI lesions. Quantitative trait locus mapping and genomic DNA analysis by microarray hybridization were used to identify candidate genes affecting variation in flowering behavior. In both long and short days, the quantitative trait locus of largest effect, termed FLOWERING 1 (FLW1), was found to be associated with a Nd-specific deletion of FLOWERING LOCUS M (FLM), which encodes a floral repressor closely related to FLC. Analysis of near isogenic lines and quantitative transgenic complementation experiments confirmed that the FLM deletion is, in large part, responsible for the early flowering of the Nd accession.
Collapse
Affiliation(s)
- Jonathan D Werner
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
377
|
Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A. Evolution of DNA sequence nonhomologies among maize inbreds. THE PLANT CELL 2005; 17:343-60. [PMID: 15659640 PMCID: PMC548811 DOI: 10.1105/tpc.104.025627] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 11/17/2004] [Indexed: 05/18/2023]
Abstract
Allelic chromosomal regions totaling more than 2.8 Mb and located on maize (Zea mays) chromosomes 1L, 2S, 7L, and 9S have been sequenced and compared over distances of 100 to 350 kb between the two maize inbred lines Mo17 and B73. The alleles contain extended regions of nonhomology. On average, more than 50% of the compared sequence is noncolinear, mainly because of the insertion of large numbers of long terminal repeat (LTR)-retrotransposons. Only 27 LTR-retroelements are shared between alleles, whereas 62 are allele specific. The insertion of LTR-retrotransposons into the maize genome is statistically more recent for nonshared than shared ones. Most surprisingly, more than one-third of the genes (27/72) are absent in one of the inbreds at the loci examined. Such nonshared genes usually appear to be truncated and form clusters in which they are oriented in the same direction. However, the nonshared genome segments are gene-poor, relative to regions shared by both inbreds, with up to 12-fold difference in gene density. By contrast, miniature inverted terminal repeats (MITEs) occur at a similar frequency in the shared and nonshared fractions. Many times, MITES are present in an identical position in both LTRs of a retroelement, indicating that their insertion occurred before the replication of the retroelement in question. Maize ESTs and/or maize massively parallel signature sequencing tags were identified for the majority of the nonshared genes or homologs of them. In contrast with shared genes, which are usually conserved in gene order and location relative to rice (Oryza sativa), nonshared genes violate the maize colinearity with rice. Based on this, insertion by a yet unknown mechanism, rather than deletion events, seems to be the origin of the nonshared genes. The intergenic space between conserved genes is enlarged up to sixfold in maize compared with rice. Frequently, retroelement insertions create a different sequence environment adjacent to conserved genes.
Collapse
Affiliation(s)
- Stephan Brunner
- DuPont Crop Genetics Research, Wilmington, Delaware 19880, USA.
| | | | | | | | | |
Collapse
|